1
|
Jessurun CAC, Siddi F, Nawabi NLA, Hulsbergen AFC, Lo YT, Jha R, Smith TR, Broekman MLD. Hyperprogression of brain metastases following initiation of immune checkpoint inhibitors. J Neurooncol 2025; 172:667-673. [PMID: 39918777 PMCID: PMC11968457 DOI: 10.1007/s11060-025-04955-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 01/25/2025] [Indexed: 04/04/2025]
Abstract
PURPOSE Immune checkpoint inhibitors (ICI) are increasingly being administered to cancer patients, including those with brain metastases (BMs). However, in a subset of cancer patients, ICI have shown to paradoxically accelerate tumor growth. This phenomenon is known as hyperprogressive disease (HPD). The aim of this study is to investigate the occurrence of HPD following initiation of ICI in BM patients. METHODS We retrospectively reviewed the charts of 60 surgically treated patients with BMs from non-small cell lung cancer or melanoma who were administered ICI at the Brigham and Women's Hospital, Boston between July 2008 and July 2018. BM tumor volumes before and after initiation of ICI were collected. HPD was defined as a 'post-immunotherapy' tumor growth rate (TGR) > 2 times 'pre-immunotherapy' TGR within three months following initiation of ICI. RESULTS Among the 25 included patients treated with ICI, five patients showed HPD with an increase of post-immunotherapy TGR ranging from 4.9 to 207.7 times the pre-immunotherapy TGR. The median survival after initiation of ICI was was 8.0 months in the HPD cases and 13 months in the non-HPD patients. CONCLUSION HPD occurred in about 20% of BM patients receiving ICI. More research is necessary to prospectively analyze the occurrence of HPD and identify predictive factors for HPD in BM patients.
Collapse
Affiliation(s)
- Charissa A C Jessurun
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, USA
- Department of Neurosurgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, Zuid-Holland, The Netherlands
| | - Francesca Siddi
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, USA
- Section of Neurosurgery, Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Piazzale Stefani 1, 37124, Verona, Italy
| | - Noah L A Nawabi
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, USA
| | - Alexander F C Hulsbergen
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, USA
- Department of Neurosurgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, Zuid-Holland, The Netherlands
| | - Yu Tung Lo
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, USA
| | - Rohan Jha
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, USA
| | - Timothy R Smith
- Computational Neuroscience Outcomes Center (CNOC), Department of Neurosurgery, Brigham and Women's Hospital, Harvard Medical School, 75 Francis Street, Boston, Massachusetts, 02115, USA
| | - Marike L D Broekman
- Department of Neurosurgery, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, Zuid-Holland, The Netherlands.
- Department of Neurology, Massachusetts General Hospital, Harvard Medical School, 55 Fruit Street, Boston, Massachusetts, 02114, USA.
- Department of Neurosurgery, Haaglanden Medical Center, Lijnbaan 32, 2512 VA, The Hague, The Netherlands.
| |
Collapse
|
2
|
Ding J, Jiang Y, Jiang N, Xing S, Ge F, Ma P, Tang Q, Miao H, Zhou J, Fang Y, Cui D, Liu D, Han Y, Yu W, Wang Y, Zhao G, Cai Y, Wang S, Sun N, Li N. Bridging the gap: unlocking the potential of emerging drug therapies for brain metastasis. Brain 2025; 148:702-722. [PMID: 39512184 DOI: 10.1093/brain/awae366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 08/30/2024] [Accepted: 09/29/2024] [Indexed: 11/15/2024] Open
Abstract
Brain metastasis remains an unmet clinical need in advanced cancers with an increasing incidence and poor prognosis. The limited response to various treatments is mainly derived from the presence of the substantive barrier, blood-brain barrier (BBB) and brain-tumour barrier (BTB), which hinders the access of potentially effective therapeutics to the metastatic tumour of the brain. Recently, the understanding of the structural and molecular features of the BBB/BTB has led to the development of efficient strategies to enhance BBB/BTB permeability and deliver drugs across the BBB/BTB to elicit the anti-tumour response against brain metastasis. Meanwhile, novel agents capable of penetrating the BBB have rapidly developed and been evaluated in preclinical studies and clinical trials, with both targeted therapies and immunotherapies demonstrating impressive intracranial activity against brain metastasis. In this review, we summarize the recent advances in the biological properties of the BBB/BTB and the emerging strategies for BBB/BTB permeabilization and drug delivery across the BBB/BTB. We also discuss the emerging targeted therapies and immunotherapies against brain metastasis tested in clinical trials. Additionally, we provide our viewpoints on accelerating clinical translation of novel drugs into clinic for patients of brain metastasis. Although still challenging, we expect this review to benefit the future development of novel therapeutics, specifically from a clinical perspective.
Collapse
Affiliation(s)
- Jiatong Ding
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yale Jiang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Jiang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shujun Xing
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Fan Ge
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Peiwen Ma
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Qiyu Tang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Huilei Miao
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Jiawei Zhou
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuan Fang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dandan Cui
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Dongyan Liu
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yanjie Han
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Weijie Yu
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuning Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Guo Zhao
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Yuanting Cai
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Shuhang Wang
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Ning Li
- Clinical Trials Center, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| |
Collapse
|
3
|
Zheng S, Lin Z, Zhang R, Cheng Z, Li K, Gu C, Chen Y, Lin J. Progress in immunotherapy for brain metastatic melanoma. Front Oncol 2025; 14:1485532. [PMID: 39935851 PMCID: PMC11810730 DOI: 10.3389/fonc.2024.1485532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 11/07/2024] [Indexed: 02/13/2025] Open
Abstract
Melanoma is highly aggressive, with brain metastasis being a significant contributor to poor outcomes. Immunotherapy has emerged as a crucial treatment modality for melanoma, particularly for addressing brain metastases. This review explores recent developments in immunotherapy for patients with melanoma brain metastasis, with such treatments encompassing immune checkpoint inhibitors and various immunotherapy combination approaches, such as dual immunotherapy, immunotherapy combined with chemotherapy, immunotherapy combined with targeted drugs, and immunotherapy combined with radiotherapy. This article also discusses existing treatment obstacles and potential future avenues for research and clinical practice.
Collapse
Affiliation(s)
- Shicheng Zheng
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Zhongqiao Lin
- Phase I Clinical Trial Ward, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Ruibo Zhang
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Zihang Cheng
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Kaixin Li
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Chenkai Gu
- School of Basic Medicine, Fujian Medical University, Fuzhou, Fujian, China
| | - Yu Chen
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| | - Jing Lin
- Department of Medical Oncology, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
- Cancer Bio-Immunotherapy Center, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, Fujian, China
| |
Collapse
|
4
|
Javaid A, Peres T, Pozas J, Thomas J, Larkin J. Current and emerging treatment options for BRAFV600-mutant melanoma. Expert Rev Anticancer Ther 2025; 25:55-69. [PMID: 39784319 DOI: 10.1080/14737140.2025.2451722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 01/06/2025] [Accepted: 01/07/2025] [Indexed: 01/12/2025]
Abstract
INTRODUCTION BRAF mutations are the most common driver mutation in cutaneous melanoma, present in 40% of cases. Rationally designed BRAF targeted therapy (TT) has been developed in response to this, and alongside immune checkpoint inhibitors (ICI), forms the backbone of systemic therapy options for BRAF-mutant melanoma. Various therapeutic approaches have been studied in the neoadjuvant, adjuvant and advanced settings, and there is a wealth of information to guide clinicians managing these patients. Despite this, certain challenges remain. AREAS COVERED We reviewed the available literature regarding BRAF mutation types and resistance mechanisms, neoadjuvant and adjuvant approaches for patients with early-stage disease, management of advanced disease, including patients with brain metastases, as well as identified areas of further research. EXPERT OPINION Although there is a significant amount of literature to guide the management of BRAF-mutant melanoma, several questions remain. Thus far, the management of stage III BRAF-mutant patients following neoadjuvant ICI, treatment de-escalation in long-term TT responders in the advanced setting and the management of symptomatic brain metastases remain areas of debate. Further work on predictive and prognostic biomarkers for patients with BRAF-mutant melanoma patients will assist in clinical decision-making.
Collapse
Affiliation(s)
- Anadil Javaid
- Skin and Renal Unit, Royal Marsden Hospital, London, United Kingdom
| | - Tobias Peres
- Skin and Renal Unit, Royal Marsden Hospital, London, United Kingdom
| | - Javier Pozas
- Skin and Renal Unit, Royal Marsden Hospital, London, United Kingdom
| | - Jennifer Thomas
- Skin and Renal Unit, Royal Marsden Hospital, London, United Kingdom
| | - James Larkin
- Skin and Renal Unit, Royal Marsden Hospital, London, United Kingdom
| |
Collapse
|
5
|
Fife C, Williams J, James F, Gregory S, Andreou T, Sunderland A, McKimmie C, Brownlie RJ, Salmond RJ, Heaton S, Errington-Mais F, Hadi Z, Westhead DR, Hall M, Davie A, Emmett A, Lorger M. Natural killer cells are required for the recruitment of CD8+ T cells and the efficacy of immune checkpoint blockade in melanoma brain metastases. J Immunother Cancer 2024; 12:e009522. [PMID: 39551601 PMCID: PMC11574513 DOI: 10.1136/jitc-2024-009522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Accepted: 10/26/2024] [Indexed: 11/19/2024] Open
Abstract
Background Brain metastases (BrM) affect up to 60% of patients with metastatic melanoma and are associated with poor prognosis. While combined immune checkpoint blockade of programmed death-1 (PD-1) and cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) demonstrates intracranial efficacy in a proportion of patients with melanoma, the responses are rarely durable, particularly in patients with symptomatic BrM. The brain is an immune-specialized organ and immune responses are regulated differently to the periphery.Methods Using our previously established two-site model of melanoma BrM with concomitant intracranial and extracranial tumors, in which clinically observed efficacy of the combined PD-1/CTLA-4 (PC) blockade can be reproduced, we here explored the role of natural killer (NK) cells in BrM, using functional studies, immunophenotyping and molecular profiling.Results We demonstrate that NK cells are required for the intracranial efficacy of PC blockade. While both perforin and interferon gamma were necessary for the PC blockade-dependent control of intracranial tumor growth, NK cells isolated from intracranial tumors demonstrated only a limited cancer cell killing ability, and PC blockade did not alter the abundance of NK cells within tumors. However, the depletion of NK cells in PC blockade-treated mice led to tumor molecular profiles reminiscent of those observed in intracranial tumors that failed to respond to therapy. Furthermore, the depletion of NK cells resulted in a strikingly reduced abundance of CD8+ T cells within intracranial tumors, while the abundance of other immune cell populations including CD4+ T cells, macrophages and microglia remained unaltered. Adoptive T cell transfer experiments demonstrated that PC blockade-induced trafficking of CD8+ T cells to intracranial tumors was chemokine-dependent. In line with this, PC blockade enhanced intratumoral expression of several T cell-attracting chemokines and we observed high expression levels of cognate chemokine receptors on BrM-infiltrating CD8+ T cells in mice, as well as in human BrM. Importantly, the depletion of NK cells strikingly reduced the intratumoral expression levels of T cell attracting chemokines and vascular T cell entry receptors that were upregulated following PC blockade.Conclusion Our data demonstrate that NK cells underpin the efficacy of PC blockade in BrM by orchestrating the "responder" molecular profile in tumors, and by controlling the intratumoral abundance of CD8+ T cells through regulation of multiple key molecular mediators of T cell trafficking.
Collapse
Affiliation(s)
- Christopher Fife
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Cancer Research UK National Biomarker Centre, The University of Manchester, Manchester, UK
| | - Jennifer Williams
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Fiona James
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Scott Gregory
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Tereza Andreou
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Ashley Sunderland
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Clive McKimmie
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Skin Research Centre, University of York, York, UK
| | - Rebecca J Brownlie
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Robert J Salmond
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Samuel Heaton
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Fiona Errington-Mais
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| | - Zarnaz Hadi
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - David R Westhead
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Marlous Hall
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Alexander Davie
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Amber Emmett
- Leeds Institute for Data Analytics, University of Leeds, Leeds, UK
| | - Mihaela Lorger
- Leeds Institute of Medical Research at St James's, University of Leeds, Leeds, UK
| |
Collapse
|
6
|
Di Pietro FR, Marinelli D, Verkhovskaia S, Poti G, Falcone R, Carbone ML, Morelli MF, Zappalà AR, Di Rocco ZC, Morese R, Piesco G, Chesi P, Marchetti P, Failla CM, De Galitiis F. Weekly carboplatin plus paclitaxel chemotherapy in advanced melanoma patients resistant to anti-PD-1 inhibitors: a retrospective, monocentric experience. BMC Cancer 2024; 24:1220. [PMID: 39354418 PMCID: PMC11446135 DOI: 10.1186/s12885-024-12961-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/18/2024] [Indexed: 10/03/2024] Open
Abstract
Immunotherapy with anti-PD-1 antibodies significantly improved the prognosis in advanced melanoma patients, but most of them develop primary or secondary resistance to the treatment. In this study, we evaluated efficacy and safety of a chemotherapy regimen with weekly carboplatin plus paclitaxel (wCP) in patients previously treated with anti-PD-1 antibodies. We retrospectively identified 30 patients with advanced melanoma treated at our Institute over the last eight years with wCP. The co-primary endpoints of the study were overall survival (OS) and progression-free survival (PFS). In addition, we evaluated treatment tolerability. For this patient cohort, median PFS and OS were 3.25 and 7.69 months, respectively. All included patients had previously received anti-PD-1 immunotherapy, most of them had ECOG PS 0-1, and only 5 patients had a BRAF V600 mutation. In univariable analysis, we observed shorter OS in patients with > 2 involved metastatic sites, superficial spreading histology, and serum lactate dehydrogenase (LDH) values above the median. Liver metastases were associated with worse outcomes, while radiotherapy treatment of brain metastases was associated with improved OS. However, in a multivariable Cox regression model, only LDH above the median, superficial spreading histology, and female sex were significantly associated with worse OS. We reported grade 3 and 4 treatment-related toxicities in 4 and 0 patients, respectively. In conclusion, chemotherapy with wCP is a valid palliative treatment in advanced melanoma who progressed with anti-PD-1 antibodies.
Collapse
Affiliation(s)
| | - Daniele Marinelli
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Sofia Verkhovskaia
- Department of Oncology and Dermatological Oncology, IDI-IRCCS, Rome, Italy
| | - Giulia Poti
- Department of Oncology and Dermatological Oncology, IDI-IRCCS, Rome, Italy
| | - Rosa Falcone
- Department of Oncology and Dermatological Oncology, IDI-IRCCS, Rome, Italy
| | | | | | | | | | - Roberto Morese
- Department of Oncology and Dermatological Oncology, IDI-IRCCS, Rome, Italy
| | - Gabriele Piesco
- Department of Oncology and Dermatological Oncology, IDI-IRCCS, Rome, Italy
| | - Paolo Chesi
- Department of Oncology and Dermatological Oncology, IDI-IRCCS, Rome, Italy
| | - Paolo Marchetti
- Department of Oncology and Dermatological Oncology, IDI-IRCCS, Rome, Italy
| | | | | |
Collapse
|
7
|
Habibi MA, Mirjani MS, Ahmadvand MH, Delbari P, Eftekhar MS, Ghazizadeh Y, Ghezel MA, Rad RH, Vakili KG, Lotfi S, Minaee P, Eazi S, Mehrizi MAA, Ahmadpour S. Anti-PD-1/PD-L1 inhibitor therapy for melanoma brain metastases: a systematic review and meta-analysis. Neurosurg Rev 2024; 47:434. [PMID: 39141214 DOI: 10.1007/s10143-024-02595-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 07/16/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024]
Abstract
Melanoma brain metastases present a major challenge in cancer treatment and reduce overall survival despite advances in managing primary melanoma. Immune checkpoint inhibitors (ICIs) that target PD-1/PD-L1 pathways have shown promise in treating advanced melanoma, but their efficacy for melanoma brain metastases is debated. This systematic review and meta-analysis summarize evidence on anti-PD-1/PD-L1 inhibitors for melanoma brain metastases. This systematic review and meta-analysis followed PRISMA guidelines. PICO criteria targeted melanoma brain metastasis patients treated with PD-1/PD-L1 inhibitors, assessing overall survival, progression-free survival, and complications. Inclusion criteria were English studies on humans using PD-1/PD-L1 inhibitors for melanoma brain metastases with > 10 patients. A total of 22 trials involving 1523 melanoma brain metastase patients treated with anti-PD-1/PD-L1 inhibitors were thoroughly analyzed. Our findings show the 6-month OS rate of 0.75 [95%CI:0.67-0.84], the 6-months PFS rate of 0.42 [95%CI:0.31-0.52], the 1-year OS rate of 0.63 [95%CI:0.52-0.74], the 1-year PFS rate was 0.45 [95%CI:0.32-0.58], the 18-months OS rate of 0.52 [95%CI:0.37-0.67], the 2-year OS rate of 50% [95% CI: (34%-65%)], the 2 year PFS rate of 0.36 (95%CI:0.23-0.50), the 3-year OS rate of 0.42 (95%CI:0.17-0.67), the 4-year PFS rate of 0.35 [95%CI:0.08-0.61], the 4-year OS rate of 0.29 [95%CI:0.01-0.56], the 5-year OS rate of 0.29 (95%CI:0.09-0.50), and the 5-year PFS rate of 0.11 (95%CI:0.03-0.19). The combined disease stability rate was 0.13 [95%CI:0.05-0.20], the progressive disease rate was 0.49 [95%CI:0.37-0.62], the partial response rate was 0.14 [95%CI:0.07-0.20], the object response rate was 0.35 [95%CI:0.24-0.46], and the complete response rate was 0.22 [95%CI:0.12-0.32]. In conclusion, our meta-analysis provides compelling evidence supporting the efficacy of PD-1/PD-L1 inhibitors in patients with melanoma brain tumors, as evidenced by favorable survival outcomes and disease control rates.
Collapse
Affiliation(s)
- Mohammad Amin Habibi
- Department of Neurosurgery, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | | | - Pouria Delbari
- Student Research Committee, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Shahir Eftekhar
- Department of Surgery, School of Medicine, Shahid Beheshti Hospital, Qom University of Medical Sciences, Qom, Iran
| | - Yalda Ghazizadeh
- Student Research Committee, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Amin Ghezel
- Student Research Committee, Babol University of Medical Sciences, Babol, Iran
- USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Romina Hamidi Rad
- Department of Medicine, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Kimia Ghazi Vakili
- Department of Medicine, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Sohrab Lotfi
- Department of Medicine, Tehran Medical Branch, Islamic Azad University, Tehran, Iran
| | - Poriya Minaee
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - SeyedMohammad Eazi
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | | | - Sajjad Ahmadpour
- Patient Safety Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran.
| |
Collapse
|
8
|
Knox A, Wang T, Shackleton M, Ameratunga M. Symptomatic brain metastases in melanoma. Exp Dermatol 2024; 33:e15075. [PMID: 38610093 DOI: 10.1111/exd.15075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 03/22/2024] [Accepted: 03/27/2024] [Indexed: 04/14/2024]
Abstract
Although clinical outcomes in metastatic melanoma have improved in recent years, the morbidity and mortality of symptomatic brain metastases remain challenging. Response rates and survival outcomes of patients with symptomatic melanoma brain metastases (MBM) are significantly inferior to patients with asymptomatic disease. This review focusses upon the specific challenges associated with the management of symptomatic MBM, discussing current treatment paradigms, obstacles to improving clinical outcomes and directions for future research.
Collapse
Affiliation(s)
- Andrea Knox
- Department of Medical Oncology, Alfred Health, Melbourne, Australia
| | - Tim Wang
- Department of Radiation Oncology, Westmead Hospital, Sydney, Australia
| | - Mark Shackleton
- Department of Medical Oncology, Alfred Health, Melbourne, Australia
- School of Translational Medicine, Monash University, Melbourne, Australia
| | - Malaka Ameratunga
- Department of Medical Oncology, Alfred Health, Melbourne, Australia
- School of Translational Medicine, Monash University, Melbourne, Australia
| |
Collapse
|