1
|
Joshi BS, Youssef SA, Bron R, de Bruin A, Kampinga HH, Zuhorn IS. DNAJB6b-enriched small extracellular vesicles decrease polyglutamine aggregation in in vitro and in vivo models of Huntington disease. iScience 2021; 24:103282. [PMID: 34755099 PMCID: PMC8564107 DOI: 10.1016/j.isci.2021.103282] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 06/12/2021] [Accepted: 10/13/2021] [Indexed: 12/19/2022] Open
Abstract
Huntington disease (HD) is a devastating neurodegenerative disorder characterized by aggregation of huntingtin (HTT) protein containing expanded polyglutamine (polyQ) tracts. DNAJB6, a member of the DNAJ chaperone family, was reported to efficiently inhibit polyQ aggregation in vitro, in cell models, and in vivo in flies, xenopus, and mice. For the delivery of exogenous DNAJB6 to the brain, the DNAJB6 needs to be protected against (enzymatic) degradation and show good penetration into brain tissue. Here, we tested the potential of small extracellular vesicles (sEVs) derived from neural stem cells (NSCs) for delivery of DNAJB6 as anti-amyloidogenic cargo. Administration of sEVs isolated from DNAJB6-overexpressing cells to cells expressing expanded polyQ tracts suppressed HTT aggregation. Furthermore, intrathecal injection of DNAJB6-enriched sEVs into R6/2 transgenic HD mice significantly reduced mutant HTT aggregation in the brain. Taken together, our data suggest that sEV-mediated molecular chaperone delivery may hold potential to delay disease onset in HD.
Collapse
Affiliation(s)
- Bhagyashree S. Joshi
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Sameh A. Youssef
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Department of Molecular Genetics, Department of Pediatrics, University Medical Center Groningen, Groningen, the Netherlands
| | - Reinier Bron
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| | - Alain de Bruin
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, the Netherlands
- Department of Molecular Genetics, Department of Pediatrics, University Medical Center Groningen, Groningen, the Netherlands
| | - Harm H. Kampinga
- Department of Biomedical Sciences of Cells and Systems, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Inge S. Zuhorn
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, A. Deusinglaan 1, 9713 AV Groningen, the Netherlands
| |
Collapse
|
2
|
Yamada Y, Cassidy A, Schaap P. The transcription factor Spores Absent A is a PKA dependent inducer of Dictyostelium sporulation. Sci Rep 2018; 8:6643. [PMID: 29704004 PMCID: PMC5923282 DOI: 10.1038/s41598-018-24915-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 04/11/2018] [Indexed: 11/09/2022] Open
Abstract
Sporulation in Dictyostelium fruiting bodies evolved from amoebozoan encystation with both being induced by cAMP acting on PKA, but with downstream components still being unknown. Using tagged mutagenesis to find missing pathway components, we identified a sporeless mutant defective in a nuclear protein, SpaA. Expression of prespore genes was strongly reduced in spaA- cells, while expression of many spore stage genes was absent. Chromatin immunoprecipitation (ChIP) of a SpaA-YFP gene fusion showed that (pre)spore gene promoters bind directly to SpaA, identifying SpaA as a transcriptional regulator. SpaA dependent spore gene expression required PKA in vivo and was stimulated in vitro by the membrane-permeant PKA agonist 8Br-cAMP. The PKA agonist also promoted SpaA binding to (pre)spore promoters, placing SpaA downstream of PKA. Sequencing of SpaA-YFP ChIPed DNA fragments revealed that SpaA binds at least 117 (pre)spore promoters, including those of other transcription factors that activate some spore genes. These factors are not in turn required for spaA expression, identifying SpaA as the major trancriptional inducer of sporulation.
Collapse
Affiliation(s)
- Yoko Yamada
- School of Life Sciences, University of Dundee, Dundee, DD15EH, Angus, UK
| | - Andrew Cassidy
- Tayside Centre for Genomic Analysis, University of Dundee, Dundee, DD19SY, Angus, UK
| | - Pauline Schaap
- School of Life Sciences, University of Dundee, Dundee, DD15EH, Angus, UK.
| |
Collapse
|
3
|
The Bcl-2 Family in Host-Virus Interactions. Viruses 2017; 9:v9100290. [PMID: 28984827 PMCID: PMC5691641 DOI: 10.3390/v9100290] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Revised: 10/01/2017] [Accepted: 10/03/2017] [Indexed: 12/13/2022] Open
Abstract
Members of the B cell lymphoma-2 (Bcl-2) family are pivotal arbiters of mitochondrially mediated apoptosis, a process of fundamental importance during tissue development, homeostasis, and disease. At the structural and mechanistic level, the mammalian members of the Bcl-2 family are increasingly well understood, with their interplay ultimately deciding the fate of a cell. Dysregulation of Bcl-2-mediated apoptosis underlies a plethora of diseases, and numerous viruses have acquired homologs of Bcl-2 to subvert host cell apoptosis and autophagy to prevent premature death of an infected cell. Here we review the structural biology, interactions, and mechanisms of action of virus-encoded Bcl-2 proteins, and how they impact on host-virus interactions to ultimately enable successful establishment and propagation of viral infections.
Collapse
|
4
|
Benton MA, Akam M, Pavlopoulos A. Cell and tissue dynamics during Tribolium embryogenesis revealed by versatile fluorescence labeling approaches. Development 2013; 140:3210-20. [PMID: 23861059 PMCID: PMC3930475 DOI: 10.1242/dev.096271] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Studies on new arthropod models such as the beetle Tribolium castaneum are shifting our knowledge of embryonic patterning and morphogenesis beyond the Drosophila paradigm. In contrast to Drosophila, Tribolium embryos exhibit the short-germ type of development and become enveloped by extensive extra-embryonic membranes, the amnion and serosa. The genetic basis of these processes has been the focus of active research. Here, we complement genetic approaches with live fluorescence imaging of Tribolium embryos to make the link between gene function and morphogenetic cell behaviors during blastoderm formation and differentiation, germband condensation and elongation, and extra-embryonic development. We first show that transient labeling methods result in strong, homogeneous and persistent expression of fluorescent markers in Tribolium embryos, labeling the chromatin, membrane, cytoskeleton or combinations thereof. We then use co-injection of fluorescent markers with dsRNA for live imaging of embryos with disrupted caudal gene function caused by RNA interference. Using these approaches, we describe and compare cell and tissue dynamics in Tribolium embryos with wild-type and altered fate maps. We find that Tribolium germband condensation is effected by cell contraction and intercalation, with the latter being dependent on the anterior-posterior patterning system. We propose that germband condensation drives initiation of amnion folding, whereas expansion of the amniotic fold and closure of the amniotic cavity are likely driven by contraction of an actomyosin cable at the boundary between the amnion and serosa. Our methodology provides a comprehensive framework for testing quantitative models of patterning, growth and morphogenetic mechanisms in Tribolium and other arthropod species.
Collapse
Affiliation(s)
- Matthew A Benton
- Laboratory for Development and Evolution, Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 3EJ, UK.
| | | | | |
Collapse
|
5
|
Kelsey JS, Blumberg DD. A SAP domain-containing protein shuttles between the nucleus and cell membranes and plays a role in adhesion and migration in D. discoideum. Biol Open 2013; 2:396-406. [PMID: 23616924 PMCID: PMC3625868 DOI: 10.1242/bio.20133889] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 01/10/2013] [Indexed: 12/30/2022] Open
Abstract
The AmpA protein reduces cell adhesion, thereby influencing cell migration in Dictyostelium. To understand how ampA influences cell migration, second site suppressors of an AmpA overexpressing cell line were created by REMI mutagenesis. Mutant candidates were identified by their ability to suppress the large plaques that the AmpA overexpressing cells form on bacterial lawns as a result of their increased rate of migration. One suppressor gene, sma, encodes an uncharacterized protein, which contains a SAP DNA-binding domain and a PTEN-like domain. Using sma gene knockouts and Sma-mRFP expressing cell lines, a role for sma in influencing cell migration was uncovered. Knockouts of the sma gene in a wild-type background enhanced chemotaxis. An additional role for Sma in influencing cell–cell adhesion was also demonstrated. Sma protein transitions between cytosolic and nuclear localizations as a function of cell density. In growing cells migrating to folic acid it is localized to regions of actin polymerization and absent from the nucleus. A role for Sma in influencing ampA mRNA levels is also demonstrated. Sma additionally appears to be involved in ampA pathways regulating cell size, actin polymerization, and cell substrate adhesion. We present insights to the SAP domain-containing group of proteins in Dictyostelium and provide evidence of a role for a SAP domain-containing protein shuttling from the nucleus to sites of actin polymerization during chemotaxis to folic acid and influencing the efficiency of migration.
Collapse
Affiliation(s)
- Jessica S Kelsey
- Department of Biological Sciences, University of Maryland Baltimore County , 1000 Hilltop Circle, Baltimore, MD 21250 , USA
| | | |
Collapse
|
6
|
Kelsey JS, Fastman NM, Noratel EF, Blumberg DD. Ndm, a coiled-coil domain protein that suppresses macropinocytosis and has effects on cell migration. Mol Biol Cell 2012; 23:3407-19. [PMID: 22809629 PMCID: PMC3431939 DOI: 10.1091/mbc.e12-05-0392] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The ampA gene has a role in cell migration in Dictyostelium discoideum. Cells overexpressing AmpA show an increase in cell migration, forming large plaques on bacterial lawns. A second-site suppressor of this ampA-overexpressing phenotype identified a previously uncharacterized gene, ndm, which is described here. The Ndm protein is predicted to contain a coiled-coil BAR-like domain-a domain involved in endocytosis and membrane bending. ndm-knockout and Ndm-monomeric red fluorescent protein-expressing cell lines were used to establish a role for ndm in suppressing endocytosis. An increase in the rate of endocytosis and in the number of endosomes was detected in ndm(-) cells. During migration ndm(-) cells formed numerous endocytic cups instead of the broad lamellipodia structure characteristic of moving cells. A second lamellipodia-based function-cell spreading-was also defective in the ndm(-) cells. The increase in endocytosis and the defect in lamellipodia formation were associated with reduced chemotaxis in ndm(-) cells. Immunofluorescence results and glutathione S-transferase pull-down assays revealed an association of Ndm with coronin and F-actin. The results establish ndm as a gene important in regulating the balance between formation of endocytic cups and lamellipodia structures.
Collapse
Affiliation(s)
- Jessica S Kelsey
- Department of Biological Sciences, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
| | | | | | | |
Collapse
|
7
|
Evidence of an evolutionarily conserved LMBR1 domain-containing protein that associates with endocytic cups and plays a role in cell migration in dictyostelium discoideum. EUKARYOTIC CELL 2012; 11:401-16. [PMID: 22307974 DOI: 10.1128/ec.05186-11] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The ampA gene plays a role in Dictyostelium discoideum cell migration. Loss of ampA function results in reduced ability of growing cells to migrate to folic acid and causes small plaques on bacterial lawns, while overexpression of AmpA results in a rapid-migration phenotype and correspondingly larger plaques than seen with wild-type cells. To help understand how the ampA gene functions, second-site suppressors were created by restriction enzyme-mediated integration (REMI) mutagenesis. These mutants were selected for their ability to reduce the large plaque size of the AmpA overexpresser strain. The lmbd2B gene was identified as a suppressor of an AmpA-overexpressing strain. The lmbd2B gene product belongs to the evolutionarily conserved LMBR1 protein family, some of whose known members are endocytic receptors associated with human diseases, such as anemia. In order to understand lmbd2B function, mRFP fusion proteins were created and lmbd2B knockout cell lines were established. Our findings indicate that the LMBD2B protein is found associated with endocytic cups. It colocalizes with proteins that play key roles in endocytic events and is localized to ruffles on the dorsal surfaces of growing cells. Vegetative lmbd2B-null cells display defects in cell migration. These cells have difficulty sensing the chemoattractant folic acid, as indicated by a decrease in their chemotactic index. lmbd2B-null cells also appear to have difficulty establishing a front/back orientation to facilitate migration. A role for lmbd2B in development is also suggested. Our research gives insight into the function of a previously uncharacterized branch of the LMBR1 family of proteins. We provide evidence of an LMBR1 family plasma membrane protein that associates with endocytic cups and plays a role in chemotaxis.
Collapse
|
8
|
Abstract
Cnidarians belong to the first phylum differentiating a nervous system, thus providing suitable model systems to trace the origins of neurogenesis. Indeed corals, sea anemones, jellyfish and hydra contract, swim and catch their food thanks to sophisticated nervous systems that share with bilaterians common neurophysiological mechanisms. However, cnidarian neuroanatomies are quite diverse, and reconstructing the urcnidarian nervous system is ambiguous. At least a series of characters recognized in all classes appear plesiomorphic: (1) the three cell types that build cnidarian nervous systems (sensory-motor cells, ganglionic neurons and mechanosensory cells called nematocytes or cnidocytes); (2) an organization of nerve nets and nerve rings [those working as annular central nervous system (CNS)]; (3) a neuronal conduction via neurotransmitters; (4) a larval anterior sensory organ required for metamorphosis; (5) a persisting neurogenesis in adulthood. By contrast, the origin of the larval and adult neural stem cells differs between hydrozoans and other cnidarians; the sensory organs (ocelli, lens-eyes, statocysts) are present in medusae but absent in anthozoans; the electrical neuroid conduction is restricted to hydrozoans. Evo-devo approaches might help reconstruct the neurogenic status of the last common cnidarian ancestor. In fact, recent genomic analyses show that if most components of the postsynaptic density predate metazoan origin, the bilaterian neurogenic gene families originated later, in basal metazoans or as eumetazoan novelties. Striking examples are the ParaHox Gsx, Pax, Six, COUP-TF and Twist-type regulators, which seemingly exert neurogenic functions in cnidarians, including eye differentiation, and support the view of a two-step process in the emergence of neurogenesis.
Collapse
Affiliation(s)
- Brigitte Galliot
- Department of Genetics and Evolution, Faculty of Science, University of Geneva, Sciences III, 30 quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland.
| | | |
Collapse
|
9
|
Samereier M, Baumann O, Meyer I, Gräf R. Analysis of Dictyostelium TACC reveals differential interactions with CP224 and unusual dynamics of Dictyostelium microtubules. Cell Mol Life Sci 2011; 68:275-87. [PMID: 20658257 PMCID: PMC11114971 DOI: 10.1007/s00018-010-0453-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2010] [Revised: 06/22/2010] [Accepted: 07/01/2010] [Indexed: 11/26/2022]
Abstract
We have localized TACC to the microtubule-nucleating centrosomal corona and to microtubule plus ends. Using RNAi we proved that Dictyostelium TACC promotes microtubule growth during interphase and mitosis. For the first time we show in vivo that both TACC and XMAP215 family proteins can be differentially localized to microtubule plus ends during interphase and mitosis and that TACC is mainly required for recruitment of an XMAP215-family protein to interphase microtubule plus ends but not for recruitment to centrosomes and kinetochores. Moreover, we have now a marker to study dynamics and behavior of microtubule plus ends in living Dictyostelium cells. In a combination of live cell imaging of microtubule plus ends and fluorescence recovery after photobleaching (FRAP) experiments of GFP-α-tubulin cells we show that Dictyostelium microtubules are dynamic only in the cell periphery, while they remain stable at the centrosome, which also appears to harbor a dynamic pool of tubulin dimers.
Collapse
Affiliation(s)
- Matthias Samereier
- Department of Cell Biology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 26, 14476 Potsdam-Golm, Germany
| | - Otto Baumann
- Department of Animal Physiology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 26, 14476 Potsdam-Golm, Germany
| | - Irene Meyer
- Department of Cell Biology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 26, 14476 Potsdam-Golm, Germany
| | - Ralph Gräf
- Department of Cell Biology, Institute for Biochemistry and Biology, University of Potsdam, Karl-Liebknecht-Strasse 24-25, Haus 26, 14476 Potsdam-Golm, Germany
| |
Collapse
|
10
|
Notch signalling defines critical boundary during budding in Hydra. Dev Biol 2010; 344:331-45. [DOI: 10.1016/j.ydbio.2010.05.517] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 05/04/2010] [Accepted: 05/28/2010] [Indexed: 11/19/2022]
|
11
|
Na R, Bai C, Jin D, Su X, Feng B, Guan W, Ma Y. Establishment and biological characteristics of Qingyuan partridge chicken fibroblast line. Poult Sci 2010; 89:1207-16. [DOI: 10.3382/ps.2009-00558] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
12
|
Abstract
Hydra is a member of the ancient metazoan phylum Cnidaria and is an especially well investigated model organism for questions of the evolutionary origin of metazoan processes. Apoptosis in Hydra is important for the regulation of cellular homeostasis under different conditions of nutrient supply. The molecular mechanisms leading to apoptosis in Hydra are surprisingly extensive and comparable to those in mammals. Genome wide sequence analysis has revealed the presence of large caspase and Bcl-2 families, the apoptotic protease activating factor (APAF-1), inhibitors of apoptotic proteases (IAPs) and components of a putative death receptor pathway. Regulation of apoptosis in Hydra may involve BH-3 only proteins and survival pathways, possibly including insulin signalling.
Collapse
|
13
|
Lasi M, Pauly B, Schmidt N, Cikala M, Stiening B, Käsbauer T, Zenner G, Popp T, Wagner A, Knapp RT, Huber AH, Grunert M, Söding J, David CN, Böttger A. The molecular cell death machinery in the simple cnidarian Hydra includes an expanded caspase family and pro- and anti-apoptotic Bcl-2 proteins. Cell Res 2010; 20:812-25. [PMID: 20479784 DOI: 10.1038/cr.2010.66] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The fresh water polyp Hydra belongs to the phylum Cnidaria, which diverged from the metazoan lineage before the appearance of bilaterians. In order to understand the evolution of apoptosis in metazoans, we have begun to elucidate the molecular cell death machinery in this model organism. Based on ESTs and the whole Hydra genome assembly, we have identified 15 caspases. We show that one is activated during apoptosis, four have characteristics of initiator caspases with N-terminal DED, CARD or DD domain and two undergo autoprocessing in vitro. In addition, we describe seven Bcl-2-like and two Bak-like proteins. For most of the Bcl-2 family proteins, we have observed mitochondrial localization. When expressed in mammalian cells, HyBak-like 1 and 2 strongly induced apoptosis. Six of the Bcl-2 family members inhibited apoptosis induced by camptothecin in mammalian cells with HyBcl-2-like 4 showing an especially strong protective effect. This protein also interacted with HyBak-like 1 in a yeast two-hybrid assay. Mutation of the conserved leucine in its BH3 domain abolished both the interaction with HyBak-like 1 and the anti-apoptotic effect. Moreover, we describe novel Hydra BH-3-only proteins. One of these interacted with Bcl-2-like 4 and induced apoptosis in mammalian cells. Our data indicate that the evolution of a complex network for cell death regulation arose at the earliest and simplest level of multicellular organization, where it exhibited a substantially higher level of complexity than in the protostome model organisms Caenorhabditis and Drosophila.
Collapse
Affiliation(s)
- Margherita Lasi
- Department Biology II, Ludwig-Maximilians University München, Planegg-Martinsried, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Samereier M, Meyer I, Koonce MP, Gräf R. Live cell-imaging techniques for analyses of microtubules in Dictyostelium. Methods Cell Biol 2010; 97:341-57. [PMID: 20719279 DOI: 10.1016/s0091-679x(10)97018-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Dictyostelium amoebae provide a popular model system for analyses of cell and cytoskeletal dynamics. Yet, the sensitivity of Dictyostelium cells to phototoxic effects, their rapid cell movement, and the extraordinary motility of their microtubule system are specific challenges for live cell imaging. The protocols outlined in this chapter are optimized to minimize these challenges, using Dictyostelium cells expressing green fluorescent tubulin or microtubule plus-end markers such as TACC. We describe suitable specimen preparations, treatments with microtubule-depolymerizing drugs, and applicable settings on wide-field and confocal microscopy systems for four-dimensional time-lapse and fluorescence recovery after photobleaching analyses of microtubule dynamics.
Collapse
Affiliation(s)
- Matthias Samereier
- Department of Cell Biology, Institut for Biochemistry and Biology, University of Potsdam, Potsdam-Golm 27708, Germany D-14476
| | | | | | | |
Collapse
|
15
|
Chera S, Buzgariu W, Ghila L, Galliot B. Autophagy in Hydra: A response to starvation and stress in early animal evolution. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1432-43. [DOI: 10.1016/j.bbamcr.2009.03.010] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2008] [Revised: 03/12/2009] [Accepted: 03/22/2009] [Indexed: 12/25/2022]
|
16
|
HSPB7 is a SC35 speckle resident small heat shock protein. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2009; 1793:1343-53. [PMID: 19464326 DOI: 10.1016/j.bbamcr.2009.05.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2008] [Revised: 05/13/2009] [Accepted: 05/15/2009] [Indexed: 01/15/2023]
Abstract
BACKGROUND The HSPB family is one of the more diverse families within the group of HSP families. Some members have chaperone-like activities and/or play a role in cytoskeletal stabilization. Some members also show a dynamic, stress-induced translocation to SC35 splicing speckles. If and how these features are interrelated and if they are shared by all members are yet unknown. METHODS Tissue expression data and interaction and co-regulated gene expression data of the human HSPB members was analyzed using bioinformatics. Using a gene expression library, sub-cellular distribution of the diverse members was analyzed by confocal microscopy. Chaperone activity was measured using a cellular luciferase refolding assay. RESULTS Online databases did not accurately predict the sub-cellular distribution of all the HSPB members. A novel and non-predicted finding was that HSPB7 constitutively localized to SC35 splicing speckles, driven by its N-terminus. Unlike HSPB1 and HSPB5, that chaperoned heat unfolded substrates and kept them folding competent, HSPB7 did not support refolding. CONCLUSION Our data suggest a non-chaperone-like role of HSPB7 at SC35 speckles. GENERAL SIGNIFICANCE The functional divergence between HSPB members seems larger than previously expected and also includes non-canonical members lacking classical chaperone-like functions.
Collapse
|
17
|
Xing L, Deng X, Kotedia K, Ackerstaff E, Ponomarev V, Clifton Ling C, Koutcher JA, Li GC. Non-invasive molecular and functional imaging of cytosine deaminase and uracil phosphoribosyltransferase fused with red fluorescence protein. Acta Oncol 2008; 47:1211-20. [PMID: 18661431 PMCID: PMC4246416 DOI: 10.1080/02841860802256475] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
INTRODUCTION Increased expression of cytosine deaminase (CD) and uracil phosphoribosyltransferase (UPRT) may improve the antitumoral effect of 5-fluorouracil (5-FU) and 5-fluorocytosine (5-FC), and thereby enhance the potential of gene-directed enzyme prodrug therapy. For the applicability of gene-directed enzyme prodrug therapy in a clinical setting, it is essential to be able to monitor the transgene expression and function in vivo. Thus, we developed a preclinical tumor model to investigate the feasibility of using magnetic resonance spectroscopy and optical imaging to measure non-invasively CD and UPRT expression and function. MATERIALS AND METHODS Expression vectors of CD or CD/UPRT fused to monomeric DsRed (mDsRed) were constructed and rat prostate carcinoma (R3327-AT) cell lines stably expressing either CD/mDsRed or CD/UPRT/mDsRed were generated. The expression of the fusion proteins was evaluated by flow cytometry, fluorescence microscopy, and Western blot analysis. The function of the fusion protein was confirmed in vitro by assessing 5-FC and 5-FU cytotoxicity. In vivo fluorine-19 magnetic resonance spectroscopy ((19)F MRS) was used to monitor the conversion of 5-FC to 5-FU in mice bearing the R3327-CD/mDsRed and R3327-CD/UPRT/mDsRed tumor xenografts. RESULTS Sensitivity to 5-FC and 5-FU was higher in cells stably expressing the CD/UPRT/mDsRed fusion gene than in cells stably expressing CD/mDsRed alone or wild-type cells. Whole tumor (19)F MRS measurements showed rapid conversion of 5-FC to 5-FU within 20 min after 5-FC was administered intravenously in both CD/mDsRed and CD/UPRT/mDsRed tumors with subsequent anabolism to cytotoxic fluoronucleotides (FNucs). CD/UPRT/mDsRed tumor was more efficient in these processes. CONCLUSION This study demonstrates the utility of these tumor models stably expressing CD or CD/UPRT to non-invasively evaluate the efficacy of the transgene expression/activity by monitoring drug metabolism in vivo using MRS, with potential applications in preclinical and clinical settings.
Collapse
Affiliation(s)
- Ligang Xing
- Department of Radiation Oncology, Memorial Sloan-Kettering Cancer Center, New York 10065, USA
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Hageman J, Vos MJ, van Waarde MAWH, Kampinga HH. Comparison of Intra-organellar Chaperone Capacity for Dealing with Stress-induced Protein Unfolding. J Biol Chem 2007; 282:34334-45. [PMID: 17875648 DOI: 10.1074/jbc.m703876200] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Molecular chaperones are essential for cells to prevent that partially unfolded proteins form non-functional, toxic aggregates. This requirement is increased when cells experience protein unfolding stresses and such could affect all compartments in the eukaryotic cell. Whether all organelles are equipped with comparable chaperone capacities is largely unknown, mainly due to the lack of suitable reporters that allow such a comparison. Here we describe the development of fluorescent luciferase reporters that are sorted to various cellular locations (nucleus, cytoplasm, endoplasmic reticulum, and peroxisomes) and that differ minimally in their intrinsic thermal stability properties. When heating living cells, the rate of inactivation was most rapid for the nuclear-targeted luciferase, indicating that the nucleus is the most sensitive organelle toward heat-induced denaturing stress. Post-heat re-activation, however, occurred at equal kinetics irrespective of luciferase localization. Also, induction of thermotolerance by a priming heat treatment, that coordinately up-regulates all heat-inducible chaperones, resulted in a transient heat resistance of the luciferase in all organelles in a comparable manner. Overexpression of the main heat-inducible Hsp70 family member, HspA1A, protected only the cytosolic and nuclear, but not the other luciferases. Together, our data suggest that in each compartment investigated, including the peroxisome in which so far no chaperones could be detected, chaperone machines are present and can be induced with activities similar to those present in the cytosolic/nuclear compartment.
Collapse
Affiliation(s)
- Jurre Hageman
- Department of Cell Biology, Section of Radiation and Stress Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | | | | | | |
Collapse
|
19
|
Müller-Taubenberger A, Anderson KI. Recent advances using green and red fluorescent protein variants. Appl Microbiol Biotechnol 2007; 77:1-12. [PMID: 17704916 DOI: 10.1007/s00253-007-1131-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2007] [Revised: 07/12/2007] [Accepted: 07/14/2007] [Indexed: 11/28/2022]
Abstract
Fluorescent proteins have proven to be excellent tools for live-cell imaging. In addition to green fluorescent protein (GFP) and its variants, recent progress has led to the development of monomeric red fluorescent proteins (mRFPs) that show improved properties with respect to maturation, brightness, and the monomeric state. This review considers green and red spectral variants, their paired use for live-cell imaging in vivo, in vitro, and in fluorescence resonance energy transfer (FRET) studies, in addition to other recent "two-color" advances including photoswitching and bimolecular fluorescence complementation (BiFC). It will be seen that green and red fluorescent proteins now exist with nearly ideal properties for dual-color microscopy and FRET.
Collapse
Affiliation(s)
- Annette Müller-Taubenberger
- Institut für Zellbiologie (ABI), Ludwig-Maximilians-Universität München, Schillerstrasse 42, Munich, Germany.
| | | |
Collapse
|
20
|
Mocz G. Fluorescent proteins and their use in marine biosciences, biotechnology, and proteomics. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2007; 9:305-28. [PMID: 17372780 DOI: 10.1007/s10126-006-7145-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2006] [Accepted: 01/24/2007] [Indexed: 05/14/2023]
Abstract
This review explores the field of fluorescent proteins (FPs) from the perspective of their marine origins and their applications in marine biotechnology and proteomics. FPs occur in hydrozoan, anthozoan, and copepodan species, and possibly in other metazoan niches as well. Many FPs exhibit unique photophysical and photochemical properties that are the source of exciting research opportunities and technological development. Wild-type FPs can be enhanced by mutagenetic modifications leading to variants with optimized fluorescence and new functionalities. Paradoxically, the benefits from ocean-derived FPs have been realized, first and foremost, for terrestrial organisms. In recent years, however, FPs have also made inroads into aquatic biosciences, primarily as genetically encoded fluorescent fusion tags for optical marking and tracking of proteins, organelles, and cells. Examples of FPs and applications summarized here testify to growing utilization of FP-based platform technologies in basic and applied biology of aquatic organisms. Hydra, sea squirt, zebrafish, striped bass, rainbow trout, salmonids, and various mussels are only a few of numerous instances where FPs have been used to address questions relevant to evolutionary and developmental research and aquaculture.
Collapse
Affiliation(s)
- Gabor Mocz
- Pacific Biosciences Research Center, University of Hawaii, Honolulu, HI 96822, USA.
| |
Collapse
|
21
|
Rujano MA, Bosveld F, Salomons FA, Dijk F, van Waarde MA, van der Want JJ, de Vos RA, Brunt ER, Sibon OC, Kampinga HH. Polarised asymmetric inheritance of accumulated protein damage in higher eukaryotes. PLoS Biol 2007; 4:e417. [PMID: 17147470 PMCID: PMC1750924 DOI: 10.1371/journal.pbio.0040417] [Citation(s) in RCA: 195] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2005] [Accepted: 10/02/2006] [Indexed: 12/29/2022] Open
Abstract
Disease-associated misfolded proteins or proteins damaged due to cellular stress are generally disposed via the cellular protein quality-control system. However, under saturating conditions, misfolded proteins will aggregate. In higher eukaryotes, these aggregates can be transported to accumulate in aggresomes at the microtubule organizing center. The fate of cells that contain aggresomes is currently unknown. Here we report that cells that have formed aggresomes can undergo normal mitosis. As a result, the aggregated proteins are asymmetrically distributed to one of the daughter cells, leaving the other daughter free of accumulated protein damage. Using both epithelial crypts of the small intestine of patients with a protein folding disease and Drosophila melanogaster neural precursor cells as models, we found that the inheritance of protein aggregates during mitosis occurs with a fixed polarity indicative of a mechanism to preserve the long-lived progeny. Human cells containing polyglutamine damage enter mitosis and complete cytokinesis. The association of aggresomes with one centrosome means that accumulated damage is asymmetrically inherited in only one daughter cell.
Collapse
Affiliation(s)
- María A Rujano
- Department of Cell Biology, Section of Radiation and Stress Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Floris Bosveld
- Department of Cell Biology, Section of Radiation and Stress Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Florian A Salomons
- Department of Cell Biology, Section of Radiation and Stress Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Freark Dijk
- Department of Cell Biology, Section of Electron Microscopy, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maria A.W.H van Waarde
- Department of Cell Biology, Section of Radiation and Stress Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Johannes J.L van der Want
- Department of Cell Biology, Section of Electron Microscopy, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Rob A.I de Vos
- Pathology Laboratory Oost Nederland, Enschede, The Netherlands
| | - Ewout R Brunt
- Department of Neurology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Ody C.M Sibon
- Department of Cell Biology, Section of Radiation and Stress Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Harm H Kampinga
- Department of Cell Biology, Section of Radiation and Stress Cell Biology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
22
|
Böttger A, Alexandrova O. Programmed cell death in Hydra. Semin Cancer Biol 2006; 17:134-46. [PMID: 17197196 DOI: 10.1016/j.semcancer.2006.11.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2006] [Accepted: 11/25/2006] [Indexed: 11/21/2022]
Abstract
Hydra is one of the simplest metazoans and thus an important model organism for studies on the evolution of developmental mechanisms in multi-cellular animals. In Hydra apoptosis is involved in the regulation of cell numbers in response to feeding, in regeneration and in the removal of non-self cells. It also participates in the maintenance of cellular homeostasis in germ cells. During oogenesis a special "arrested" apoptosis of nurse cells is observed. The morphology of apoptotic hydra cells is almost indistinguishable from apoptosis in higher animals and caspases as well as members of the Bcl-2 family participate in the process.
Collapse
Affiliation(s)
- Angelika Böttger
- Ludwig-Maximilians-University Munich, Department Biology II, 82110 Planegg-Martinsried, Grosshaderner Str. 2, Germany.
| | | |
Collapse
|