1
|
Hartman EJ, Asady B, Romano JD, Coppens I. The Rab11-Family Interacting Proteins reveal selective interaction of mammalian recycling endosomes with the Toxoplasma parasitophorous vacuole in a Rab11- and Arf6-dependent manner. Mol Biol Cell 2022; 33:ar34. [PMID: 35274991 PMCID: PMC9282008 DOI: 10.1091/mbc.e21-06-0284] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
After mammalian cell invasion, the parasite Toxoplasma multiplies in a self-made membrane-bound compartment, the parasitophorous vacuole (PV). We previously showed that Toxoplasma interacts with many host cell organelles, especially from recycling pathways, and sequestrates Rab11A and Rab11B vesicles into the PV. Here, we examine the specificity of host Rab11 vesicle interaction with the PV by focusing on the recruitment of subpopulations of Rab11 vesicles characterized by different effectors, for example, Rab11-family interacting roteins (FIPs) or Arf6. Our quantitative microscopic analysis illustrates the presence of intra-PV vesicles with FIPs from class I (FIP1C, FIP2, FIP5) and class II (FIP3, FIP4) but to various degrees. The intra-PV delivery of vesicles with class I, but not class II, FIPs is dependent on Rab11 binding. Cell depletion of Rab11A results in a significant decrease in intra-PV FIP5, but not FIP3 vesicles. Class II FIPs also bind to Arf6, and we observe vesicles associated with FIP3-Rab11A or FIP3-Arf6 complexes concomitantly within the PV. Abolishing FIP3 binding to both Rab11 and Arf6 reduces the number of intra-PV FIP3 vesicles. These data point to a selective process of mammalian Rab11 vesicle recognition and scavenging mediated by Toxoplasma, suggesting that specific parasite PV proteins may be involved in these processes.
Collapse
Affiliation(s)
- Eric J Hartman
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615N Wolfe Street, Baltimore, MD 21205, USA
| | - Beejan Asady
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615N Wolfe Street, Baltimore, MD 21205, USA
| | - Julia D Romano
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615N Wolfe Street, Baltimore, MD 21205, USA
| | - Isabelle Coppens
- Department of Molecular Microbiology and Immunology, Johns Hopkins School of Public Health, 615N Wolfe Street, Baltimore, MD 21205, USA
| |
Collapse
|
2
|
Fisher S, Kuna D, Caspary T, Kahn RA, Sztul E. ARF family GTPases with links to cilia. Am J Physiol Cell Physiol 2020; 319:C404-C418. [PMID: 32520609 PMCID: PMC7500214 DOI: 10.1152/ajpcell.00188.2020] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
The ADP-ribosylation factor (ARF) superfamily of regulatory GTPases, including both the ARF and ARF-like (ARL) proteins, control a multitude of cellular functions, including aspects of vesicular traffic, lipid metabolism, mitochondrial architecture, the assembly and dynamics of the microtubule and actin cytoskeletons, and other pathways in cell biology. Considering their general utility, it is perhaps not surprising that increasingly ARF/ARLs have been found in connection to primary cilia. Here, we critically evaluate the current knowledge of the roles four ARF/ARLs (ARF4, ARL3, ARL6, ARL13B) play in cilia and highlight key missing information that would help move our understanding forward. Importantly, these GTPases are themselves regulated by guanine nucleotide exchange factors (GEFs) that activate them and by GTPase-activating proteins (GAPs) that act as both effectors and terminators of signaling. We believe that the identification of the GEFs and GAPs and better models of the actions of these GTPases and their regulators will provide a much deeper understanding and appreciation of the mechanisms that underly ciliary functions and the causes of a number of human ciliopathies.
Collapse
Affiliation(s)
- Skylar Fisher
- 1Department of Biochemistry, Emory University
School of Medicine, Atlanta,
Georgia
| | - Damian Kuna
- 2Department of Cell, Developmental and Integrative
Biology, University of Alabama at Birmingham,
Birmingham, Alabama
| | - Tamara Caspary
- 3Department of Human Genetics, Emory
University School of Medicine, Atlanta,
Georgia
| | - Richard A. Kahn
- 1Department of Biochemistry, Emory University
School of Medicine, Atlanta,
Georgia
| | - Elizabeth Sztul
- 2Department of Cell, Developmental and Integrative
Biology, University of Alabama at Birmingham,
Birmingham, Alabama
| |
Collapse
|
3
|
Turn RE, East MP, Prekeris R, Kahn RA. The ARF GAP ELMOD2 acts with different GTPases to regulate centrosomal microtubule nucleation and cytokinesis. Mol Biol Cell 2020; 31:2070-2091. [PMID: 32614697 PMCID: PMC7543072 DOI: 10.1091/mbc.e20-01-0012] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
ELMOD2 is a ∼32 kDa protein first purified by its GTPase-activating protein (GAP) activity toward ARL2 and later shown to have uniquely broad specificity toward ARF family GTPases in in vitro assays. To begin the task of defining its functions in cells, we deleted ELMOD2 in immortalized mouse embryonic fibroblasts and discovered a number of cellular defects, which are reversed upon expression of ELMOD2-myc. We show that these defects, resulting from the loss of ELMOD2, are linked to two different pathways and two different GTPases: with ARL2 and TBCD to support microtubule nucleation from centrosomes and with ARF6 in cytokinesis. These data highlight key aspects of signaling by ARF family GAPs that contribute to previously underappreciated sources of complexity, including GAPs acting from multiple sites in cells, working with multiple GTPases, and contributing to the spatial and temporal control of regulatory GTPases by serving as both GAPs and effectors.
Collapse
Affiliation(s)
- Rachel E Turn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322.,Biochemistry, Cell & Developmental Biology Graduate Program, Laney Graduate School, Emory University, Atlanta, GA 30307
| | - Michael P East
- Department of Pharmacology, University of North Carolina Chapel Hill, Chapel Hill, NC 27599
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, University of Colorado, Aurora, CO 80045
| | - Richard A Kahn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, GA 30322
| |
Collapse
|
4
|
Yao X, Smolka AJ. Gastric Parietal Cell Physiology and Helicobacter pylori-Induced Disease. Gastroenterology 2019; 156:2158-2173. [PMID: 30831083 PMCID: PMC6715393 DOI: 10.1053/j.gastro.2019.02.036] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 02/12/2019] [Accepted: 02/14/2019] [Indexed: 12/13/2022]
Abstract
Acidification of the gastric lumen poses a barrier to transit of potentially pathogenic bacteria and enables activation of pepsin to complement nutrient proteolysis initiated by salivary proteases. Histamine-induced activation of the PKA signaling pathway in gastric corpus parietal cells causes insertion of proton pumps into their apical plasma membranes. Parietal cell secretion and homeostasis are regulated by signaling pathways that control cytoskeletal changes required for apical membrane remodeling and organelle and proton pump activities. Helicobacter pylori colonization of human gastric mucosa affects gastric epithelial cell plasticity and homeostasis, promoting epithelial progression to neoplasia. By intervening in proton pump expression, H pylori regulates the abundance and diversity of microbiota that populate the intestinal lumen. We review stimulation-secretion coupling and renewal mechanisms in parietal cells and the mechanisms by which H pylori toxins and effectors alter cell secretory pathways (constitutive and regulated) and organelles to establish and maintain their inter- and intracellular niches. Studies of bacterial toxins and their effector proteins have provided insights into parietal cell physiology and the mechanisms by which pathogens gain control of cell activities, increasing our understanding of gastrointestinal physiology, microbial infectious disease, and immunology.
Collapse
Affiliation(s)
- Xuebiao Yao
- MOE Key Laboratory of Cellular Dynamics, CAS Center for Excellence in Molecular Cell Science, University of Science and Technology of China, Hefei, China; Keck Center for Cellular Dynamics and Organoids Plasticity, Morehouse School of Medicine, Atlanta, Georgia.
| | - Adam J. Smolka
- Gastroenterology and Hepatology Division, Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| |
Collapse
|
5
|
Kandachar V, Tam BM, Moritz OL, Deretic D. An interaction network between the SNARE VAMP7 and Rab GTPases within a ciliary membrane-targeting complex. J Cell Sci 2018; 131:jcs.222034. [PMID: 30404838 DOI: 10.1242/jcs.222034] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Accepted: 10/30/2018] [Indexed: 12/16/2022] Open
Abstract
The Arf4-rhodopsin complex (mediated by the VxPx motif in rhodopsin) initiates expansion of vertebrate rod photoreceptor cilia-derived light-sensing organelles through stepwise assembly of a conserved trafficking network. Here, we examine its role in the sorting of VAMP7 (also known as TI-VAMP) - an R-SNARE possessing a regulatory longin domain (LD) - into rhodopsin transport carriers (RTCs). During RTC formation and trafficking, VAMP7 colocalizes with the ciliary cargo rhodopsin and interacts with the Rab11-Rabin8-Rab8 trafficking module. Rab11 and Rab8 bind the VAMP7 LD, whereas Rabin8 (also known as RAB3IP) interacts with the SNARE domain. The Arf/Rab11 effector FIP3 (also known as RAB11FIP3) regulates VAMP7 access to Rab11. At the ciliary base, VAMP7 forms a complex with the cognate SNAREs syntaxin 3 and SNAP-25. When expressed in transgenic animals, a GFP-VAMP7ΔLD fusion protein and a Y45E phosphomimetic mutant colocalize with endogenous VAMP7. The GFP-VAMP7-R150E mutant displays considerable localization defects that imply an important role of the R-SNARE motif in intracellular trafficking, rather than cognate SNARE pairing. Our study defines the link between VAMP7 and the ciliary targeting nexus that is conserved across diverse cell types, and contributes to general understanding of how functional Arf and Rab networks assemble SNAREs in membrane trafficking.
Collapse
Affiliation(s)
- Vasundhara Kandachar
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Beatrice M Tam
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Orson L Moritz
- Department of Ophthalmology and Visual Sciences, University of British Columbia, Vancouver, BC V5Z 3N9, Canada
| | - Dusanka Deretic
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM 87131, USA .,Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
6
|
Hara Y, Fukaya M, Sugawara T, Sakagami H. FIP4/Arfophilin-2 plays overlapping but distinct roles from FIP3/Arfophilin-1 in neuronal migration during cortical layer formation. Eur J Neurosci 2018; 48:3082-3096. [PMID: 30295969 DOI: 10.1111/ejn.14199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 09/10/2018] [Accepted: 09/20/2018] [Indexed: 11/29/2022]
Abstract
The class II Rab11 family-interacting proteins, FIP3 and FIP4, also termed Arfophilin-1 and Arfophilin-2, respectively, are endosomal proteins that function as dual effector proteins for Rab11 and ADP ribosylation factor (Arf) small GTPases. In the present study, we examined the expression and role of FIP4 in neuronal migration during cerebral layer formation. FIP4 mRNA was first weakly detected in post-mitotic migrating neurons in the upper intermediate zone, and expression was markedly increased in the cortical layer. Exogenously expressed FIP4 protein was localized to subpopulations of EEA1- and syntaxin 12-positive endosomes in migrating neurons, and was partially colocalized with FIP3. Knockdown of FIP4 by in utero electroporation significantly stalled transfected neurons in the lower cortical layer and decreased the speed of neuronal migration in the upper intermediate zone and in the cortical plate compared with control small hairpin RNA (shRNA)-transfected neurons. Furthermore, co-transfection of shRNA-resistant wild-type FIP4, but not wild type FIP3 or FIP4 mutants lacking the binding region for Rab11 or Arf, significantly improved the disturbed cortical layer formation caused by FIP4 knockdown. Collectively, our findings suggest that FIP4 and FIP3 play overlapping but distinct roles in neuronal migration downstream of Arf and Rab11 during cortical layer formation.
Collapse
Affiliation(s)
- Yoshinobu Hara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Masahiro Fukaya
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Takeyuki Sugawara
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| | - Hiroyuki Sakagami
- Department of Anatomy, Kitasato University School of Medicine, Sagamihara, Kanagawa, Japan
| |
Collapse
|
7
|
ADP Ribosylation Factor 6 Regulates Neuronal Migration in the Developing Cerebral Cortex through FIP3/Arfophilin-1-dependent Endosomal Trafficking of N-cadherin. eNeuro 2016; 3:eN-NWR-0148-16. [PMID: 27622210 PMCID: PMC5002984 DOI: 10.1523/eneuro.0148-16.2016] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 07/29/2016] [Accepted: 08/02/2016] [Indexed: 12/15/2022] Open
Abstract
During neural development, endosomal trafficking controls cell shape and motility through the polarized transport of membrane proteins related to cell–cell and cell–extracellular matrix interactions. ADP ribosylation factor 6 (Arf6) is a critical small GTPase that regulates membrane trafficking between the plasma membrane and endosomes. We herein demonstrated that the knockdown of endogenous Arf6 in mouse cerebral cortices led to impaired neuronal migration in the intermediate zone and cytoplasmic retention of N-cadherin and syntaxin12 in migrating neurons. Rescue experiments with separation-of-function Arf6 mutants identified Rab11 family-interacting protein 3 (FIP3)/Arfophilin-1, a dual effector for Arf6 and Rab11, as a downstream effector of Arf6 in migrating neurons. The knockdown of FIP3 led to impaired neuronal migration in the intermediate zone and cytoplasmic retention of N-cadherin in migrating neurons, similar to that of Arf6, which could be rescued by the coexpression of wild-type FIP3 but not FIP3 mutants lacking the binding site for Arf6 or Rab11. These results suggest that Arf6 regulates cortical neuronal migration in the intermediate zone through the FIP3-dependent endosomal trafficking.
Collapse
|
8
|
Abstract
Many viruses exploit specific arms of the endomembrane system. The unique composition of each arm prompts the development of remarkably specific interactions between viruses and sub-organelles. This review focuses on the viral–host interactions occurring on the endocytic recycling compartment (ERC), and mediated by its regulatory Ras-related in brain (Rab) GTPase Rab11. This protein regulates trafficking from the ERC and the trans-Golgi network to the plasma membrane. Such transport comprises intricate networks of proteins/lipids operating sequentially from the membrane of origin up to the cell surface. Rab11 is also emerging as a critical factor in an increasing number of infections by major animal viruses, including pathogens that provoke human disease. Understanding the interplay between the ERC and viruses is a milestone in human health. Rab11 has been associated with several steps of the viral lifecycles by unclear processes that use sophisticated diversified host machinery. For this reason, we first explore the state-of-the-art on processes regulating membrane composition and trafficking. Subsequently, this review outlines viral interactions with the ERC, highlighting current knowledge on viral-host binding partners. Finally, using examples from the few mechanistic studies available we emphasize how ERC functions are adjusted during infection to remodel cytoskeleton dynamics, innate immunity and membrane composition.
Collapse
Affiliation(s)
- Sílvia Vale-Costa
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras, Portugal.
| |
Collapse
|
9
|
Alenquer M, Amorim MJ. Exosome Biogenesis, Regulation, and Function in Viral Infection. Viruses 2015; 7:5066-83. [PMID: 26393640 PMCID: PMC4584306 DOI: 10.3390/v7092862] [Citation(s) in RCA: 277] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 08/31/2015] [Accepted: 09/07/2015] [Indexed: 12/16/2022] Open
Abstract
Exosomes are extracellular vesicles released upon fusion of multivesicular bodies (MVBs) with the cellular plasma membrane. They originate as intraluminal vesicles (ILVs) during the process of MVB formation. Exosomes were shown to contain selectively sorted functional proteins, lipids, and RNAs, mediating cell-to-cell communications and hence playing a role in the physiology of the healthy and diseased organism. Challenges in the field include the identification of mechanisms sustaining packaging of membrane-bound and soluble material to these vesicles and the understanding of the underlying processes directing MVBs for degradation or fusion with the plasma membrane. The investigation into the formation and roles of exosomes in viral infection is in its early years. Although still controversial, exosomes can, in principle, incorporate any functional factor, provided they have an appropriate sorting signal, and thus are prone to viral exploitation. This review initially focuses on the composition and biogenesis of exosomes. It then explores the regulatory mechanisms underlying their biogenesis. Exosomes are part of the endocytic system, which is tightly regulated and able to respond to several stimuli that lead to alterations in the composition of its sub-compartments. We discuss the current knowledge of how these changes affect exosomal release. We then summarize how different viruses exploit specific proteins of endocytic sub-compartments and speculate that it could interfere with exosome function, although no direct link between viral usage of the endocytic system and exosome release has yet been reported. Many recent reports have ascribed functions to exosomes released from cells infected with a variety of animal viruses, including viral spread, host immunity, and manipulation of the microenvironment, which are discussed. Given the ever-growing roles and importance of exosomes in viral infections, understanding what regulates their composition and levels, and defining their functions will ultimately provide additional insights into the virulence and persistence of infections.
Collapse
Affiliation(s)
- Marta Alenquer
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2778-156 Oeiras, Portugal.
| | - Maria João Amorim
- Cell Biology of Viral Infection Lab, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2778-156 Oeiras, Portugal.
| |
Collapse
|
10
|
Nakayama K. Regulation of cytokinesis by membrane trafficking involving small GTPases and the ESCRT machinery. Crit Rev Biochem Mol Biol 2015; 51:1-6. [PMID: 26362026 DOI: 10.3109/10409238.2015.1085827] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
During cell division, cells undergo membrane remodeling to achieve changes in their size and shape. In addition, cell division entails local delivery and retrieval of membranes and specific proteins as well as remodeling of cytoskeletons, in particular, upon cytokinetic abscission. Accumulating lines of evidence highlight that endocytic membrane removal from and subsequent membrane delivery to the plasma membrane are crucial for the changes in cell size and shape, and that trafficking of vesicles carrying specific proteins to the abscission site participate in local remodeling of membranes and cytoskeletons. Furthermore, the endosomal sorting complex required for transport (ESCRT) machinery has been shown to play crucial roles in cytokinetic abscission. Here, the author briefly overviews membrane-trafficking events early in cell division, and subsequently focus on regulation and functional significance of membrane trafficking involving Rab11 and Arf6 small GTPases in late cytokinesis phases and assembly of the ESCRT machinery in cytokinetic abscission.
Collapse
Affiliation(s)
- Kazuhisa Nakayama
- a Graduate School of Pharmaceutical Sciences, Kyoto University , Kyoto , Japan
| |
Collapse
|
11
|
Structure of Rab11-FIP3-Rabin8 reveals simultaneous binding of FIP3 and Rabin8 effectors to Rab11. Nat Struct Mol Biol 2015; 22:695-702. [PMID: 26258637 DOI: 10.1038/nsmb.3065] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2015] [Accepted: 07/07/2015] [Indexed: 12/20/2022]
Abstract
The small GTPase Rab11 and its effectors FIP3 and Rabin8 are essential to membrane-trafficking pathways required for cytokinesis and ciliogenesis. Although effector binding is generally assumed to be sequential and mutually exclusive, we show that Rab11 can simultaneously bind FIP3 and Rabin8. We determined crystal structures of human Rab11-GMPPNP-Rabin8 and Rab11-GMPPNP-FIP3-Rabin8. The structures reveal that the C-terminal domain of Rabin8 adopts a previously undescribed fold that interacts with Rab11 at an unusual effector-binding site neighboring the canonical FIP3-binding site. We show that Rab11-GMPPNP-FIP3-Rabin8 is more stable than Rab11-GMPPNP-Rabin8, owing to direct interaction between Rabin8 and FIP3 within the dual effector-bound complex. The data allow us to propose a model for how membrane-targeting complexes assemble at the trans-Golgi network and recycling endosomes, through multiple weak interactions that create high-avidity complexes.
Collapse
|
12
|
Wang J, Deretic D. The Arf and Rab11 effector FIP3 acts synergistically with ASAP1 to direct Rabin8 in ciliary receptor targeting. J Cell Sci 2015; 128:1375-85. [PMID: 25673879 DOI: 10.1242/jcs.162925] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Primary cilia have gained considerable importance in biology and disease now that their involvement in a wide range of human ciliopathies has been abundantly documented. However, detailed molecular mechanisms for specific targeting of sensory receptors to primary cilia are still unknown. Here, we show that the Arf and Rab11 effector FIP3 (also known as RAB11FIP3) promotes the activity of Rab11a and the Arf GTPase-activating protein (GAP) ASAP1 in the Arf4-dependent ciliary transport of the sensory receptor rhodopsin. During its passage out of the photoreceptor Golgi and trans-Golgi network (TGN), rhodopsin indirectly interacts with FIP3 through Rab11a and ASAP1. FIP3 competes with rhodopsin for binding to ASAP1 and displaces it from the ternary complex with Arf4-GTP and ASAP1. Resembling the phenotype resulting from </emph>lack of ASAP1, ablation of FIP3 abolishes ciliary targeting and causes rhodopsin mislocalization. FIP3 coordinates the interactions of ASAP1 and Rab11a with the Rab8 guanine nucleotide exchange factor Rabin8 (also known as RAB3IP). Our study implies that FIP3 functions as a crucial targeting regulator, which impinges on rhodopsin-ASAP1 interactions and shapes the binding pocket for Rabin8 within the ASAP1-Rab11a-FIP3 targeting complex, thus facilitating the orderly assembly and activation of the Rab11-Rabin8-Rab8 cascade during ciliary receptor trafficking.
Collapse
Affiliation(s)
- Jing Wang
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM 87131, USA
| | - Dusanka Deretic
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM 87131, USA Department of Cell Biology and Physiology, University of New Mexico, Albuquerque, NM 87131, USA
| |
Collapse
|
13
|
Khan AR, Ménétrey J. Structural biology of Arf and Rab GTPases' effector recruitment and specificity. Structure 2014; 21:1284-97. [PMID: 23931141 DOI: 10.1016/j.str.2013.06.016] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Revised: 05/30/2013] [Accepted: 06/05/2013] [Indexed: 11/15/2022]
Abstract
Arf and Rab proteins, members of small GTPases superfamily, localize to specific subcellular compartments and regulate intracellular trafficking. To carry out their cellular functions, Arfs/Rabs interact with numerous and structurally diverse effector proteins. Over the years, a number of Arf/Rab:effector complexes have been crystallized and their structures reveal shared binding modes including α-helical packing, β-β complementation, and heterotetrameric assemblies. We review available structural information and provide a framework for in-depth analysis of complexes. The unifying features that we identify are organized into a classification scheme for different modes of Arf/Rab:effector interactions, which includes "all-α-helical," "mixed α-helical," "β-β zipping," and "bivalent" modes of binding. Additionally, we highlight structural determinants that are the basis of effector specificity. We conclude by expanding on functional implications that are emerging from available structural information under our proposed classification scheme.
Collapse
Affiliation(s)
- Amir R Khan
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin 2, Ireland.
| | | |
Collapse
|
14
|
Militello R, Colombo MI. Small GTPases as regulators of cell division. Commun Integr Biol 2013; 6:e25460. [PMID: 24265858 PMCID: PMC3829921 DOI: 10.4161/cib.25460] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Accepted: 06/19/2013] [Indexed: 12/30/2022] Open
Abstract
The superfamily of small GTPases serves as a signal transducer to regulate a diverse array of cellular functions. The members of this superfamily are structurally and functionally classified into at least 5 groups (Ras, Rho/Rac, Rab, Arf, and Ran) and they are involved in the control of cell proliferation and differentiation, regulation of the actin cytoskeleton, membrane trafficking, and nuclear transport. It is widely reported that members of the Rab family participate in the control of intracellular membrane trafficking through the interaction with specific effector molecules. However, many Rabs and other small GTPases have also been shown to function in cell division. In this review, we discuss current knowledge about Rab proteins regulating different stages of the cell cycle, such as the congregation and segregation of chromosomes (during metaphase) and the final stage of cell division known as cytokinesis, in which a cell is cleaved originating 2 daughter cells.
Collapse
Affiliation(s)
- Rodrigo Militello
- Laboratorio de Biología Celular y Molecular; Instituto de Histología y Embriología (IHEM)-CONICET; Facultad de Ciencias Médicas; Universidad Nacional de Cuyo; Mendoza, Argentina
| | | |
Collapse
|
15
|
Abstract
Small GTPases are versatile temporal and spatial regulators of virtually all cellular processes including signal transduction, cytoskeleton dynamics and membrane trafficking. They function as molecular switches, aided by a multitude of regulatory and effector proteins that link them into functional networks. A picture is beginning to emerge whereupon scaffold proteins with many functional domains perform the regulatory and effector functions, thus allowing the ordered recruitment and activation of small GTPases. This leads to the formation of scaffolding patches that coordinate cargo concentration and capture, with the recruitment and activation of the membrane tethering complexes and fusion regulators. This review will focus on the crosstalk of Arf and Rab GTPases at the Golgi complex and the scaffolds that facilitate their activation during trafficking of sensory receptors to primary cilia. The evolutionary conservation of the GTPase cascades in ciliogenesis and yeast budding will be discussed.
Collapse
Affiliation(s)
- Dusanka Deretic
- Department of Surgery, Division of Ophthalmology, University of New Mexico, Albuquerque, NM, USA.
| |
Collapse
|
16
|
Militello RD, Munafó DB, Berón W, López LA, Monier S, Goud B, Colombo MI. Rab24 is required for normal cell division. Traffic 2013; 14:502-18. [PMID: 23387408 DOI: 10.1111/tra.12057] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Revised: 02/04/2013] [Accepted: 02/06/2013] [Indexed: 12/18/2022]
Abstract
Rab24 is an atypical member of the Rab GTPase family whose distribution in interphase cells has been characterized; however, its function remains largely unknown. In this study, we have analyzed the distribution of Rab24 throughout cell division. We have observed that Rab24 was located at the mitotic spindle in metaphase, at the midbody during telophase and in the furrow during cytokinesis. We have also observed partial co-localization of Rab24 and tubulin and demonstrated its association to microtubules. Interestingly, more than 90% of transiently transfected HeLa cells with Rab24 presented abnormal nuclear connections (i.e., chromatin bridges). Furthermore, in CHO cells stably transfected with GFP-Rab24wt, we observed a large percentage of binucleated and multinucleated cells. In addition, these cells presented an extremely large size and multiple failures in mitosis, as aberrant spindle formation (metaphase), delayed chromosomes (telophase) and multiple cytokinesis. A marked increase in binucleated, multinucleated and multilobulated nucleus formation was observed in HeLa cells depleted of Rab24. We also present evidence that a fraction of Rab24 associates with microtubules. In addition, Rab24 knock down resulted in misalignment of chromosomes and abnormal spindle formation in metaphase leading to the appearance of delayed chromosomes during late telophase and failures in cytokinesis. Our findings suggest that an adequate level of Rab24 is necessary for normal cell division. In summary, Rab24 modulates several mitotic events, including chromosome segregation and cytokinesis, perhaps through the interaction with microtubules.
Collapse
Affiliation(s)
- Rodrigo D Militello
- Laboratorio de Biología Celular y Molecular- Instituto de Histología y Embriología (IHEM), Facultad de Ciencias Médicas, Universidad Nacional de Cuyo-CONICET, Mendoza, Argentina
| | | | | | | | | | | | | |
Collapse
|
17
|
Makyio H, Ohgi M, Takei T, Takahashi S, Takatsu H, Katoh Y, Hanai A, Ueda T, Kanaho Y, Xie Y, Shin HW, Kamikubo H, Kataoka M, Kawasaki M, Kato R, Wakatsuki S, Nakayama K. Structural basis for Arf6-MKLP1 complex formation on the Flemming body responsible for cytokinesis. EMBO J 2012; 31:2590-603. [PMID: 22522702 DOI: 10.1038/emboj.2012.89] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2011] [Accepted: 03/15/2012] [Indexed: 01/17/2023] Open
Abstract
A small GTPase, Arf6, is involved in cytokinesis by localizing to the Flemming body (the midbody). However, it remains unknown how Arf6 contributes to cytokinesis. Here, we demonstrate that Arf6 directly interacts with mitotic kinesin-like protein 1 (MKLP1), a Flemming body-localizing protein essential for cytokinesis. The crystal structure of the Arf6-MKLP1 complex reveals that MKLP1 forms a homodimer flanked by two Arf6 molecules, forming a 2:2 heterotetramer containing an extended β-sheet composed of 22 β-strands that spans the entire heterotetramer, suitable for interaction with a concave membrane surface at the cleavage furrow. We show that, during cytokinesis, Arf6 is first accumulated around the cleavage furrow and, prior to abscission, recruited onto the Flemming body via interaction with MKLP1. We also show by structure-based mutagenesis and siRNA-mediated knockdowns that the complex formation is required for completion of cytokinesis. A model based on these results suggests that the Arf6-MKLP1 complex plays a crucial role in cytokinesis by connecting the microtubule bundle and membranes at the cleavage plane.
Collapse
Affiliation(s)
- Hisayoshi Makyio
- Structural Biology Research Center, Photon Factory, Institute of Materials Structure Science, High Energy Accelerator Research Organization (KEK), Ibaraki, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Collins LL, Simon G, Matheson J, Wu C, Miller MC, Otani T, Yu X, Hayashi S, Prekeris R, Gould GW. Rab11-FIP3 is a cell cycle-regulated phosphoprotein. BMC Cell Biol 2012; 13:4. [PMID: 22401586 PMCID: PMC3310825 DOI: 10.1186/1471-2121-13-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2011] [Accepted: 03/08/2012] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Rab11 and its effector molecule, Rab11-FIP3 (FIP3), associate with recycling endosomes and traffic into the furrow and midbody of cells during cytokinesis. FIP3 also controls recycling endosome distribution during interphase. Here, we examine whether phosphorylation of FIP3 is involved in these activities. RESULTS We identify four sites of phosphorylation of FIP3 in vivo, S-102, S-280, S-347 and S-450 and identify S-102 as a target for Cdk1-cyclin B in vitro. Of these, we show that S-102 is phosphorylated in metaphase and is dephosphorylated as cells enter telophase. Over-expression of FIP3-S102D increased the frequency of binucleate cells consistent with a role for this phospho-acceptor site in cytokinesis. Mutation of S-280, S-347 or S-450 or other previously identified phospho-acceptor sites (S-488, S-538, S-647 and S-648) was without effect on binucleate cell formation and did not modulate the distribution of FIP3 during the cell cycle. In an attempt to identify a functional role for FIP3 phosphorylation, we report that the change in FIP3 distribution from cytosolic to membrane-associated observed during progression from anaphase to telophase is accompanied by a concomitant dephosphorylation of FIP3. However, the phospho-acceptor sites identified here did not control this change in distribution. CONCLUSIONS Our data thus identify FIP3 as a cell cycle regulated phosphoprotein and suggest dephosphorylation of FIP3 accompanies its translocation from the cytosol to membranes during telophase. S102 is dephosphorylated during telophase; mutation of S102 exerts a modest effect on cytokinesis. Finally, we show that de/phosphorylation of the phospho-acceptor sites identified here (S-102, S-280, S-347 and S-450) is not required for the spatial control of recycling endosome distribution or function.
Collapse
Affiliation(s)
- Louise L Collins
- Henry Wellcome Laboratory of Cell Biology, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences, Davidson Building, University of Glasgow, Glasgow G12 8QQ, Scotland, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Kobayashi H, Fukuda M. Rab35 regulates Arf6 activity through centaurin-β2 (ACAP2) during neurite outgrowth. J Cell Sci 2012; 125:2235-43. [PMID: 22344257 DOI: 10.1242/jcs.098657] [Citation(s) in RCA: 109] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Two small GTPases, Rab and Arf, are well-known molecular switches that function in diverse membrane-trafficking routes in a coordinated manner; however, very little is known about the direct crosstalk between Rab and Arf. Although Rab35 and Arf6 were independently reported to regulate the same cellular events, including endocytic recycling, phagocytosis, cytokinesis and neurite outgrowth, the molecular basis that links them remains largely unknown. Here we show that centaurin-β2 (also known as ACAP2) functions both as a Rab35 effector and as an Arf6-GTPase-activating protein (GAP) during neurite outgrowth of PC12 cells. We found that Rab35 accumulates at Arf6-positive endosomes in response to nerve growth factor (NGF) stimulation and that centaurin-β2 is recruited to the same compartment in a Rab35-dependent manner. We further showed by knockdown and rescue experiments that after the Rab35-dependent recruitment of centaurin-β2, the Arf6-GAP activity of centaurin-β2 at the Arf6-positive endosomes was indispensable for NGF-induced neurite outgrowth. These findings suggest a novel mode of crosstalk between Rab and Arf: a Rab effector and Arf-GAP coupling mechanism, in which Arf-GAP is recruited to a specific membrane compartment by its Rab effector function.
Collapse
Affiliation(s)
- Hotaka Kobayashi
- Department of Developmental Biology and Neurosciences, Graduate School of Life Sciences, Tohoku University, Aoba-ku, Sendai, Miyagi, Japan
| | | |
Collapse
|
20
|
Horgan CP, Hanscom SR, Kelly EE, McCaffrey MW. Tumor susceptibility gene 101 (TSG101) is a novel binding-partner for the class II Rab11-FIPs. PLoS One 2012; 7:e32030. [PMID: 22348143 PMCID: PMC3279423 DOI: 10.1371/journal.pone.0032030] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 01/18/2012] [Indexed: 12/21/2022] Open
Abstract
The Rab11-FIPs (Rab11-family interacting proteins; henceforth, FIPs) are a family of Rab11a/Rab11b/Rab25 GTPase effector proteins implicated in an assortment of intracellular trafficking processes. Through proteomic screening, we have identified TSG101 (tumor susceptibility gene 101), a component of the ESCRT-I (endosomal sorting complex required for transport) complex, as a novel FIP4-binding protein, which we find can also bind FIP3. We show that α-helical coiled-coil regions of both TSG101 and FIP4 mediate the interaction with the cognate protein, and that point mutations in the coiled-coil regions of both TSG101 and FIP4 abrogate the interaction. We find that expression of TSG101 and FIP4 mutants cause cytokinesis defects, but that the TSG101-FIP4 interaction is not required for localisation of TSG101 to the midbody/Flemming body during abscission. Together, these data suggest functional overlap between Rab11-controlled processes and components of the ESCRT pathway.
Collapse
Affiliation(s)
- Conor P. Horgan
- Molecular Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | - Sara R. Hanscom
- Molecular Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | - Eoin E. Kelly
- Molecular Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
| | - Mary W. McCaffrey
- Molecular Cell Biology Laboratory, Department of Biochemistry, BioSciences Institute, University College Cork, Cork, Ireland
- * E-mail:
| |
Collapse
|
21
|
Rueckert C, Haucke V. The oncogenic TBC domain protein USP6/TRE17 regulates cell migration and cytokinesis. Biol Cell 2011; 104:22-33. [PMID: 22188517 DOI: 10.1111/boc.201100108] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2011] [Accepted: 10/27/2011] [Indexed: 12/24/2022]
Abstract
BACKGROUND INFORMATION Cancer cells are characterized by their intrinsic ability to rapidly divide and migrate and to invade other tissues. How these processes are regulated at a molecular level is largely unknown. RESULTS Here, we identify the oncogenic TBC (Tre-2/Bub2/Cdc16) domain protein USP6 (also termed TRE17) as a regulator of both cell migration and division. We show that manipulating USP6 expression levels alters the ability of cells to migrate and to divide. Furthermore, we observe that cell proliferation and progression through cytokinesis depend on USP6 expression via a pathway that involves the small GTPase Arf6 and its GTPase-activating protein ACAP1. CONCLUSIONS Our data suggest a model whereby the oncogenic potential of USP6 is linked to its ability to integrate cell migration and cytokinesis by regulating Arf6/ACAP1.
Collapse
Affiliation(s)
- Christine Rueckert
- Institute of Chemistry and Biochemistry, Freie Universität Berlin, Takustraße 6, 14195 Berlin, Germany.
| | | |
Collapse
|
22
|
Takahashi S, Takei T, Koga H, Takatsu H, Shin HW, Nakayama K. Distinct roles of Rab11 and Arf6 in the regulation of Rab11-FIP3/arfophilin-1 localization in mitotic cells. Genes Cells 2011; 16:938-50. [PMID: 21790911 DOI: 10.1111/j.1365-2443.2011.01538.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
Rab11 family interacting protein 3/arfophilin-1 is a dual effector of Rab11 and Arf6 and exhibits Rab11-dependent localization to recycling endosomes in interphase. Furthermore, FIP3 undergoes dynamic redistribution to the intercellular bridge during cytokinesis. However, regulation of FIP3 redistribution and its local function by Rab11 and Arf6 has remained controversial. In this study, we developed a procedure for detecting endogenous FIP3, Arf6, and Rab11 and determined that FIP3 is localized near the intercellular bridge during cytokinesis, and to the Flemming body (the midbody) immediately before abscission; Rab11 is localized near the intercellular bridge, but not to the Flemming body; and Arf6 is localized to the Flemming body. Time-lapse analyses showed that FIP3 is transported to the intercellular bridge during cytokinesis, together with Rab11; before abscission, FIP3 becomes localized to the Flemming body, where Arf6 is already present. After abscission, FIP3 and Arf6 are incorporated into one of the daughter cells as a Flemming body remnant. Based on these observations, we propose that FIP3 localization to recycling endosomes in interphase and their transport to the intercellular bridge during cytokinesis depend on Rab11, and targeting of FIP3-positive endosomal vesicles to the Flemming body in the abscission phase depends on Arf6.
Collapse
Affiliation(s)
- Senye Takahashi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Japan
| | | | | | | | | | | |
Collapse
|
23
|
Chavrier P, Ménétrey J. Toward a structural understanding of arf family:effector specificity. Structure 2011; 18:1552-8. [PMID: 21134634 DOI: 10.1016/j.str.2010.11.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2010] [Revised: 11/15/2010] [Accepted: 11/17/2010] [Indexed: 11/17/2022]
Abstract
Arf family proteins are critical regulators of intracellular trafficking and actin cytoskeleton dynamics. To carry out their cellular functions, Arf family proteins interact with various effectors that differ in nature and structure. Understanding how these proteins interact with structurally different partners and are distinguished by specific effectors while being closely related requires a structural characterization and comparison of the various Arf family:effector complexes. Recent structural reports of Arf and Arl proteins in complex with different downstream effectors shed new light on general and specific structural recognition determinants characteristic of Arf family proteins.
Collapse
|
24
|
Butterworth MB. Regulation of the epithelial sodium channel (ENaC) by membrane trafficking. BIOCHIMICA ET BIOPHYSICA ACTA 2010; 1802:1166-77. [PMID: 20347969 PMCID: PMC2921481 DOI: 10.1016/j.bbadis.2010.03.010] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/22/2009] [Revised: 03/15/2010] [Accepted: 03/20/2010] [Indexed: 02/07/2023]
Abstract
The epithelial Na(+) channel (ENaC) is a major regulator of salt and water reabsorption in a number of epithelial tissues. Abnormalities in ENaC function have been directly linked to several human disease states including Liddle syndrome, psuedohypoaldosteronism, and cystic fibrosis and may be implicated in salt-sensitive hypertension. ENaC activity in epithelial cells is regulated both by open probability and channel number. This review focuses on the regulation of ENaC in the cells of the kidney cortical collecting duct by trafficking and recycling. The trafficking of ENaC is discussed in the broader context of epithelial cell vesicle trafficking. Well-characterized pathways and protein interactions elucidated using epithelial model cells are discussed, and the known overlap with ENaC regulation is highlighted. In following the life of ENaC in CCD epithelial cells the apical delivery, internalization, recycling, and destruction of the channel will be discussed. While a number of pathways presented still need to be linked to ENaC regulation and many details of the regulation of ENaC trafficking remain to be elucidated, knowledge of these mechanisms may provide further insights into ENaC activity in normal and disease states.
Collapse
Affiliation(s)
- Michael B Butterworth
- Department Cell Biology and Physiology, University of Pittsburgh, Pittsburgh, PA 15261, USA.
| |
Collapse
|
25
|
Jing J, Junutula JR, Wu C, Burden J, Matern H, Peden AA, Prekeris R. FIP1/RCP binding to Golgin-97 regulates retrograde transport from recycling endosomes to the trans-Golgi network. Mol Biol Cell 2010; 21:3041-53. [PMID: 20610657 PMCID: PMC2929997 DOI: 10.1091/mbc.e10-04-0313] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2010] [Revised: 06/18/2010] [Accepted: 06/28/2010] [Indexed: 11/22/2022] Open
Abstract
Many proteins are retrieved to the trans-Golgi Network (TGN) from the endosomal system through several retrograde transport pathways to maintain the composition and function of the TGN. However, the molecular mechanisms involved in these distinct retrograde pathways remain to be fully understood. Here we have used fluorescence and electron microscopy as well as various functional transport assays to show that Rab11a/b and its binding protein FIP1/RCP are both required for the retrograde delivery of TGN38 and Shiga toxin from early/recycling endosomes to the TGN, but not for the retrieval of mannose-6-phosphate receptor from late endosomes. Furthermore, by proteomic analysis we identified Golgin-97 as a FIP1/RCP-binding protein. The FIP1/RCP-binding domain maps to the C-terminus of Golgin-97, adjacent to its GRIP domain. Binding of FIP1/RCP to Golgin-97 does not affect Golgin-97 recruitment to the TGN, but appears to regulate the targeting of retrograde transport vesicles to the TGN. Thus, we propose that FIP1/RCP binding to Golgin-97 is required for tethering and fusion of recycling endosome-derived retrograde transport vesicles to the TGN.
Collapse
Affiliation(s)
- Jian Jing
- *Department of Cell and Developmental Biology, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | | | - Christine Wu
- Department of Pharmacology, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| | - Jemima Burden
- MRC Cell Biology Unit, University College London, London, WC1E 6BT, United Kingdom
| | - Hugo Matern
- Exelixis Inc., South San Francisco, CA 94080; and
| | - Andrew A. Peden
- University of Cambridge, Cambridge Institute for Medical Research, Hills Road, CB20XY, United Kingdom
| | - Rytis Prekeris
- *Department of Cell and Developmental Biology, School of Medicine, University of Colorado Denver, Aurora, CO 80045
| |
Collapse
|
26
|
Park UH, Kim EJ, Um SJ. A novel cytoplasmic adaptor for retinoic acid receptor (RAR) and thyroid receptor functions as a Derepressor of RAR in the absence of retinoic acid. J Biol Chem 2010; 285:34269-78. [PMID: 20736163 DOI: 10.1074/jbc.m110.143008] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In most mammalian cells, the retinoic acid receptor (RAR) is nuclear rather than cytoplasmic, regardless of its cognate ligand, retinoic acid (RA). In testis Sertoli cells, however, RAR is retained in the cytoplasm and moves to the nucleus only when RA is supplied. This led us to identify a protein that regulates the translocation of RAR. From yeast two-hybrid screening, we identified a novel RAR-interacting protein called CART1 (cytoplasmic adaptor for RAR and TR). Systematic interaction assays using deletion mutants showed that the C-terminal CoRNR box of CART1 was responsible for the interaction with the NCoR binding region of RAR and TR. Such interaction was impaired in the presence of ligand RA, as further determined by GST pulldown assays in vitro and immunoprecipitation assays in vivo. Fluorescence microscopy showed that unliganded RAR was captured by CART1 in the cytoplasm, whereas liganded RAR was liberated and moved to the nucleus. Overexpression of CART1 blocked the transcriptional repressing activity of unliganded apoRAR, mediated by corepressor NCoR in the nucleus. CART1 siRNA treatment in a mouse Sertoli cell line, TM4, allowed RAR to move to the nucleus and blocked the derepressing function of CART1, suggesting that CART1 might be a cytoplasmic, testis-specific derepressor of RAR.
Collapse
Affiliation(s)
- Ui-Hyun Park
- Department of Bioscience and Biotechnology, Sejong University, 98 Kunja-dong, Kwangjin-gu, Seoul 143-747, Korea
| | | | | |
Collapse
|
27
|
Affiliation(s)
- John G. Forte
- Department of Molecular and Cell Biology, University of California, Berkeley, California 94720;
| | - Lixin Zhu
- Department of Pediatrics, Digestive Disease and Nutrition Center, The State University of New York, Buffalo, New York 14214;
| |
Collapse
|
28
|
Krzyzaniak MA, Mach M, Britt WJ. HCMV-encoded glycoprotein M (UL100) interacts with Rab11 effector protein FIP4. Traffic 2010; 10:1439-57. [PMID: 19761540 DOI: 10.1111/j.1600-0854.2009.00967.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The envelope of human cytomegalovirus (HCMV) consists of a large number of glycoproteins. The most abundant glycoprotein in the HCMV envelope is the glycoprotein M (UL100), which together with glycoprotein N (UL73) form the gM/gN protein complex. Using yeast two-hybrid screening, we found that the gM carboxy-terminal cytoplasmic tail (gM-CT) interacts with FIP4, a Rab11-GTPase effector protein. Depletion of FIP4 expression in HCMV-infected cells resulted in a decrease in infectious virus production that was also associated with an alteration of the HCMV assembly compartment (AC) phenotype. A similar phenotype was also observed in HCMV-infected cells that expressed dominant negative Rab11(S25N). Recently, it has been shown that FIP4 interactions with Rab11 and additionally with Arf6/Arf5 are important for the vesicular transport of proteins in the endosomal recycling compartment (ERC) and during cytokinesis. Surprisingly, FIP4 interaction with gM-CT limited binding of FIP4 with Arf5/Arf6; however, FIP4 interaction with gM-CT did not prevent recruitment of Rab11 into the ternary complex. These data argued for a contribution of the ERC during cytoplasmic envelopment of HCMV and showed a novel FIP4 function independent of Arf5 or Arf6 activity.
Collapse
Affiliation(s)
- Magdalena A Krzyzaniak
- Department of Microbiology, University of Alabama at Birmingham, CHB160, Birmingham, AL 35233, USA
| | | | | |
Collapse
|
29
|
Sanda M, Ohara N, Kamata A, Hara Y, Tamaki H, Sukegawa J, Yanagisawa T, Fukunaga K, Kondo H, Sakagami H. Vezatin, a potential target for ADP-ribosylation factor 6, regulates the dendritic formation of hippocampal neurons. Neurosci Res 2010; 67:126-36. [PMID: 20188128 DOI: 10.1016/j.neures.2010.02.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2009] [Revised: 02/12/2010] [Accepted: 02/18/2010] [Indexed: 12/16/2022]
Abstract
ADP-ribosylation factor 6 (ARF6) is a small GTPase that regulates neuronal morphogenesis processes such as axonal, dendritic, and spine formation possibly through the actin cytoskeleton and membrane trafficking. In an attempt to define the molecular mechanisms that regulate neuronal morphogenesis by ARF6, we identified vezatin as a novel binding partner of active GTP-bound ARF6 using yeast two-hybrid screening. Vezatin was able to bind specifically to GTP-ARF6 among the ARF family. In the adult mouse brain, vezatin exhibited widespread gene expression with high levels in the hippocampus and medial habenular nucleus. In hippocampal neurons, vezatin was localized at dendrites as well as cell bodies. Knockdown of endogenous vezatin significantly reduced total dendritic length and arborization of cultured hippocampal neurons, while overexpression of vezatin increased dendritic length. Our present study suggests that vezatin may regulate dendritic formation as a downstream effector of ARF6.
Collapse
Affiliation(s)
- Masashi Sanda
- Department of Anatomy, Kitasato University School of Medicine, 1-15-1 Kitasato, Sagamihara 228-8555, Kanagawa, Japan
| | | | | | | | | | | | | | | | | | | |
Collapse
|
30
|
Chen X, Simon ES, Xiang Y, Kachman M, Andrews PC, Wang Y. Quantitative proteomics analysis of cell cycle-regulated Golgi disassembly and reassembly. J Biol Chem 2010; 285:7197-207. [PMID: 20056612 DOI: 10.1074/jbc.m109.047084] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
During mitosis, the stacked structure of the Golgi undergoes a continuous fragmentation process. The generated mitotic fragments are evenly distributed into the daughter cells and reassembled into new Golgi stacks. This disassembly and reassembly process is critical for Golgi biogenesis during cell division, but the underlying molecular mechanism is poorly understood. In this study, we have recapitulated this process using an in vitro assay and analyzed the proteins associated with interphase and mitotic Golgi membranes using a proteomic approach. Incubation of purified rat liver Golgi membranes with mitotic HeLa cell cytosol led to fragmentation of the membranes; subsequent treatment of these membranes with interphase cytosol allowed the reassembly of the Golgi fragments into new Golgi stacks. These membranes were then used for quantitative proteomics analyses by combining the isobaric tags for relative and absolute quantification approach with OFFGEL isoelectric focusing separation and liquid chromatography-matrix assisted laser desorption ionization-tandem mass spectrometry. In three independent experiments, a total of 1,193 Golgi-associated proteins were identified and quantified. These included broad functional categories, such as Golgi structural proteins, Golgi resident enzymes, SNAREs, Rab GTPases, cargo, and cytoskeletal proteins. More importantly, the combination of the quantitative approach with Western blotting allowed us to unveil 84 proteins with significant changes in abundance under the mitotic condition compared with the interphase condition. Among these proteins, several COPI coatomer subunits (alpha, beta, gamma, and delta) are of particular interest. Altogether, this systematic quantitative proteomic study revealed candidate proteins of the molecular machinery that control the Golgi disassembly and reassembly processes in the cell cycle.
Collapse
Affiliation(s)
- Xuequn Chen
- Department of Molecular and Integrative Physiology, The University of Michigan, Ann Arbor, Michigan 48109-1048, USA
| | | | | | | | | | | |
Collapse
|
31
|
Abstract
Cytokinesis is the final step in cell division. The process begins during chromosome segregation, when the ingressing cleavage furrow begins to partition the cytoplasm between the nascent daughter cells. The process is not completed until much later, however, when the final cytoplasmic bridge connecting the two daughter cells is severed. Cytokinesis is a highly ordered process, requiring an intricate interplay between cytoskeletal, chromosomal and cell cycle regulatory pathways. A surprisingly broad range of additional cellular processes are also important for cytokinesis, including protein and membrane trafficking, lipid metabolism, protein synthesis and signaling pathways. As a highly regulated, complex process, it is not surprising that cytokinesis can sometimes fail. Cytokinesis failure leads to both centrosome amplification and production of tetraploid cells, which may set the stage for the development of tumor cells. However, tetraploid cells are abundant components of some normal tissues including liver and heart, indicating that cytokinesis is physiologically regulated. In this chapter, we summarize our current understanding of the mechanisms of cytokinesis, emphasizing steps in the pathway that may be regulated or prone to failure. Our discussion emphasizes findings in vertebrate cells although we have attempted to highlight important contributions from other model systems.
Collapse
Affiliation(s)
| | - Randall W. King
- Corresponding Author Department of Cell Biology Harvard Medical School 240 Longwood Ave, Boston MA 02115
| |
Collapse
|
32
|
Jing J, Prekeris R. Polarized endocytic transport: the roles of Rab11 and Rab11-FIPs in regulating cell polarity. Histol Histopathol 2009; 24:1171-80. [PMID: 19609864 DOI: 10.14670/hh-24.1171] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Endocytic transport plays a vital role in the establishment and maintenance of cell polarity. Many studies have demonstrated that endosome-dependent protein targeting is required for polarization of epithelial cells and neurons. Endocytic transport regulates several highly polarized cellular events, such as cell motility and division. Rab11 GTPase has been shown to be a master regulator of protein transport via recycling endosomes, and many recent studies have focused on the molecular machinery that mediates Rab11-dependent endocytic protein transport in polarized cells. This mini-review describes the recent advances in identifying and characterizing the role of Rab11 and its effector proteins that play important roles in polarized endocytic sorting and transport.
Collapse
Affiliation(s)
- Jian Jing
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Denver, Aurora, COA 80045 USA
| | | |
Collapse
|
33
|
Isabet T, Montagnac G, Regazzoni K, Raynal B, El Khadali F, England P, Franco M, Chavrier P, Houdusse A, Ménétrey J. The structural basis of Arf effector specificity: the crystal structure of ARF6 in a complex with JIP4. EMBO J 2009; 28:2835-45. [PMID: 19644450 DOI: 10.1038/emboj.2009.209] [Citation(s) in RCA: 63] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 07/01/2009] [Indexed: 11/09/2022] Open
Abstract
The JNK-interacting proteins, JIP3 and JIP4, are specific effectors of the small GTP-binding protein ARF6. The interaction of ARF6-GTP with the second leucine zipper (LZII) domains of JIP3/JIP4 regulates the binding of JIPs to kinesin-1 and dynactin. Here, we report the crystal structure of ARF6-GTP bound to the JIP4-LZII at 1.9 A resolution. The complex is a heterotetramer with dyad symmetry arranged in an ARF6-(JIP4)(2)-ARF6 configuration. Comparison of the ARF6-JIP4 interface with the equivalent region of ARF1 shows the structural basis of JIP4's specificity for ARF6. Using site-directed mutagenesis and surface plasmon resonance, we further show that non-conserved residues at the switch region borders are the key structural determinants of JIP4 specificity. A structure-derived model of the association of the ARF6-JIP3/JIP4 complex with membranes shows that the JIP4-LZII coiled-coil should lie along the membrane to prevent steric hindrances, resulting in only one ARF6 molecule bound. Such a heterotrimeric complex gives insights to better understand the ARF6-mediated motor switch regulatory function.
Collapse
|
34
|
Jing J, Tarbutton E, Wilson G, Prekeris R. Rab11-FIP3 is a Rab11-binding protein that regulates breast cancer cell motility by modulating the actin cytoskeleton. Eur J Cell Biol 2009; 88:325-41. [PMID: 19327867 PMCID: PMC2673714 DOI: 10.1016/j.ejcb.2009.02.186] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2008] [Revised: 01/29/2009] [Accepted: 02/02/2009] [Indexed: 12/19/2022] Open
Abstract
Cell adhesion and motility are very dynamic processes that require the temporal and spatial coordination of many cellular structures. ADP-ribosylation factor 6 (Arf6) has emerged as master regulator of endocytic membrane traffic and cytoskeletal dynamics during cell movement. Recently, a novel Arf6-binding protein known as FIP3/arfophilin/eferin has been identified. In addition to Arf6, FIP3 also interacts with Rab11, a small monomeric GTPase that regulates endocytic membrane transport. Both Arf6 and Rab11 GTPases have been implicated in regulation of cell motility. Here we test the role of FIP3 in breast carcinoma cell motility. First, we demonstrate that FIP3 is associated with recycling endosomes that are present at the leading edge of motile cells. Second, we show that FIP3 is required for the motility of MDA-MB-231 breast carcinoma cells. Third, we demonstrate that FIP3 regulates Rac1-dependent actin cytoskeleton dynamics and modulates the formation and ruffling of lamellipodia. Finally, we demonstrate that FIP3 regulates the localization of Arf6 at the plasma membrane of MDA-MB-231 cells. Based on our data we propose that FIP3 affects cell motility by regulating Arf6 localization to the plasma membrane of the leading edge, thus regulating polarized Rac1 activation and actin dynamics.
Collapse
Affiliation(s)
- Jian Jing
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Denver, 12801 E. 17 Avenue, Aurora, CO 80045, USA
| | - Elizabeth Tarbutton
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Denver, 12801 E. 17 Avenue, Aurora, CO 80045, USA
| | - Gayle Wilson
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Denver, 12801 E. 17 Avenue, Aurora, CO 80045, USA
| | - Rytis Prekeris
- Department of Cell and Developmental Biology, School of Medicine, University of Colorado Denver, 12801 E. 17 Avenue, Aurora, CO 80045, USA
| |
Collapse
|
35
|
ARF6 Interacts with JIP4 to Control a Motor Switch Mechanism Regulating Endosome Traffic in Cytokinesis. Curr Biol 2009; 19:184-95. [DOI: 10.1016/j.cub.2008.12.043] [Citation(s) in RCA: 162] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2008] [Revised: 12/12/2008] [Accepted: 12/15/2008] [Indexed: 02/05/2023]
|
36
|
Mazelova J, Astuto-Gribble L, Inoue H, Tam BM, Schonteich E, Prekeris R, Moritz OL, Randazzo PA, Deretic D. Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4. EMBO J 2009; 28:183-92. [PMID: 19153612 DOI: 10.1038/emboj.2008.267] [Citation(s) in RCA: 211] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2008] [Accepted: 11/26/2008] [Indexed: 11/09/2022] Open
Abstract
Dysfunctions of primary cilia and cilia-derived sensory organelles underlie a multitude of human disorders, including retinal degeneration, yet membrane targeting to the cilium remains poorly understood. Here, we show that the newly identified ciliary targeting VxPx motif present in rhodopsin binds the small GTPase Arf4 and regulates its association with the trans-Golgi network (TGN), which is the site of assembly and function of a ciliary targeting complex. This complex is comprised of two small GTPases, Arf4 and Rab11, the Rab11/Arf effector FIP3, and the Arf GTPase-activating protein ASAP1. ASAP1 mediates GTP hydrolysis on Arf4 and functions as an Arf4 effector that regulates budding of post-TGN carriers, along with FIP3 and Rab11. The Arf4 mutant I46D, impaired in ASAP1-mediated GTP hydrolysis, causes aberrant rhodopsin trafficking and cytoskeletal and morphological defects resulting in retinal degeneration in transgenic animals. As the VxPx motif is present in other ciliary membrane proteins, the Arf4-based targeting complex is most likely a part of conserved machinery involved in the selection and packaging of the cargo destined for delivery to the cilium.
Collapse
Affiliation(s)
- Jana Mazelova
- Division of Ophthalmology, Department of Surgery, University of New Mexico, Albuquerque, NM 87131, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Localization of EFA6A, a guanine nucleotide exchange factor for ARF6, in spermatogenic cells of testes of adult mice. J Mol Histol 2008; 40:77-80. [PMID: 19085064 DOI: 10.1007/s10735-008-9207-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2008] [Accepted: 11/26/2008] [Indexed: 11/27/2022]
Abstract
ADP ribosylation factors (ARFs) of small GTPase are molecular switches regulating various membrane dynamics. Among them, ARF6 has recently been highlighted because of its function to facilitate the interaction between the cytoskeleton and the plasma membrane. Each ARFs has its preferable or even specific guanine nucleotide exchange factors (GEFs) as its activators. According to our previous RT-PCR analysis, EFA6A, a guanine nucleotide exchange factor for ARF6, was restrictedly expressed in the brain, retina and testis. Different from previous studies on neurons, EFA6A, a guanine nucleotide exchange factor for ARF6, was first shown to be localized intensely in nuclei of spermatocytes of adult mouse testes in the present immunohistochemical study. This suggests a possible involvement of EFA6A-ARF6 signaling in the karyokinesis and cytokinesis.
Collapse
|
38
|
Rich RL, Myszka DG. Survey of the year 2007 commercial optical biosensor literature. J Mol Recognit 2008; 21:355-400. [DOI: 10.1002/jmr.928] [Citation(s) in RCA: 144] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
39
|
Inoue H, Ha VL, Prekeris R, Randazzo PA. Arf GTPase-activating protein ASAP1 interacts with Rab11 effector FIP3 and regulates pericentrosomal localization of transferrin receptor-positive recycling endosome. Mol Biol Cell 2008; 19:4224-37. [PMID: 18685082 DOI: 10.1091/mbc.e08-03-0290] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
ADP-ribosylation factors (Arfs) and Arf GTPase-activating proteins (GAPs) are key regulators of membrane trafficking and the actin cytoskeleton. The Arf GAP ASAP1 contains an N-terminal BAR domain, which can induce membrane tubulation. Here, we report that the BAR domain of ASAP1 can also function as a protein binding site. Two-hybrid screening identified FIP3, which is a putative Arf6- and Rab11-effector, as a candidate ASAP1 BAR domain-binding protein. Both coimmunoprecipitation and in vitro pulldown assays confirmed that ASAP1 directly binds to FIP3 through its BAR domain. ASAP1 formed a ternary complex with Rab11 through FIP3. FIP3 binding to the BAR domain stimulated ASAP1 GAP activity against Arf1, but not Arf6. ASAP1 colocalized with FIP3 in the pericentrosomal endocytic recycling compartment. Depletion of ASAP1 or FIP3 by small interfering RNA changed the localization of transferrin receptor, which is a marker of the recycling endosome, in HeLa cells. The depletion also altered the trafficking of endocytosed transferrin. These results support the conclusion that ASAP1, like FIP3, functions as a component of the endocytic recycling compartment.
Collapse
Affiliation(s)
- Hiroki Inoue
- Laboratory of Cellular and Molecular Biology, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | |
Collapse
|
40
|
Simon GC, Schonteich E, Wu CC, Piekny A, Ekiert D, Yu X, Gould GW, Glotzer M, Prekeris R. Sequential Cyk-4 binding to ECT2 and FIP3 regulates cleavage furrow ingression and abscission during cytokinesis. EMBO J 2008; 27:1791-803. [PMID: 18511905 PMCID: PMC2486418 DOI: 10.1038/emboj.2008.112] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Accepted: 05/14/2008] [Indexed: 01/06/2023] Open
Abstract
Cytokinesis is a highly regulated and dynamic event that involves the reorganization of the cytoskeleton and membrane compartments. Recently, FIP3 has been implicated in targeting of recycling endosomes to the mid-body of dividing cells and is found required for abscission. Here, we demonstrate that the centralspindlin component Cyk-4 is a FIP3-binding protein. Furthermore, we show that FIP3 binds to Cyk-4 at late telophase and that centralspindlin may be required for FIP3 recruitment to the mid-body. We have mapped the FIP3-binding region on Cyk-4 and show that it overlaps with the ECT2-binding domain. Finally, we demonstrate that FIP3 and ECT2 form mutually exclusive complexes with Cyk-4 and that dissociation of ECT2 from the mid-body at late telophase may be required for the recruitment of FIP3 and recycling endosomes to the cleavage furrow. Thus, we propose that centralspindlin complex not only regulates acto-myosin ring contraction but also endocytic vesicle transport to the cleavage furrow and it does so through sequential interactions with ECT2 and FIP3.
Collapse
Affiliation(s)
- Glenn C Simon
- Department of Cellular and Developmental Biology, School of Medicine, University of Colorado Health Sciences Center, Aurora, CO, USA
| | - Eric Schonteich
- Department of Cellular and Developmental Biology, School of Medicine, University of Colorado Health Sciences Center, Aurora, CO, USA
| | - Christine C Wu
- Department of Pharmacology, School of Medicine, University of Colorado Health Sciences Center, Aurora, CO, USA
| | - Alisa Piekny
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Damian Ekiert
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Xinzi Yu
- Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Gwyn W Gould
- Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, UK
| | - Michael Glotzer
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Rytis Prekeris
- Department of Cellular and Developmental Biology, School of Medicine, University of Colorado Health Sciences Center, Aurora, CO, USA
| |
Collapse
|
41
|
Montagnac G, Echard A, Chavrier P. Endocytic traffic in animal cell cytokinesis. Curr Opin Cell Biol 2008; 20:454-61. [PMID: 18472411 DOI: 10.1016/j.ceb.2008.03.011] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 03/20/2008] [Accepted: 03/25/2008] [Indexed: 01/22/2023]
Abstract
Cytokinesis is the final step of mitosis whereby two daughter cells physically separate. It is initiated by the assembly of an actomyosin contractile ring at the mitotic cell equator, which constricts the cytoplasm between the two reforming nuclei resulting in the formation of a narrow intercellular bridge filled with central spindle microtubule bundles. Cytokinesis terminates with the cleavage of the intercellular bridge in a poorly understood process called abscission. Recent work has highlighted the importance of membrane trafficking events occurring from membrane compartments flanking the bridge to the central midbody region. In particular, polarized delivery of endocytic recycling membranes is essential for completion of animal cell cytokinesis. Why endocytic traffic occurs within the intercellular bridge remains largely mysterious and its significance for cytokinesis will be discussed.
Collapse
|
42
|
Abstract
Throughout normal development, and in aberrant conditions such as cancer, cells divide by a process called cytokinesis. Most textbooks suggest that animal cells execute cytokinesis using an actomyosin-containing contractile ring, whereas plant cells generate a new cell wall by the assembly of a novel membrane compartment using vesicle-trafficking machinery in an apparently distinct manner. Recent studies have shown that cytokinesis in animal and plant cells may not be as distinct as these models imply - both have an absolute requirement for vesicle traffic. Moreover, some of the key molecular components of cytokinesis have been identified, many of which are proteins that function to control membrane traffic. Here, we review recent advances in this area.
Collapse
Affiliation(s)
- Rytis Prekeris
- Department of Cellular and Developmental Biology, School of Medicine, University of Colorado Health Sciences Center, 12801 E. 17th Avenue, Aurora, CO 80045, USA
| | - Gwyn W. Gould
- Henry Wellcome Laboratory of Cell Biology, Division of Biochemistry and Molecular Biology, Institute of Biomedical and Life Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| |
Collapse
|
43
|
Simon GC, Prekeris R. The role of FIP3-dependent endosome transport during cytokinesis. Commun Integr Biol 2008; 1:132-3. [PMID: 19704869 PMCID: PMC2685998 DOI: 10.4161/cib.1.2.6864] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2008] [Accepted: 08/26/2008] [Indexed: 11/19/2022] Open
Abstract
Mitosis is a complex cellular process that is completed by the final abscission step called cytokinesis. The many roles of cytoskeletal proteins in animal cell division have been studied extensively, and are essential for proper daughter cell segregation. Lately, the need for the membrane delivery to the cleavage furrow of dividing cells has been implicated as a necessary and important step in cytokinesis.1-4 Newly published work from several group demonstrate that endosomal membranes are required for cytokinesis and also provide insight into the targeting of these membranes to the cleavage furrow.5-8 Rab11 GTPase and its effector protein FIP3 were shown to play key roles in endosome targeting to the cleavage furrow in a spatially and temporally regulated manner.7-9 Thus, Rab11/FIP3 protein complex have emerged as a regulator of endocytic traffic, essential for the abscission step in cytokinesis.
Collapse
Affiliation(s)
- Glenn C Simon
- Department of Cell and Developmental Biology; School of Medicine; University of Colorado Denver; Aurora, Colorado USA
| | | |
Collapse
|