1
|
Himstead AS, Chen JW, Chu E, Perez-Rosendahl MA, Zheng M, Mathew S, Yuen CA. Expanded Use of Vorasidenib in Non-Enhancing Recurrent CNS WHO Grade 3 Oligodendroglioma. Biomedicines 2025; 13:201. [PMID: 39857783 PMCID: PMC11762706 DOI: 10.3390/biomedicines13010201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 12/31/2024] [Accepted: 01/13/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Anaplastic oligodendrogliomas (AOs) are central nervous system (CNS) World Health Organization (WHO) grade 3 gliomas characterized by isocitrate dehydrogenase (IDH) mutation (m)IDH and 1p/19q codeletion. AOs are typically treated with surgery and chemoradiation. However, chemoradiation can cause detrimental late neurocognitive morbidities and an accelerated disease course. The recently regulatory-approved vorasidenib, a brain-penetrating oral inhibitor of IDH1/2, has altered the treatment paradigm for recurrent/residual non-enhancing surgically resected CNS WHO grade 2 mIDH gliomas. Though vorasidenib can delay the time to chemoradiation for grade 2 gliomas, the implications for vorasidenib in non-grade 2 mIDH gliomas are not well understood. Results: We present a case of a 71-year-old male with a grade 3 non-enhancing oligodendroglioma successfully treated with vorasidenib with an 11% reduction in residual tumor volume. Vorasidenib was well tolerated in our patient with a mild elevation in his liver transaminases that resolved following a brief interruption in treatment. Conclusions: Our case suggests that vorasidenib may impart therapeutic benefits in this setting. This case illustrates the need for further investigation into these less commonly addressed scenarios and treatment strategies that extend beyond current guidelines.
Collapse
Affiliation(s)
- Alexander S. Himstead
- Department of Neurological Surgery, University of California, Irvine, CA 92697, USA; (A.S.H.); (J.W.C.)
| | - Jefferson W. Chen
- Department of Neurological Surgery, University of California, Irvine, CA 92697, USA; (A.S.H.); (J.W.C.)
| | - Eleanor Chu
- Department of Radiological Sciences, University of California, Irvine, CA 92697, USA;
| | - Mari A. Perez-Rosendahl
- Department of Pathology & Laboratory Medicine, University of California, Irvine, CA 92697, USA;
| | - Michelle Zheng
- UC Irvine Charlie Dunlop School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Sherin Mathew
- Department of Research, University of California, Irvine, CA 92697, USA
| | - Carlen A. Yuen
- Department of Neurology, Division of Neuro-Oncology, University of California, Irvine, CA 92697, USA
| |
Collapse
|
2
|
Ghisai SA, van Hijfte L, Vallentgoed WR, Tesileanu CMS, de Heer I, Kros JM, Sanson M, Gorlia T, Wick W, Vogelbaum MA, Brandes AA, Franceschi E, Clement PM, Nowak AK, Golfinopoulos V, van den Bent MJ, French PJ, Hoogstrate Y. Epigenetic landscape reorganisation and reactivation of embryonic development genes are associated with malignancy in IDH-mutant astrocytoma. Acta Neuropathol 2024; 148:50. [PMID: 39382765 PMCID: PMC11464554 DOI: 10.1007/s00401-024-02811-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/17/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024]
Abstract
Accurate grading of IDH-mutant gliomas defines patient prognosis and guides the treatment path. Histological grading is challenging, and aside from CDKN2A/B homozygous deletions in IDH-mutant astrocytomas, there are no other objective molecular markers used for grading. RNA-sequencing was conducted on primary IDH-mutant astrocytomas (n = 138) included in the prospective CATNON trial, which was performed to assess the prognostic effect of adjuvant and concurrent temozolomide. We integrated the RNA-sequencing data with matched DNA-methylation and NGS data. We also used multi-omics data from IDH-mutant astrocytomas included in the TCGA dataset and validated results on matched primary and recurrent samples from the GLASS-NL study. Since discrete classes do not adequately capture grading of these tumours, we utilised DNA-methylation profiles to generate a Continuous Grading Coefficient (CGC) based on classification scores from a CNS-tumour classifier. CGC was an independent predictor of survival outperforming current WHO-CNS5 and methylation-based classification. Our RNA-sequencing analysis revealed four distinct transcription clusters that were associated with (i) upregulation of cell cycling genes; (ii) downregulation of glial differentiation genes; (iii) upregulation of embryonic development genes (e.g. HOX, PAX, and TBX) and (iv) upregulation of extracellular matrix genes. The upregulation of embryonic development genes was associated with a specific increase of CpG island methylation near these genes. Higher grade IDH-mutant astrocytomas have DNA-methylation signatures that, on the RNA level, are associated with increased cell cycling, tumour cell de-differentiation and extracellular matrix remodelling. These combined molecular signatures can serve as an objective marker for grading of IDH-mutant astrocytomas.
Collapse
Affiliation(s)
- Santoesha A Ghisai
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Levi van Hijfte
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
- Department of Tumour Immunology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Wies R Vallentgoed
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | | | - Iris de Heer
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Marc Sanson
- ICM Institute for Brain and Spinal Cords, Sorbonne University, Paris, France
| | | | - Wolfgang Wick
- Neurology Department, University Clinic Heidelberg, Heidelberg University & German Center, Heidelberg, Germany
| | | | - Alba A Brandes
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Enrico Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna, Italy
| | - Paul M Clement
- Department of Oncology, Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Anna K Nowak
- Medical School, The University of Western Australia, Crawley, WA, Australia
| | | | | | - Pim J French
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands.
| | - Youri Hoogstrate
- Department of Neurology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
3
|
van den Bent MJ, French PJ, Brat D, Tonn JC, Touat M, Ellingson BM, Young RJ, Pallud J, von Deimling A, Sahm F, Figarella Branger D, Huang RY, Weller M, Mellinghoff IK, Cloughsey TF, Huse JT, Aldape K, Reifenberger G, Youssef G, Karschnia P, Noushmehr H, Peters KB, Ducray F, Preusser M, Wen PY. The biological significance of tumor grade, age, enhancement, and extent of resection in IDH-mutant gliomas: How should they inform treatment decisions in the era of IDH inhibitors? Neuro Oncol 2024; 26:1805-1822. [PMID: 38912846 PMCID: PMC11449017 DOI: 10.1093/neuonc/noae107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Indexed: 06/25/2024] Open
Abstract
The 2016 and 2021 World Health Organization 2021 Classification of central nervous system tumors have resulted in a major improvement in the classification of isocitrate dehydrogenase (IDH)-mutant gliomas. With more effective treatments many patients experience prolonged survival. However, treatment guidelines are often still based on information from historical series comprising both patients with IDH wild-type and IDH-mutant tumors. They provide recommendations for radiotherapy and chemotherapy for so-called high-risk patients, usually based on residual tumor after surgery and age over 40. More up-to-date studies give a better insight into clinical, radiological, and molecular factors associated with the outcome of patients with IDH-mutant glioma. These insights should be used today for risk stratification and for treatment decisions. In many patients with IDH-mutant grades 2 and 3 glioma, if carefully monitored postponing radiotherapy and chemotherapy is safe, and will not jeopardize the overall outcome of patients. With the INDIGO trial showing patient benefit from the IDH inhibitor vorasidenib, there is a sizable population in which it seems reasonable to try this class of agents before recommending radio-chemotherapy with its delayed adverse event profile affecting quality of survival. Ongoing trials should help to further identify the patients that are benefiting from this treatment.
Collapse
Affiliation(s)
| | - Pim J French
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Daniel Brat
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
| | - Mehdi Touat
- Department of Neurology, Brigham and Women’s Hospital, Boston, Massachusetts, USA
- Sorbonne Université, Inserm, CNRS, UMR S 1127, Institut du Cerveau, Paris Brain Institute, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Benjamin M Ellingson
- UCLA Brain Tumor Imaging Laboratory, Department of Radiological Sciences, David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Robert J Young
- Neuroradiology Service, Department of Radiology, Memorial Sloan Kettering Cancer, New York, New York, USA
| | - Johan Pallud
- Institute of Psychiatry and Neuroscience of Paris (IPNP), INSERM U1266, IMA-Brain, Université Paris Cité, Paris, France
- Service de Neurochirurgie, GHU-Paris Psychiatrie et Neurosciences, Site Sainte Anne, Paris, France
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Medicine and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Sahm
- Department of Neuropathology, University Hospital Medicine and CCU Neuropathology, German Consortium for Translational Cancer Research (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Dominique Figarella Branger
- DFB Aix-Marseille Univ, APHM, CNRS, INP, Inst Neurophysiopathol, CHU Timone, Service d’Anatomie Pathologique et de Neuropathologie, Marseille, France
| | - Raymond Y Huang
- Department of Radiology, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael Weller
- Department of Neurology & Brain Tumor Center, University Hospital Zurich & University of Zurich, Zurich, Switzerland
| | - Ingo K Mellinghoff
- Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, New York, USA
| | - Tim F Cloughsey
- Department of Neurology, TC David Geffen School of Medicine at UCLA, Los Angeles, USA
| | - Jason T Huse
- Departments of Pathology and Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth Aldape
- Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Guido Reifenberger
- Institute of Neuropathology, Medical Faculty, Heinrich Heine University and University Hospital Düsseldorf, and German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| | - Gilbert Youssef
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| | - Philipp Karschnia
- German Cancer Consortium (DKTK), Partner Site Munich, Germany
- Department of Neurosurgery, Ludwig-Maximilians-University, Munich, Germany
| | - Houtan Noushmehr
- Department of Neurosurgery, Henry Ford Hospital+Michigan State University, Detroit, Michigan, USA
| | - Katherine B Peters
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina, USA
| | - Francois Ducray
- Inserm U1052, CNRS UMR5286, Université Claude Bernard Lyon, Lyon, France
- Hospices Civils de Lyon, Service de neuro-oncologie, LabEx Dev2CAN, Centre de Recherche en Cancérologie de Lyon, France
| | - Matthias Preusser
- Department of Medicine I, Division of Oncology, Medical University of Vienna, Vienna, Austria
| | - Patrick Y Wen
- Center For Neuro-Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, Massachusetts, USA
| |
Collapse
|
4
|
van der Vaart T, Wijnenga MMJ, van Garderen K, Dubbink HJ, French PJ, Smits M, Dirven CMF, Kros JM, Vincent AJPE, van den Bent MJ. Differences in the Prognostic Role of Age, Extent of Resection, and Tumor Grade between Astrocytoma IDHmt and Oligodendroglioma: A Single-Center Cohort Study. Clin Cancer Res 2024; 30:3837-3844. [PMID: 38990096 DOI: 10.1158/1078-0432.ccr-24-0901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/14/2024] [Accepted: 07/09/2024] [Indexed: 07/12/2024]
Abstract
PURPOSE IDH-mutant glioma is classified as oligodendroglioma or astrocytoma based on 1p19q-codeletion. Whether prognostic factors are similar between these tumor types is not well understood. EXPERIMENTAL DESIGN Retrospective cohort study. Molecular characterization was performed with targeted next-generation sequencing. Tumor volumes were calculated using semiautomatic 3D segmentation on all pre- and post-operative MRI scans. Overall survival was assessed with the Cox-proportional hazards model. RESULTS A total of 383 patients with newly diagnosed IDH-mutant glioma were followed up for a median of 7.2 years. Grades 3 and 4 patients had significantly lower Karnofsky performance, with tumors having more contrast enhancement. Patients also received more aggressive postsurgery treatment. Postoperative tumor volume is significantly and independently associated with survival (HR, per cm3 1.19; 95% CI, 1.03-1.39) in IDH-mutant glioma. A separate analysis of oligodendroglioma and astrocytoma showed a significant association of postoperative tumor volume in astrocytoma but not in oligodendroglioma. Higher age and histologic tumor grade were associated with worse survival in patients with oligodendroglioma but not with astrocytoma. CONCLUSIONS Our data support an initial strategy of extensive resection in patients with oligodendroglioma and astrocytoma. Other important prognostic factors differ between these tumor types, urging researchers and clinicians to keep treating these tumors as separate entities.
Collapse
Affiliation(s)
- Thijs van der Vaart
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
- Department of Neurology, Haaglanden Medical Center, The Hague, the Netherlands
| | - Maarten M J Wijnenga
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Karin van Garderen
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Medical Delta, Delft, the Netherlands
| | - Hendrikus J Dubbink
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Pim J French
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Marion Smits
- Department of Radiology and Nuclear Medicine, Erasmus MC University Medical Center, Rotterdam, the Netherlands
- Medical Delta, Delft, the Netherlands
| | - Clemens M F Dirven
- Department of Neurosurgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Johan M Kros
- Department of Pathology, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Arnaud J P E Vincent
- Department of Neurosurgery, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| | - Martin J van den Bent
- Department of Neurology, Brain Tumor Center, Erasmus MC Cancer Institute, University Medical Center Rotterdam, Rotterdam, the Netherlands
| |
Collapse
|
5
|
Yang H, Zhu Z, Long C, Niu F, Zhou J, Chen S, Ye M, Peng S, Zhang X, Chen Y, Wei L, Wang H, Liu D, Yao M, Zhang X, Zhang B. Quantitative and Qualitative Parameters of DCE-MRI Predict CDKN2A/B Homozygous Deletion in Gliomas. Acad Radiol 2024; 31:3355-3365. [PMID: 38443208 DOI: 10.1016/j.acra.2024.02.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/05/2024] [Accepted: 02/11/2024] [Indexed: 03/07/2024]
Abstract
RATIONALE AND OBJECTIVES Homozygous deletion (HD) of CDKN2A/B holds important prognostic value in gliomas. This study aimed to explore the predictive potential of conventional MRI characteristics combined with dynamic contrast-enhanced MRI parameters in predicting CDKN2A/B HD status in gliomas. MATERIALS AND METHODS Preoperative MRI data of 105 patients (69 without CDKN2A/B HD, and 36 with CDKN2A/B homozygous deletion) with gliomas were retrospectively collected. Conventional MRI features and dynamic contrast-enhanced-MRI qualitative parameter time-intensity curve type, quantitative parameters Ktrans, Kep, Ve, Vp, and iAUC were obtained. Logistic regression models for prediction of CDKN2A/B HD status were constructed in all types of gliomas and both subtypes of IDH-mutant and IDH-wild gliomas. RESULTS Multivariate analysis for all patients demonstrated that age (OR=1.103, p = 0.002) and Ktrans (OR=1.051, p < 0.001) independently predicted CDKN2A/B HD. In IDH-mutant subgroup, multivariate analysis results indicated that Ktrans (OR=1.098, p = 0.031) emerged as autonomous predictors of CDKN2A/B HD. In IDH-wild subgroup, age (OR=1.111, p = 0.002) and Ktrans (OR=1.032, p = 0.001) were independent predictors of CDKN2A/B HD according to the multivariate analysis. The areas under the receiver operating characteristic curve of the corresponding models were 0.90, 0.95 and 0.84, respectively. CONCLUSION Ktrans can serve as valuable predictive parameters for identifying CDKN2A/B HD status in all types of gliomas and both subtypes of IDH-mutant and IDH-wild gliomas. These findings provide a foundation for precise preoperative non-invasive diagnosis and personalized treatment approaches for glioma patients.
Collapse
Affiliation(s)
- Huiquan Yang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Zhengyang Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Cong Long
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Fengnan Niu
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jianan Zhou
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Sixuan Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Meiping Ye
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Siqi Peng
- School of Life Science and Technology, Key Laboratory of Developmental Genes and Human Disease, Southeast University, Nanjing, China
| | - Xue Zhang
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ying Chen
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Liangpeng Wei
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Haoyao Wang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Dongming Liu
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mei Yao
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Xin Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Bing Zhang
- Department of Radiology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Medical Imaging Center, Affiliated Drum Tower Hospital, Medical School of Nanjing University, Nanjing, China; Institute of Medical Imaging and Artificial Intelligence, Nanjing University, Nanjing, China; Jiangsu Key Laboratory of Molecular Medicine, Nanjing, China; Institute of brain Science, Nanjing University, Nanjing, China
| |
Collapse
|
6
|
Schaff LR, Ioannou M, Geurts M, van den Bent MJ, Mellinghoff IK, Schreck KC. State of the Art in Low-Grade Glioma Management: Insights From Isocitrate Dehydrogenase and Beyond. Am Soc Clin Oncol Educ Book 2024; 44:e431450. [PMID: 38723228 PMCID: PMC11651235 DOI: 10.1200/edbk_431450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Low-grade gliomas present a formidable challenge in neuro-oncology because of the challenges imposed by the blood-brain barrier, predilection for the young adult population, and propensity for recurrence. In the past two decades, the systematic examination of genomic alterations in adults and children with primary brain tumors has uncovered profound new insights into the pathogenesis of these tumors, resulting in more accurate tumor classification and prognostication. It also identified several common recurrent genomic alterations that now define specific brain tumor subtypes and have provided a new opportunity for molecularly targeted therapeutic intervention. Adult-type diffuse low-grade gliomas are frequently associated with mutations in isocitrate dehydrogenase 1 and 2 (IDH1/2), resulting in production of 2-hydroxyglutarate, an oncometabolite important for tumorigenesis. Recent studies of IDH inhibitors have yielded promising results in patients at early stages of disease with prolonged progression-free survival (PFS) and delayed time to radiation and chemotherapy. Pediatric-type gliomas have high rates of alterations in BRAF, including BRAF V600E point mutations or BRAF-KIAA1549 rearrangements. BRAF inhibitors, often combined with MEK inhibitors, have resulted in radiographic response and improved PFS in these patients. This article reviews emerging approaches to the treatment of low-grade gliomas, including a discussion of targeted therapies and how they integrate with the current treatment modalities of surgical resection, chemotherapy, and radiation.
Collapse
Affiliation(s)
- Lauren R. Schaff
- Memorial Sloan Kettering Cancer Center, Weill Cornell Medical College
| | - Maria Ioannou
- Johns Hopkins University School of Medicine, Baltimore, MD
| | - Marjolein Geurts
- Brain Tumor Center at Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | | | | | - Karisa C. Schreck
- Johns Hopkins University School of Medicine Departments of Neurology and Oncology
| |
Collapse
|
7
|
Dipasquale A, Franceschi E, Giordano L, Maccari M, Barigazzi C, Di Nunno V, Losurdo A, Persico P, Di Muzio A, Navarria P, Pessina F, Padovan M, Santoro A, Lombardi G, Simonelli M. Dissecting the prognostic signature of patients with astrocytoma isocitrate dehydrogenase-mutant grade 4: a large multicenter, retrospective study. ESMO Open 2024; 9:103485. [PMID: 38833969 PMCID: PMC11179079 DOI: 10.1016/j.esmoop.2024.103485] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 04/26/2024] [Accepted: 04/29/2024] [Indexed: 06/06/2024] Open
Abstract
BACKGROUND The World Health Organization (WHO) 2021 classification of central nervous system (CNS) tumors classified astrocytoma isocitrate dehydrogenase-mutant (A IDHm) with either microvascular proliferation and/or necrosis or homozygous deletion of CDKN2A/B as CNS grade 4 (CNS WHO G4), introducing a distinct entity and posing new challenges to physicians for appropriate management and prognostication. PATIENTS AND METHODS We retrospectively collected information about patients diagnosed with A IDHm CNS WHO G4 at three reference neuro-oncological Italian centers and correlated them with survival. RESULTS A total of 133 patients were included. Patients were young (median age 41 years) and most received post-operative treatment including chemo-radiation (n = 101) and/or temozolomide maintenance (n = 112). With a median follow-up of 51 months, the median overall survival (mOS) was 31.2 months, with a 5-year survival probability of 26%. In the univariate analysis, complete resection (mOS: 40.2 versus 26.3 months, P = 0.03), methyl-guaninemethyltransferase (MGMT) promoter methylation (mOS: 40.7 versus 18 months, P = 0.0136), and absence of telomerase reverse transcriptase (TERT) promoter mutation (mOS: 40.7 versus 18 months, P = 0.0003) correlated with better prognosis. In the multivariate models, lack of TERT promoter mutation [hazard ratio (HR) 0.23, 95% confidence interval (CI) 0.07-0.82, P = 0.024] and MGMT methylation (HR 0.40, 95% CI 0.20-0.81, P = 0.01) remained associated with improved survival. CONCLUSIONS This is the largest experience in Western countries exploring the prognostic signature of patients with A IDHm CNS G4. Our results show that MGMT promoter methylation and TERT promoter mutation may impact clinical outcomes. This may support physicians in prognostication, clinical management, and design of future studies of this distinct diagnostic entity.
Collapse
Affiliation(s)
- A Dipasquale
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan. https://twitter.com/AngeloDipa_
| | - E Franceschi
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna
| | - L Giordano
- Biostatistic Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan
| | - M Maccari
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua
| | - C Barigazzi
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan
| | - V Di Nunno
- Nervous System Medical Oncology Department, IRCCS Istituto delle Scienze Neurologiche di Bologna, Bologna
| | - A Losurdo
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan
| | - P Persico
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan
| | - A Di Muzio
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan
| | - P Navarria
- Department of Radiotherapy and Radiosurgery
| | - F Pessina
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan; Department of Neurosurgery, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - M Padovan
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua
| | - A Santoro
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan
| | - G Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua. https://twitter.com/DrLombardiGiu
| | - M Simonelli
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan; Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan.
| |
Collapse
|
8
|
Ser MH, Webb M, Thomsen A, Sener U. Isocitrate Dehydrogenase Inhibitors in Glioma: From Bench to Bedside. Pharmaceuticals (Basel) 2024; 17:682. [PMID: 38931350 PMCID: PMC11207016 DOI: 10.3390/ph17060682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024] Open
Abstract
Isocitrate dehydrogenase (IDH) mutant gliomas are a primary malignancy of the central nervous system (CNS) malignancies, most commonly affecting adults under the age of 55. Standard of care therapy for IDH-mutant gliomas involves maximal safe resection, radiotherapy, and chemotherapy. However, despite good initial responses to multimodality treatment, recurrence is virtually universal. IDH-mutant gliomas represent a life-limiting prognosis. For this reason, there is a great need for novel treatments that can prolong survival. Uniquely for IDH-mutant gliomas, the IDH mutation is the direct driver of oncogenesis through its oncometabolite 2-hydroxygluterate. Inhibition of this mutated IDH with a corresponding reduction in 2-hydroxygluterate offers an attractive treatment target. Researchers have tested several IDH inhibitors in glioma through preclinical and early clinical trials. A phase III clinical trial of an IDH1 and IDH2 inhibitor vorasidenib yielded promising results among patients with low-grade IDH-mutant gliomas who had undergone initial surgery and no radiation or chemotherapy. However, many questions remain regarding optimal use of IDH inhibitors in clinical practice. In this review, we discuss the importance of IDH mutations in oncogenesis of adult-type diffuse gliomas and current evidence supporting the use of IDH inhibitors as therapeutic agents for glioma treatment. We also examine unresolved questions and propose potential directions for future research.
Collapse
Affiliation(s)
- Merve Hazal Ser
- Department of Neurology, SBU Istanbul Research and Training Hospital, Istanbul 34098, Turkey
| | - Mason Webb
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA; (M.W.); (U.S.)
| | - Anna Thomsen
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Ugur Sener
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA; (M.W.); (U.S.)
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
9
|
Liang Q, Jing H, Shao Y, Wang Y, Zhang H. Artificial Intelligence Imaging for Predicting High-risk Molecular Markers of Gliomas. Clin Neuroradiol 2024; 34:33-43. [PMID: 38277059 DOI: 10.1007/s00062-023-01375-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Accepted: 12/20/2023] [Indexed: 01/27/2024]
Abstract
Gliomas, the most prevalent primary malignant tumors of the central nervous system, present significant challenges in diagnosis and prognosis. The fifth edition of the World Health Organization Classification of Tumors of the Central Nervous System (WHO CNS5) published in 2021, has emphasized the role of high-risk molecular markers in gliomas. These markers are crucial for enhancing glioma grading and influencing survival and prognosis. Noninvasive prediction of these high-risk molecular markers is vital. Genetic testing after biopsy, the current standard for determining molecular type, is invasive and time-consuming. Magnetic resonance imaging (MRI) offers a non-invasive alternative, providing structural and functional insights into gliomas. Advanced MRI methods can potentially reflect the pathological characteristics associated with glioma molecular markers; however, they struggle to fully represent gliomas' high heterogeneity. Artificial intelligence (AI) imaging, capable of processing vast medical image datasets, can extract critical molecular information. AI imaging thus emerges as a noninvasive and efficient method for identifying high-risk molecular markers in gliomas, a recent focus of research. This review presents a comprehensive analysis of AI imaging's role in predicting glioma high-risk molecular markers, highlighting challenges and future directions.
Collapse
Affiliation(s)
- Qian Liang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Hui Jing
- Department of MRI, The Sixth Hospital, Shanxi Medical University, 030008, Taiyuan, Shanxi Province, China
| | - Yingbo Shao
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Yinhua Wang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China
| | - Hui Zhang
- Department of Radiology, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- College of Medical Imaging, Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- Shanxi Key Laboratory of Intelligent Imaging and Nanomedicine, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
- Intelligent Imaging Big Data and Functional Nano-imaging Engineering Research Center of Shanxi Province, First Hospital of Shanxi Medical University, 030001, Taiyuan, Shanxi Province, China.
| |
Collapse
|
10
|
Biricioiu MR, Sarbu M, Ica R, Vukelić Ž, Kalanj-Bognar S, Zamfir AD. Advances in Mass Spectrometry of Gangliosides Expressed in Brain Cancers. Int J Mol Sci 2024; 25:1335. [PMID: 38279335 PMCID: PMC10816113 DOI: 10.3390/ijms25021335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 01/15/2024] [Accepted: 01/17/2024] [Indexed: 01/28/2024] Open
Abstract
Gangliosides are highly abundant in the human brain where they are involved in major biological events. In brain cancers, alterations of ganglioside pattern occur, some of which being correlated with neoplastic transformation, while others with tumor proliferation. Of all techniques, mass spectrometry (MS) has proven to be one of the most effective in gangliosidomics, due to its ability to characterize heterogeneous mixtures and discover species with biomarker value. This review highlights the most significant achievements of MS in the analysis of gangliosides in human brain cancers. The first part presents the latest state of MS development in the discovery of ganglioside markers in primary brain tumors, with a particular emphasis on the ion mobility separation (IMS) MS and its contribution to the elucidation of the gangliosidome associated with aggressive tumors. The second part is focused on MS of gangliosides in brain metastases, highlighting the ability of matrix-assisted laser desorption/ionization (MALDI)-MS, microfluidics-MS and tandem MS to decipher and structurally characterize species involved in the metastatic process. In the end, several conclusions and perspectives are presented, among which the need for development of reliable software and a user-friendly structural database as a search platform in brain tumor diagnostics.
Collapse
Affiliation(s)
- Maria Roxana Biricioiu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
- Faculty of Physics, West University of Timisoara, 300223 Timisoara, Romania
| | - Mirela Sarbu
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
| | - Raluca Ica
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
| | - Željka Vukelić
- Department of Chemistry and Biochemistry, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Svjetlana Kalanj-Bognar
- Croatian Institute for Brain Research, School of Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Alina D. Zamfir
- National Institute for Research and Development in Electrochemistry and Condensed Matter, 300224 Timisoara, Romania; (M.R.B.); (M.S.); (R.I.)
- Department of Technical and Natural Sciences, “Aurel Vlaicu” University of Arad, 310330 Arad, Romania
| |
Collapse
|
11
|
Weller M, Felsberg J, Hentschel B, Gramatzki D, Kubon N, Wolter M, Reusche M, Roth P, Krex D, Herrlinger U, Westphal M, Tonn JC, Regli L, Maurage CA, von Deimling A, Pietsch T, Le Rhun E, Reifenberger G. Improved prognostic stratification of patients with isocitrate dehydrogenase-mutant astrocytoma. Acta Neuropathol 2024; 147:11. [PMID: 38183430 PMCID: PMC10771615 DOI: 10.1007/s00401-023-02662-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 11/19/2023] [Accepted: 11/20/2023] [Indexed: 01/08/2024]
Abstract
Prognostic factors and standards of care for astrocytoma, isocitrate dehydrogenase (IDH)-mutant, CNS WHO grade 4, remain poorly defined. Here we sought to explore disease characteristics, prognostic markers, and outcome in patients with this newly defined tumor type. We determined molecular biomarkers and assembled clinical and outcome data in patients with IDH-mutant astrocytomas confirmed by central pathology review. Patients were identified in the German Glioma Network cohort study; additional cohorts of patients with CNS WHO grade 4 tumors were identified retrospectively at two sites. In total, 258 patients with IDH-mutant astrocytomas (114 CNS WHO grade 2, 73 CNS WHO grade 3, 71 CNS WHO grade 4) were studied. The median age at diagnosis was similar for all grades. Karnofsky performance status at diagnosis inversely correlated with CNS WHO grade (p < 0.001). Despite more intensive treatment upfront with higher grade, CNS WHO grade was strongly prognostic: median overall survival was not reached for grade 2 (median follow-up 10.4 years), 8.1 years (95% CI 5.4-10.8) for grade 3, and 4.7 years (95% CI 3.4-6.0) for grade 4. Among patients with CNS WHO grade 4 astrocytoma, median overall survival was 5.5 years (95% CI 4.3-6.7) without (n = 58) versus 1.8 years (95% CI 0-4.1) with (n = 12) homozygous CDKN2A deletion. Lower levels of global DNA methylation as detected by LINE-1 methylation analysis were strongly associated with CNS WHO grade 4 (p < 0.001) and poor outcome. MGMT promoter methylation status was not prognostic for overall survival. Histomolecular stratification based on CNS WHO grade, LINE-1 methylation level, and CDKN2A status revealed four subgroups of patients with significantly different outcomes. In conclusion, CNS WHO grade, global DNA methylation status, and CDKN2A homozygous deletion are prognostic in patients with IDH-mutant astrocytoma. Combination of these parameters allows for improved prediction of outcome. These data aid in designing upcoming trials using IDH inhibitors.
Collapse
Affiliation(s)
- Michael Weller
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland.
- Department of Neurology, University of Zurich, Zurich, Switzerland.
| | - Jörg Felsberg
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Bettina Hentschel
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Dorothee Gramatzki
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
| | - Nadezhda Kubon
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Marietta Wolter
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
| | - Matthias Reusche
- Institute for Medical Informatics, Statistics and Epidemiology, University Leipzig, Leipzig, Germany
| | - Patrick Roth
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
| | - Dietmar Krex
- Faculty of Medicine, Department of Neurosurgery, Technische Universität Dresden, University Hospital Carl Gustav Carus, Dresden, Germany
| | | | - Manfred Westphal
- Department of Neurosurgery, University of Hamburg, Hamburg, Germany
| | - Joerg C Tonn
- Department of Neurosurgery, Ludwig-Maximilians-University Munich, Munich, Germany
- German Cancer Consortium (DKTK), Partner Site Munich, Munich, Germany
| | - Luca Regli
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, University of Zurich, Zurich, Switzerland
| | - Claude-Alain Maurage
- Department of Pathology, Centre Biologie Pathologie, Lille University Hospital, Hopital Nord, Lille, France
| | - Andreas von Deimling
- Department of Neuropathology, University Hospital Heidelberg, Heidelberg, Germany
- Clinical Cooperation Unit Neuropathology, German Cancer Center (DKFZ), and German Cancer Consortium (DKTK), Partner Site Heidelberg, Heidelberg, Germany
| | - Torsten Pietsch
- Department of Neuropathology, University of Bonn Medical Center, DGNN Brain Tumor Reference Center, Bonn, Germany
| | - Emilie Le Rhun
- Department of Neurology, University Hospital Zurich, Frauenklinikstrasse 26, 8091, Zurich, Switzerland
- Department of Neurology, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, University Hospital Zurich, Zurich, Switzerland
- Department of Neurosurgery, University of Zurich, Zurich, Switzerland
- Department of Neurosurgery, Lille University Hospital, Lille, France
| | - Guido Reifenberger
- Institute of Neuropathology, Heinrich Heine University, Medical Faculty, and University Hospital Düsseldorf, Düsseldorf, Germany
- German Cancer Consortium (DKTK), Partner Site Essen/Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
12
|
Dipasquale A, Franceschi E, Lombardi G, Simonelli M. Vorasidenib in IDH mutant WHO grade 2 gliomas: time to stop sitting on the fence? Neurooncol Adv 2024; 6:vdae003. [PMID: 38312228 PMCID: PMC10838118 DOI: 10.1093/noajnl/vdae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2024] Open
Affiliation(s)
- Angelo Dipasquale
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
| | - Enrico Franceschi
- Department of Medical Oncology, IRCCS Institute of Neurological Sciences, Bologna, Italy
| | - Giuseppe Lombardi
- Department of Oncology, Oncology 1, Veneto Institute of Oncology IOV - IRCCS, Padua, Italy
| | - Matteo Simonelli
- Medical Oncology and Hematology Unit, IRCCS Humanitas Research Hospital, Rozzano (Milan), Italy
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele (Milan), Italy
| |
Collapse
|
13
|
Preusser M, Geurts M, Hainfellner JA, van den Bent MJ. What is an isocitrate dehydrogenase-mutated central nervous system World Health Organization grade 2 glioma, or who should receive vorasidenib? Neuro Oncol 2023; 25:1915-1917. [PMID: 37477610 PMCID: PMC10628922 DOI: 10.1093/neuonc/noad113] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023] Open
Affiliation(s)
- Matthias Preusser
- Division of Oncology, Department of Medicine 1, Medical University, Vienna, Austria
| | - Marjolein Geurts
- The Brain Tumour Center at the Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Johannes A Hainfellner
- Division of Neuropathology and Neurochemistry, Department of Neurology, Medical University of Vienna, Vienna, Austria
| | - Martin J van den Bent
- The Brain Tumour Center at the Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| |
Collapse
|
14
|
Penkova A, Kuziakova O, Gulaia V, Tiasto V, Goncharov NV, Lanskikh D, Zhmenia V, Baklanov I, Farniev V, Kumeiko V. Comprehensive clinical assays for molecular diagnostics of gliomas: the current state and future prospects. Front Mol Biosci 2023; 10:1216102. [PMID: 37908227 PMCID: PMC10613994 DOI: 10.3389/fmolb.2023.1216102] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 09/04/2023] [Indexed: 11/02/2023] Open
Abstract
Glioma is one of the most intractable types of cancer, due to delayed diagnosis at advanced stages. The clinical symptoms of glioma are unclear and due to a variety of glioma subtypes, available low-invasive testing is not effective enough to be introduced into routine medical laboratory practice. Therefore, recent advances in the clinical diagnosis of glioma have focused on liquid biopsy approaches that utilize a wide range of techniques such as next-generation sequencing (NGS), droplet-digital polymerase chain reaction (ddPCR), and quantitative PCR (qPCR). Among all techniques, NGS is the most advantageous diagnostic method. Despite the rapid cheapening of NGS experiments, the cost of such diagnostics remains high. Moreover, high-throughput diagnostics are not appropriate for molecular profiling of gliomas since patients with gliomas exhibit only a few diagnostic markers. In this review, we highlighted all available assays for glioma diagnosing for main pathogenic glioma DNA sequence alterations. In the present study, we reviewed the possibility of integrating routine molecular methods into the diagnosis of gliomas. We state that the development of an affordable assay covering all glioma genetic aberrations could enable early detection and improve patient outcomes. Moreover, the development of such molecular diagnostic kits could potentially be a good alternative to expensive NGS-based approaches.
Collapse
Affiliation(s)
- Alina Penkova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Olga Kuziakova
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Gulaia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vladlena Tiasto
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Nikolay V. Goncharov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Daria Lanskikh
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Valeriia Zhmenia
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Ivan Baklanov
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| | - Vladislav Farniev
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
| | - Vadim Kumeiko
- Institute of Life Sciences and Biomedicine, Far Eastern Federal University, Vladivostok, Russia
- A. V. Zhirmunsky National Scientific Center of Marine Biology, FEB RAS, Vladivostok, Russia
| |
Collapse
|