1
|
Kumar M, Has C, Lam-Kamath K, Ayciriex S, Dewett D, Bashir M, Poupault C, Schuhmann K, Thomas H, Knittelfelder O, Raghuraman BK, Ahrends R, Rister J, Shevchenko A. Eye proteome of Drosophila melanogaster. Proteomics 2024; 24:e2300330. [PMID: 37963819 PMCID: PMC11258641 DOI: 10.1002/pmic.202300330] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Revised: 10/22/2023] [Accepted: 10/23/2023] [Indexed: 11/16/2023]
Abstract
Drosophila melanogaster is a popular model organism to elucidate the molecular mechanisms that underlie the structure and function of the eye as well as the causes of retinopathies, aging, light-induced damage, or dietary deficiencies. Large-scale screens have isolated genes whose mutation causes morphological and functional ocular defects, which led to the discovery of key components of the phototransduction cascade. However, the proteome of the Drosophila eye is poorly characterized. Here, we used GeLC-MS/MS to quantify 3516 proteins, including the absolute (molar) quantities of 43 proteins in the eye of adult male Drosophila reared on standard laboratory food. This work provides a generic and expandable resource for further genetic, pharmacological, and dietary studies.
Collapse
Affiliation(s)
- Mukesh Kumar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Canan Has
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Khanh Lam-Kamath
- Department of Biology, University of Massachusetts Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, MA 02125, USA
| | - Sophie Ayciriex
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Deepshe Dewett
- Department of Biology, University of Massachusetts Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, MA 02125, USA
| | - Mhamed Bashir
- Department of Biology, University of Massachusetts Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, MA 02125, USA
| | - Clara Poupault
- Department of Biology, University of Massachusetts Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, MA 02125, USA
| | - Kai Schuhmann
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Henrik Thomas
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Oskar Knittelfelder
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Bharath Kumar Raghuraman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| | - Robert Ahrends
- Department of Analytical Chemistry, University of Vienna, 1090 Vienna, Austria
| | - Jens Rister
- Department of Biology, University of Massachusetts Boston, Integrated Sciences Complex, 100 Morrissey Boulevard, Boston, MA 02125, USA
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstraße 108, 01307 Dresden, Germany
| |
Collapse
|
2
|
Terada N, Saitoh Y, Saito M, Yamada T, Kamijo A, Yoshizawa T, Sakamoto T. Recent Progress on Genetically Modified Animal Models for Membrane Skeletal Proteins: The 4.1 and MPP Families. Genes (Basel) 2023; 14:1942. [PMID: 37895291 PMCID: PMC10606877 DOI: 10.3390/genes14101942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 10/11/2023] [Accepted: 10/12/2023] [Indexed: 10/29/2023] Open
Abstract
The protein 4.1 and membrane palmitoylated protein (MPP) families were originally found as components in the erythrocyte membrane skeletal protein complex, which helps maintain the stability of erythrocyte membranes by linking intramembranous proteins and meshwork structures composed of actin and spectrin under the membranes. Recently, it has been recognized that cells and tissues ubiquitously use this membrane skeletal system. Various intramembranous proteins, including adhesion molecules, ion channels, and receptors, have been shown to interact with the 4.1 and MPP families, regulating cellular and tissue dynamics by binding to intracellular signal transduction proteins. In this review, we focus on our previous studies regarding genetically modified animal models, especially on 4.1G, MPP6, and MPP2, to describe their functional roles in the peripheral nervous system, the central nervous system, the testis, and bone formation. As the membrane skeletal proteins are located at sites that receive signals from outside the cell and transduce signals inside the cell, it is necessary to elucidate their molecular interrelationships, which may broaden the understanding of cell and tissue functions.
Collapse
Affiliation(s)
- Nobuo Terada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Yurika Saitoh
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Center for Medical Education, Teikyo University of Science, Adachi-ku, Tokyo 120-0045, Japan
| | - Masaki Saito
- School of Pharma-Science, Teikyo University, Itabashi-ku, Tokyo 173-8605, Japan;
| | - Tomoki Yamada
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
| | - Akio Kamijo
- Health Science Division, Department of Medical Sciences, Shinshu University Graduate School of Medicine, Science and Technology, Matsumoto City, Nagano 390-8621, Japan
- Division of Basic & Clinical Medicine, Nagano College of Nursing, Komagane City, Nagano 399-4117, Japan
| | - Takahiro Yoshizawa
- Division of Animal Research, Research Center for Advanced Science and Technology, Shinshu University, Matsumoto City, Nagano 390-8621, Japan
| | - Takeharu Sakamoto
- Department of Cancer Biology, Institute of Biomedical Science, Kansai Medical University, Hirakata City, Osaka 573-1010, Japan
| |
Collapse
|
3
|
Kumar M, Has C, Lam-Kamath K, Ayciriex S, Dewett D, Bashir M, Poupault C, Schuhmann K, Knittelfelder O, Raghuraman BK, Ahrends R, Rister J, Shevchenko A. Eye proteome of Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.04.531088. [PMID: 36945598 PMCID: PMC10028839 DOI: 10.1101/2023.03.04.531088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The Drosophila melanogaster eye is a popular model to elucidate the molecular mechanisms that underlie the structure and function of the eye as well as the causes of retinopathies. For instance, the Drosophila eye has been used to investigate the impacts of ageing and environmental stresses such as light-induced damage or dietary deficiencies. Moreover, large-scale screens have isolated genes whose mutation causes morphological and functional ocular defects, which includes key components of the phototransduction cascade. However, the proteome of the Drosophila eye is poorly characterized. Here, we used GeLC-MS/MS to quantify 3516 proteins he adult Drosophila melanogaster eye and provide a generic and expandable resource for further genetic, pharmacological, and dietary studies.
Collapse
|
4
|
Rathbun LI, Everett CA, Bergstralh DT. Emerging Cnidarian Models for the Study of Epithelial Polarity. Front Cell Dev Biol 2022; 10:854373. [PMID: 35433674 PMCID: PMC9012326 DOI: 10.3389/fcell.2022.854373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 03/01/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelial tissues are vital to the function of most organs, providing critical functions such as secretion, protection, and absorption. Cells within an epithelial layer must coordinate to create functionally distinct apical, lateral, and basal surfaces in order to maintain proper organ function and organism viability. This is accomplished through the careful targeting of polarity factors to their respective locations within the cell, as well as the strategic placement of post-mitotic cells within the epithelium during tissue morphogenesis. The process of establishing and maintaining epithelial tissue integrity is conserved across many species, as important polarity factors and spindle orientation mechanisms can be found in many phyla. However, most of the information gathered about these processes and players has been investigated in bilaterian organisms such as C. elegans, Drosophila, and vertebrate species. This review discusses the advances made in the field of epithelial polarity establishment from more basal organisms, and the advantages to utilizing these simpler models. An increasing number of cnidarian model organisms have been sequenced in recent years, such as Hydra vulgaris and Nematostella vectensis. It is now feasible to investigate how polarity is established and maintained in basal organisms to gain an understanding of the most basal requirements for epithelial tissue morphogenesis.
Collapse
Affiliation(s)
| | | | - Dan T. Bergstralh
- Department of Biology, University of Rochester, Rochester, NY, United States
| |
Collapse
|
5
|
Hara T, Saeki K, Jinnouchi H, Kazuno S, Miura Y, Yokomizo T. The c-terminal region of BLT2 restricts its localization to the lateral membrane in a LIN7C-dependent manner. FASEB J 2021; 35:e21364. [PMID: 33481310 DOI: 10.1096/fj.202002640r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/26/2020] [Accepted: 12/28/2020] [Indexed: 11/11/2022]
Abstract
Leukotriene B4 receptor type 2 (BLT2) is a G protein-coupled receptor (GPCR) mainly expressed in epithelial cells, where it enhances barrier function. A unique characteristic of BLT2 is its restricted localization to the lateral membrane. However, the molecular mechanism underlying the localization of BLT2 to the lateral membrane and the physiological roles of laterally localized BLT2 are unknown. BLT1 is the most homologous GPCR to BLT2 and localizes to both the apical and lateral membranes. In this study, we generated chimeric receptors of BLT2 and BLT1 as well as deletion mutants of BLT2 to determine the region(s) of BLT2 responsible for its localization. Chimeric receptors containing the C-terminal domain of BLT2 localized only to the lateral membrane, and the C-terminal deletion mutant of BLT2 accumulated at the Golgi apparatus. Furthermore, the middle and C-terminal regions of BLT2 were important for maintaining epithelial barrier function. Proteomics analysis using the chimeric BLT-ascorbate peroxidase 2 biotinylation method showed that some proteins involved in intracellular protein transport, cell-cell junctions, and actin filament binding were located very close to the C-terminal domain of BLT2. Knockdown of lin-7 homolog C (LIN7C), a membrane trafficking protein, led to accumulation of BLT2 in the Golgi apparatus, resulting in diminished epithelial barrier function. These results suggest that the C-terminal region of BLT2 plays an important role in the transport of BLT2 from the Golgi apparatus to the plasma membrane in a LIN7C-dependent manner.
Collapse
Affiliation(s)
- Takuya Hara
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan.,Fuji Research Laboratories, Kowa Co., Ltd, Shizuoka, Japan
| | - Kazuko Saeki
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Hiromi Jinnouchi
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| | - Saiko Kazuno
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yoshiki Miura
- Laboratory of Proteomics and Biomolecular Science, Research Support Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takehiko Yokomizo
- Department of Biochemistry, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
6
|
Raghuraman BK, Hebbar S, Kumar M, Moon H, Henry I, Knust E, Shevchenko A. Absolute Quantification of Proteins in the Eye of Drosophila melanogaster. Proteomics 2020; 20:e1900049. [PMID: 32663363 DOI: 10.1002/pmic.201900049] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/29/2020] [Indexed: 01/26/2023]
Abstract
Absolute (molar) quantification of proteins determines their molar ratios in complexes, networks, and metabolic pathways. MS Western workflow is employed to determine molar abundances of proteins potentially critical for morphogenesis and phototransduction (PT) in eyes of Drosophila melanogaster using a single chimeric 264 kDa protein standard that covers, in total, 197 peptides from 43 proteins. The majority of proteins are independently quantified with two to four proteotypic peptides with the coefficient of variation of less than 15%, better than 1000-fold dynamic range and sub-femtomole sensitivity. Here, the molar abundance of proteins of the PT machinery and of the rhabdomere, the photosensitive organelle, is determined in eyes of wild-type flies as well as in crumbs (crb) mutant eyes, which exhibit perturbed rhabdomere morphogenesis.
Collapse
Affiliation(s)
- Bharath Kumar Raghuraman
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Sarita Hebbar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Mukesh Kumar
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - HongKee Moon
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany.,Centre for Systems Biology Dresden, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Ian Henry
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany.,Centre for Systems Biology Dresden, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| | - Andrej Shevchenko
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, 01307, Germany
| |
Collapse
|
7
|
Lehmann M, Knust E, Hebbar S. Drosophila melanogaster: A Valuable Genetic Model Organism to Elucidate the Biology of Retinitis Pigmentosa. Methods Mol Biol 2019; 1834:221-249. [PMID: 30324448 DOI: 10.1007/978-1-4939-8669-9_16] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Retinitis pigmentosa (RP) is a complex inherited disease. It is associated with mutations in a wide variety of genes with many different functions. These mutations impact the integrity of rod photoreceptors and ultimately result in the progressive degeneration of rods and cone photoreceptors in the retina, leading to complete blindness. A hallmark of this disease is the variable degree to which symptoms are manifest in patients. This is indicative of the influence of the environment, and/or of the distinct genetic makeup of the individual.The fruit fly, Drosophila melanogaster, has effectively proven to be a great model system to better understand interconnected genetic networks. Unraveling genetic interactions and thereby different cellular processes is relatively easy because more than a century of research on flies has enabled the creation of sophisticated genetic tools to perturb gene function. A remarkable conservation of disease genes across evolution and the similarity of the general organization of the fly and vertebrate photoreceptor cell had prompted research on fly retinal degeneration. To date six fly models for RP, including RP4, RP11, RP12, RP14, RP25, and RP26, have been established, and have provided useful information on RP disease biology. In this chapter, an outline of approaches and experimental specifications are described to enable utilizing or developing new fly models of RP.
Collapse
Affiliation(s)
- Malte Lehmann
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| |
Collapse
|
8
|
Ratheesh A, Biebl J, Vesela J, Smutny M, Papusheva E, Krens SG, Kaufmann W, Gyoergy A, Casano AM, Siekhaus DE. Drosophila TNF Modulates Tissue Tension in the Embryo to Facilitate Macrophage Invasive Migration. Dev Cell 2018; 45:331-346.e7. [DOI: 10.1016/j.devcel.2018.04.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2017] [Revised: 01/12/2018] [Accepted: 04/04/2018] [Indexed: 12/11/2022]
|
9
|
Peyer SM, Heath-Heckman EAC, McFall-Ngai MJ. Characterization of the cell polarity gene crumbs during the early development and maintenance of the squid-vibrio light organ symbiosis. Dev Genes Evol 2017; 227:375-387. [PMID: 28105525 PMCID: PMC5519459 DOI: 10.1007/s00427-017-0576-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Accepted: 01/13/2017] [Indexed: 11/26/2022]
Abstract
The protein Crumbs is a determinant of apical-basal cell polarity and plays a role in apoptosis of epithelial cells and their protection against photodamage. Using the squid-vibrio system, a model for development of symbiotic partnerships, we examined the modulation of the crumbs gene in host epithelial tissues during initiation and maintenance of the association. The extracellular luminous symbiont Vibrio fischeri colonizes the apical surfaces of polarized epithelia in deep crypts of the Euprymna scolopes light organ. During initial colonization each generation, symbiont harvesting is potentiated by the biochemical and biophysical activity of superficial ciliated epithelia, which are several cell layers from the crypt epithelia where the symbionts reside. Within hours of crypt colonization, the symbionts induce the cell death mediated regression of the remote superficial ciliated fields. However, the crypt cells directly interacting with the symbiont are protected from death. In the squid host, we characterized the gene and encoded protein during light organ morphogenesis and in response to symbiosis. Features of the protein sequence and structure, phylogenetic relationships, and localization patterns in the eye supported assignment of the squid protein to the Crumbs family. In situ hybridization revealed that the crumbs transcript shows opposite expression at the onset of symbiosis in the two different regions of the light organ: elevated levels in the superficial epithelia were attenuated whereas low levels in the crypt epithelia were turned up. Although a rhythmic association in which the host controls the symbiont population over the day-night cycle begins in the juvenile upon colonization, cycling of crumbs was evident only in the adult organ with peak expression coincident with maximum symbiont population and luminescence. Our results provide evidence that crumbs responds to symbiont cues that induce developmental apoptosis and to symbiont population dynamics correlating with luminescence-based stress throughout the duration of the host-microbe association.
Collapse
Affiliation(s)
- Suzanne M Peyer
- School of Medicine and Public Health, Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, 53706, USA.
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53706, USA.
| | - Elizabeth A C Heath-Heckman
- School of Medicine and Public Health, Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, 53706, USA
- Department of Molecular and Cell Biology, University of California-Berkeley, Berkeley, CA, 94720, USA
| | - Margaret J McFall-Ngai
- School of Medicine and Public Health, Department of Medical Microbiology and Immunology, University of Wisconsin, Madison, WI, 53706, USA.
- McPherson Eye Research Institute, University of Wisconsin, Madison, WI, 53706, USA.
- Pacific Biosciences Research Center, University of Hawaii at Manoa, Honolulu, HI, 96822, USA.
| |
Collapse
|
10
|
Andersen DS, Colombani J, Palmerini V, Chakrabandhu K, Boone E, Röthlisberger M, Toggweiler J, Basler K, Mapelli M, Hueber AO, Léopold P. The Drosophila TNF receptor Grindelwald couples loss of cell polarity and neoplastic growth. Nature 2015; 522:482-6. [PMID: 25874673 DOI: 10.1038/nature14298] [Citation(s) in RCA: 121] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 02/09/2015] [Indexed: 12/16/2022]
Abstract
Disruption of epithelial polarity is a key event in the acquisition of neoplastic growth. JNK signalling is known to play an important part in driving the malignant progression of many epithelial tumours, although the link between loss of polarity and JNK signalling remains elusive. In a Drosophila genome-wide genetic screen designed to identify molecules implicated in neoplastic growth, we identified grindelwald (grnd), a gene encoding a transmembrane protein with homology to members of the tumour necrosis factor receptor (TNFR) superfamily. Here we show that Grnd mediates the pro-apoptotic functions of Eiger (Egr), the unique Drosophila TNF, and that overexpression of an active form of Grnd lacking the extracellular domain is sufficient to activate JNK signalling in vivo. Grnd also promotes the invasiveness of Ras(V12)/scrib(-/-) tumours through Egr-dependent Matrix metalloprotease-1 (Mmp1) expression. Grnd localizes to the subapical membrane domain with the cell polarity determinant Crumbs (Crb) and couples Crb-induced loss of polarity with JNK activation and neoplastic growth through physical interaction with Veli (also known as Lin-7). Therefore, Grnd represents the first example of a TNFR that integrates signals from both Egr and apical polarity determinants to induce JNK-dependent cell death or tumour growth.
Collapse
Affiliation(s)
- Ditte S Andersen
- 1] University of Nice-Sophia Antipolis, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [2] CNRS, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [3] INSERM, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [4] Genetics and Physiology of Growth laboratory, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Julien Colombani
- 1] University of Nice-Sophia Antipolis, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [2] CNRS, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [3] INSERM, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [4] Genetics and Physiology of Growth laboratory, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Valentina Palmerini
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Krittalak Chakrabandhu
- 1] University of Nice-Sophia Antipolis, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [2] CNRS, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [3] INSERM, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [4] Death receptors Signalling and Cancer Therapy laboratory, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Emilie Boone
- 1] University of Nice-Sophia Antipolis, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [2] CNRS, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [3] INSERM, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [4] Genetics and Physiology of Growth laboratory, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Michael Röthlisberger
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Janine Toggweiler
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Konrad Basler
- Institute of Molecular Life Sciences, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland
| | - Marina Mapelli
- Department of Experimental Oncology, European Institute of Oncology, Via Adamello 16, 20139 Milan, Italy
| | - Anne-Odile Hueber
- 1] University of Nice-Sophia Antipolis, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [2] CNRS, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [3] INSERM, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [4] Death receptors Signalling and Cancer Therapy laboratory, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| | - Pierre Léopold
- 1] University of Nice-Sophia Antipolis, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [2] CNRS, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [3] INSERM, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France [4] Genetics and Physiology of Growth laboratory, Institute of Biology Valrose, Parc Valrose, 06108 Nice, France
| |
Collapse
|
11
|
Kumichel A, Kapp K, Knust E. A Conserved Di-Basic Motif of Drosophila Crumbs Contributes to Efficient ER Export. Traffic 2015; 16:604-16. [PMID: 25753515 PMCID: PMC6681134 DOI: 10.1111/tra.12273] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Revised: 02/10/2015] [Accepted: 02/10/2015] [Indexed: 12/31/2022]
Abstract
The Drosophila type I transmembrane protein Crumbs is an apical determinant required for the maintenance of apico‐basal epithelial cell polarity. The level of Crumbs at the plasma membrane is crucial, but how it is regulated is poorly understood. In a genetic screen for regulators of Crumbs protein trafficking we identified Sar1, the core component of the coat protein complex II transport vesicles. sar1 mutant embryos show a reduced plasma membrane localization of Crumbs, a defect similar to that observed in haunted and ghost mutant embryos, which lack Sec23 and Sec24CD, respectively. By pulse‐chase assays in Drosophila Schneider cells and analysis of protein transport kinetics based on Endoglycosidase H resistance we identified an RNKR motif in Crumbs, which contributes to efficient ER export. The motif identified fits the highly conserved di‐basic RxKR motif and mediates interaction with Sar1. The RNKR motif is also required for plasma membrane delivery of transgene‐encoded Crumbs in epithelial cells of Drosophila embryos. Our data are the first to show that a di‐basic motif acts as a signal for ER exit of a type I plasma membrane protein in a metazoan organism.
Collapse
Affiliation(s)
- Alexandra Kumichel
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstr.10801307DresdenGermany
- Present address: Membrane Traffic and Cell Division, Institut Pasteur28 rue du Dr Roux75724 ParisFrance
| | - Katja Kapp
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstr.10801307DresdenGermany
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and GeneticsPfotenhauerstr.10801307DresdenGermany
| |
Collapse
|
12
|
Waaijers S, Ramalho JJ, Koorman T, Kruse E, Boxem M. The C. elegans Crumbs family contains a CRB3 homolog and is not essential for viability. Biol Open 2015; 4:276-84. [PMID: 25661870 PMCID: PMC4359734 DOI: 10.1242/bio.201410744] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Crumbs proteins are important regulators of epithelial polarity. In C. elegans, no essential role for the two described Crumbs homologs has been uncovered. Here, we identify and characterize an additional Crumbs family member in C. elegans, which we termed CRB-3 based on its similarity in size and sequence to mammalian CRB3. We visualized CRB-3 subcellular localization by expressing a translational GFP fusion. CRB-3::GFP was expressed in several polarized tissues in the embryo and larval stages, and showed apical localization in the intestine and pharynx. To identify the function of the Crumbs family in C. elegans development, we generated a triple Crumbs deletion mutant by sequentially removing the entire coding sequence for each crumbs homolog using a CRISPR/Cas9-based approach. Remarkably, animals lacking all three Crumbs homologs are viable and show normal epithelial polarity. Thus, the three C. elegans Crumbs family members do not appear to play an essential role in epithelial polarity establishment.
Collapse
Affiliation(s)
- Selma Waaijers
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - João Jacob Ramalho
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Thijs Koorman
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Elisabeth Kruse
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Mike Boxem
- Division of Developmental Biology, Department of Biology, Faculty of Science, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands.
| |
Collapse
|
13
|
Gurudev N, Yuan M, Knust E. chaoptin, prominin, eyes shut and crumbs form a genetic network controlling the apical compartment of Drosophila photoreceptor cells. Biol Open 2014; 3:332-41. [PMID: 24705015 PMCID: PMC4021355 DOI: 10.1242/bio.20147310] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
The apical surface of epithelial cells is often highly specialised to fulfil cell type-specific functions. Many epithelial cells expand their apical surface by forming microvilli, actin-based, finger-like membrane protrusions. The apical surface of Drosophila photoreceptor cells (PRCs) forms tightly packed microvilli, which are organised into the photosensitive rhabdomeres. As previously shown, the GPI-anchored adhesion protein Chaoptin is required for the stability of the microvilli, whereas the transmembrane protein Crumbs is essential for proper rhabdomere morphogenesis. Here we show that chaoptin synergises with crumbs to ensure optimal rhabdomere width. In addition, reduction of crumbs ameliorates morphogenetic defects observed in PRCs mutant for prominin and eyes shut, known antagonists of chaoptin. These results suggest that these four genes provide a balance of adhesion and anti-adhesion to maintain microvilli development and maintenance. Similar to crumbs mutant PRCs, PRCs devoid of prominin or eyes shut undergo light-dependent retinal degeneration. Given the observation that human orthologues of crumbs, prominin and eyes shut result in progressive retinal degeneration and blindness, the Drosophila eye is ideally suited to unravel the genetic and cellular mechanisms that ensure morphogenesis of PRCs and their maintenance under light-mediated stress.
Collapse
Affiliation(s)
- Nagananda Gurudev
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Michaela Yuan
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| | - Elisabeth Knust
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, D-01307 Dresden, Germany
| |
Collapse
|
14
|
Steffensmeier AM, Tare M, Puli OR, Modi R, Nainaparampil J, Kango-Singh M, Singh A. Novel neuroprotective function of apical-basal polarity gene crumbs in amyloid beta 42 (aβ42) mediated neurodegeneration. PLoS One 2013; 8:e78717. [PMID: 24260128 PMCID: PMC3832507 DOI: 10.1371/journal.pone.0078717] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 09/22/2013] [Indexed: 11/23/2022] Open
Abstract
Alzheimer's disease (AD, OMIM: 104300), a progressive neurodegenerative disorder with no cure to date, is caused by the generation of amyloid-beta-42 (Aβ42) aggregates that trigger neuronal cell death by unknown mechanism(s). We have developed a transgenic Drosophila eye model where misexpression of human Aβ42 results in AD-like neuropathology in the neural retina. We have identified an apical-basal polarity gene crumbs (crb) as a genetic modifier of Aβ42-mediated-neuropathology. Misexpression of Aβ42 caused upregulation of Crb expression, whereas downregulation of Crb either by RNAi or null allele approach rescued the Aβ42-mediated-neurodegeneration. Co-expression of full length Crb with Aβ42 increased severity of Aβ42-mediated-neurodegeneration, due to three fold induction of cell death in comparison to the wild type. Higher Crb levels affect axonal targeting from the retina to the brain. The structure function analysis identified intracellular domain of Crb to be required for Aβ42-mediated-neurodegeneration. We demonstrate a novel neuroprotective role of Crb in Aβ42-mediated-neurodegeneration.
Collapse
Affiliation(s)
| | - Meghana Tare
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Oorvashi Roy Puli
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
| | - Rohan Modi
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
| | - Jaison Nainaparampil
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
| | - Madhuri Kango-Singh
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, Ohio, United States of America
| | - Amit Singh
- Premedical Program, University of Dayton, Dayton, Ohio, United States of America
- Department of Biology, University of Dayton, Dayton, Ohio, United States of America
- Center for Tissue Regeneration and Engineering at Dayton, University of Dayton, Dayton, Ohio, United States of America
| |
Collapse
|
15
|
Luz M, Knust E. Fluorescently tagged Lin7c is a dynamic marker for polarity maturation in the zebrafish retinal epithelium. Biol Open 2013; 2:867-71. [PMID: 24143272 PMCID: PMC3773332 DOI: 10.1242/bio.20135371] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Accepted: 05/28/2013] [Indexed: 12/12/2022] Open
Abstract
Development of epithelial cell polarity is a highly dynamic process, and often established by the sequential recruitment of conserved protein complexes, such as the Par or the Crumbs (Crb) complex. However, detailed insights into the refinement of polarity and the formation of the complexes are still lacking. Here, we established fluorescently tagged Lin7c, a core member of the Crb complex, as an ideal tool to follow development of polarity in zebrafish epithelia. We find that in gastrula stages, RFP-Lin7c is found in the cytosol of the enveloping layer, while Pard3-GFP is already polarized at this stage. During development of the retinal epithelium, RFP-Lin7c localization is refined from being cytosolic at 14 hours post fertilization (hpf) to almost entirely apical in cells of the eye cup at 28 hpf. This apical Lin7c localization depends on the Crb complex members Oko meduzy and Nagie oko. Thus, fluorescently tagged Lin7c can be used in a broad range of epithelia to follow polarity maturation in vivo and specifically to elucidate the sequence of events determining Crb complex-mediated polarity.
Collapse
Affiliation(s)
- Marta Luz
- Max-Planck-Institute of Molecular Cell Biology and Genetics , Pfotenhauerstrasse 108, D-01307 Dresden , Germany
| | | |
Collapse
|
16
|
Soukup SF, Pocha SM, Yuan M, Knust E. DLin-7 is required in postsynaptic lamina neurons to prevent light-induced photoreceptor degeneration in Drosophila. Curr Biol 2013; 23:1349-54. [PMID: 23850283 DOI: 10.1016/j.cub.2013.05.060] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 05/21/2013] [Accepted: 05/30/2013] [Indexed: 10/26/2022]
Abstract
Inherited retinal degeneration in humans is caused by mutations in a wide spectrum of genes that regulate photoreceptor development and homeostasis. Many of these genes are structurally and functionally conserved in Drosophila, making the fly eye an ideal system in which to study the cellular and molecular basis of blindness. DLin-7, the ortholog of vertebrate MALS/Veli, is a core component of the evolutionarily conserved Crumbs complex. Mutations in any core member of the Crb complex lead to retinal degeneration in Drosophila. Strikingly, mutations in the human ortholog, CRB1, result in retinitis pigmentosa 12 (RP12) and Leber congenital amaurosis, two severe retinal dystrophies. Unlike Crumbs, DLin-7 is expressed not only in photoreceptor cells but also in postsynaptic lamina neurons. Here, we show that DLin-7 is required in postsynaptic neurons, but not in photoreceptors such as Crumbs, to prevent light-dependent retinal degeneration. At the photoreceptor synapse, DLin-7 acts as part of a conserved DLin-7/CASK/DlgS97 complex required to control the number of capitate projections and active zones, important specializations in the photoreceptor synapse that are essential for proper neurotransmission. These results are the first to demonstrate that a postsynaptically acting protein prevents light-dependent photoreceptor degeneration and describe a novel, Crumbs-independent mechanism for photoreceptor degeneration.
Collapse
Affiliation(s)
- Sandra-Fausia Soukup
- Max Planck Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307 Dresden, Germany
| | | | | | | |
Collapse
|
17
|
Fosmid-based structure-function analysis reveals functionally distinct domains in the cytoplasmic domain of Drosophila crumbs. G3-GENES GENOMES GENETICS 2013; 3:153-65. [PMID: 23390593 PMCID: PMC3564977 DOI: 10.1534/g3.112.005074] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/27/2012] [Indexed: 12/18/2022]
Abstract
The evolutionarily conserved transmembrane protein Crumbs is required for epithelial polarity and morphogenesis in the embryo, control of tissue size in imaginal discs and morphogenesis of photoreceptor cells, and prevents light-dependent retinal degeneration. The small cytoplasmic domain contains two highly conserved regions, a FERM (i.e., protein 4.1/ezrin/radixin/moesin)-binding and a PDZ (i.e., postsynaptic density/discs large/ZO-1)-binding domain. Using a fosmid-based transgenomic approach, we analyzed the role of the two domains during invagination of the tracheae and the salivary glands in the Drosophila embryo. We provide data to show that the PDZ-binding domain is essential for the maintenance of cell polarity in both tissues. In contrast, in embryos expressing a Crumbs protein with an exchange of a conserved Tyrosine residue in the FERM-binding domain to an Alanine, both tissues are internalized, despite some initial defects in apical constriction, phospho-Moesin recruitment, and coordinated invagination movements. However, at later stages these embryos fail to undergo dorsal closure, germ band retraction, and head involution. In addition, frequent defects in tracheal fusion were observed. These results suggest stage and/or tissue specific binding partners. We discuss the power of this fosmid-based system for detailed structure-function analyses in comparison to the UAS/Gal4 system.
Collapse
|
18
|
Tepass U. The apical polarity protein network in Drosophila epithelial cells: regulation of polarity, junctions, morphogenesis, cell growth, and survival. Annu Rev Cell Dev Biol 2012; 28:655-85. [PMID: 22881460 DOI: 10.1146/annurev-cellbio-092910-154033] [Citation(s) in RCA: 264] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Epithelial tissue formation and function requires the apical-basal polarization of individual epithelial cells. Apical polarity regulators (APRs) are an evolutionarily conserved group of key factors that govern polarity and several other aspects of epithelial differentiation. APRs compose a diverse set of molecules including a transmembrane protein (Crumbs), a serine/threonine kinase (aPKC), a lipid phosphatase (PTEN), a small GTPase (Cdc42), FERM domain proteins (Moesin, Yurt), and several adaptor or scaffolding proteins (Bazooka/Par3, Par6, Stardust, Patj). These proteins form a dynamic cooperative network that is engaged in negative-feedback regulation with basolateral polarity factors to set up the epithelial apical-basal axis. APRs support the formation of the apical junctional complex and the segregation of the junctional domain from the apical membrane. It is becoming increasingly clear that APRs interact with the cytoskeleton and vesicle trafficking machinery, regulate morphogenesis, and modulate epithelial cell growth and survival. Not surprisingly, APRs have multiple fundamental links to human diseases such as cancer and blindness.
Collapse
Affiliation(s)
- Ulrich Tepass
- Department of Cell and Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada.
| |
Collapse
|
19
|
Mishra M, Rentsch M, Knust E. Crumbs regulates polarity and prevents light-induced degeneration of the simple eyes of Drosophila, the ocelli. Eur J Cell Biol 2012; 91:706-16. [PMID: 22608020 DOI: 10.1016/j.ejcb.2012.03.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 03/27/2012] [Accepted: 03/27/2012] [Indexed: 11/27/2022] Open
Abstract
The evolutionary conserved transmembrane protein Crumbs (Crb) regulates morphogenesis of photoreceptor cells in the compound eye of Drosophila and prevents light-dependent retinal degeneration. Here we examine the role of Crb in the ocelli, the simple eyes of Drosophila. We show that Crb is expressed in ocellar photoreceptor cells, where it defines a stalk membrane apical to the adherens junctions, similar as in photoreceptor cells of the compound eyes. Loss of function of crb disrupts polarity of ocellar photoreceptor cells, and results in mislocalisation of adherens junction proteins. This phenotype is more severe than that observed in mutant photoreceptor cells of the compound eye, and resembles more that of embryonic epithelia lacking crb. Similar as in compound eyes, crb protects ocellar photoreceptors from light induced degeneration, a function that depends on the extracellular portion of the Crb protein. Our data demonstrate that the function of crb in photoreceptor development and homeostasis is conserved in compound eyes and ocelli and underscores the evolutionarily relationship between these visual sense organs of Drosophila. The data will be discussed with respect to the difference in apico-basal organisation of these two cell types.
Collapse
Affiliation(s)
- Monalisa Mishra
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, D-01307 Dresden, Germany
| | | | | |
Collapse
|
20
|
Pocha SM, Shevchenko A, Knust E. Crumbs regulates rhodopsin transport by interacting with and stabilizing myosin V. ACTA ACUST UNITED AC 2011; 195:827-38. [PMID: 22105348 PMCID: PMC3257572 DOI: 10.1083/jcb.201105144] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
In the absence of Crumbs, myosin V is degraded, resulting in defective rhodopsin 1 transport to the rhabdomere and subsequent photoreceptor degeneration. The evolutionarily conserved Crumbs (Crb) complex is crucial for photoreceptor morphogenesis and homeostasis. Loss of Crb results in light-dependent retinal degeneration, which is prevented by feeding mutant flies carotenoid-deficient medium. This suggests a defect in rhodopsin 1 (Rh1) processing, transport, and/or signaling, causing degeneration; however, the molecular mechanism of this remained elusive. In this paper, we show that myosin V (MyoV) coimmunoprecipitated with the Crb complex and that loss of crb led to severe reduction in MyoV levels, which could be rescued by proteasomal inhibition. Loss of MyoV in crb mutant photoreceptors was accompanied by defective transport of the MyoV cargo Rh1 to the light-sensing organelle, the rhabdomere. This resulted in an age-dependent accumulation of Rh1 in the photoreceptor cell (PRC) body, a well-documented trigger of degeneration. We conclude that Crb protects against degeneration by interacting with and stabilizing MyoV, thereby ensuring correct Rh1 trafficking. Our data provide, for the first time, a molecular mechanism for the light-dependent degeneration of PRCs observed in crb mutant retinas.
Collapse
Affiliation(s)
- Shirin Meher Pocha
- Max Planck Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany.
| | | | | |
Collapse
|
21
|
Muschalik N, Knust E. Increased levels of the cytoplasmic domain of Crumbs repolarise developing Drosophila photoreceptors. J Cell Sci 2011; 124:3715-25. [PMID: 22025631 DOI: 10.1242/jcs.091223] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Photoreceptor morphogenesis in Drosophila requires remodelling of apico-basal polarity and adherens junctions (AJs), and includes cell shape changes, as well as differentiation and expansion of the apical membrane. The evolutionarily conserved transmembrane protein Crumbs (Crb) organises an apical membrane-associated protein complex that controls photoreceptor morphogenesis. Expression of the small cytoplasmic domain of Crb in crb mutant photoreceptor cells (PRCs) rescues the crb mutant phenotype to the same extent as the full-length protein. Here, we show that overexpression of the membrane-tethered cytoplasmic domain of Crb in otherwise wild-type photoreceptor cells has major effects on polarity and morphogenesis. Whereas early expression causes severe abnormalities in apico-basal polarity and ommatidial integrity, expression at later stages affects the shape and positioning of AJs. This result supports the importance of Crb for junctional remodelling during morphogenetic changes. The most pronounced phenotype observed upon early expression is the formation of ectopic apical membrane domains, which often develop into a complete second apical pole, including ectopic AJs. Induction of this phenotype requires members of the Par protein network. These data point to a close integration of the Crb complex and Par proteins during photoreceptor morphogenesis and underscore the role of Crb as an apical determinant.
Collapse
Affiliation(s)
- Nadine Muschalik
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Pfotenhauerstrasse 108, 01307-Dresden, Germany
| | | |
Collapse
|
22
|
Zhou B, Wu Y, Lin X. Retromer regulates apical-basal polarity through recycling Crumbs. Dev Biol 2011; 360:87-95. [PMID: 21958744 DOI: 10.1016/j.ydbio.2011.09.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Revised: 09/11/2011] [Accepted: 09/12/2011] [Indexed: 01/15/2023]
Abstract
Epithelial cells are characterized by an "apical-basal" polarization. The transmembrane protein Crumbs (Crb) is an essential apical determinant which confers apical membrane identity. Previous studies indicated that Crb did not constantly reside on the apical membrane, but was actively recycled. However, the cellular mechanism(s) underlying this process was unclear. Here we showed that in Drosophila, retromer, which was a retrograde complex recycling certain transmembrane proteins from endosomes to trans-Golgi network (TGN), regulated Crb in epithelial cells. In the absence of retromer, Crb was mis-targeted into lysosomes and degraded, causing a disruption of the apical-basal polarity. We further showed that Crb co-localized and interacted with retromer, suggesting that retromer regulated the retrograde recycling of Crb. Our data presented here uncover the role of retromer in regulating apical-basal polarity in epithelial cells and identify retromer as a novel regulator of Crb recycling.
Collapse
Affiliation(s)
- Bo Zhou
- Division of Developmental Biology, Cincinnati Children's Hospital Medical Center, and the Graduate Program in Molecular and Developmental Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45229, USA
| | | | | |
Collapse
|
23
|
Bulgakova NA, Rentsch M, Knust E. Antagonistic functions of two stardust isoforms in Drosophila photoreceptor cells. Mol Biol Cell 2010; 21:3915-25. [PMID: 20861315 PMCID: PMC2982133 DOI: 10.1091/mbc.e09-10-0917] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Two Stardust isoforms are expressed in adult Drosophila photoreceptors, which associate with Crumbs and PATJ, but form distinct complexes. Sdt-H and Sdt-D have antagonistic functions on stalk membrane length and light-dependent retinal degeneration, suggesting a fine-tuned balance of different Crumbs complexes regulating photoreceptor homeostasis. Membrane-associated guanylate kinases (MAGUKs) are scaffolding proteins that organize supramolecular protein complexes, thereby partitioning the plasma membrane into spatially and functionally distinct subdomains. Their modular organization is ideally suited to organize protein complexes with cell type- or stage-specific composition, or both. Often more than one MAGUK isoform is expressed by one gene in the same cell, yet very little is known about their individual in vivo functions. Here, we show that two isoforms of Drosophila stardust, Sdt-H (formerly called Sdt-B2) and Sdt-D, which differ in their N terminus, are expressed in adult photoreceptors. Both isoforms associate with Crumbs and PATJ, constituents of the conserved Crumbs–Stardust complex. However, they form distinct complexes, localized at the stalk, a restricted region of the apical plasma membrane. Strikingly, Sdt-H and Sdt-D have antagonistic functions. While Sdt-H overexpression increases stalk membrane length and prevents light-dependent retinal degeneration, Sdt-D overexpression reduces stalk length and enhances light-dependent retinal degeneration. These results suggest that a fine-tuned balance of different Crumbs complexes regulates photoreceptor homeostasis.
Collapse
Affiliation(s)
- Natalia A Bulgakova
- Max-Planck-Institute of Molecular Cell Biology and Genetics, 01307 Dresden, Germany
| | | | | |
Collapse
|
24
|
Walther RF, Pichaud F. Crumbs/DaPKC-dependent apical exclusion of Bazooka promotes photoreceptor polarity remodeling. Curr Biol 2010; 20:1065-74. [PMID: 20493700 DOI: 10.1016/j.cub.2010.04.049] [Citation(s) in RCA: 103] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2010] [Revised: 04/30/2010] [Accepted: 04/30/2010] [Indexed: 10/19/2022]
Abstract
BACKGROUND In Drosophila epithelial cells, specification and maintenance of the zonula adherens (za) is crucial to ensure epithelial tissue integrity. This depends on the intertwined function of Bazooka (Baz), Par6-DaPKC, and the Crumbs (Crb)-Stardust (Sdt)-PATJ complex. However, the detailed molecular basis for the interplay between these factors during this process is not fully understood. RESULTS We demonstrate that during photoreceptor apicobasal polarity remodeling, Crb is required to exclude Baz from the subapical domain. This is achieved by recruiting Par6 and DaPKC to this membrane domain. This molecular sorting depends on Baz phosphorylation by DaPKC at the conserved serine 980 and on the activity of the small GTPase Cdc42 associated with Par6. Our data indicate that although Cdc42 binding to Par6 is not required for Baz phosphorylation by DaPKC, it is required for optimum recruitment of Crb at the subapical membrane, a process necessary for delineating the nascent za from this membrane domain. CONCLUSION Binding of Cdc42 to the DaPKC regulatory subunit Par6 is required to promote Crb- and DaPKC-dependent apical exclusion of Baz. This molecular sorting mechanism results in setting up the boundary between the photoreceptor subapical membrane and the za.
Collapse
Affiliation(s)
- Rhian F Walther
- Medical Research Council (MRC) Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, Gower Street, WC1E 6BT London, UK
| | | |
Collapse
|
25
|
The Drosophila Crumbs signal peptide is unusually long and is a substrate for signal peptide peptidase. Eur J Cell Biol 2010; 89:449-61. [DOI: 10.1016/j.ejcb.2010.02.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2009] [Revised: 01/25/2010] [Accepted: 02/01/2010] [Indexed: 12/14/2022] Open
|
26
|
A perisynaptic ménage à trois between Dlg, DLin-7, and Metro controls proper organization of Drosophila synaptic junctions. J Neurosci 2010; 30:5811-24. [PMID: 20427642 DOI: 10.1523/jneurosci.0778-10.2010] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Structural plasticity of synaptic junctions is a prerequisite to achieve and modulate connectivity within nervous systems, e.g., during learning and memory formation. It demands adequate backup systems that allow remodeling while retaining sufficient stability to prevent unwanted synaptic disintegration. The strength of submembranous scaffold complexes, which are fundamental to the architecture of synaptic junctions, likely constitutes a crucial determinant of synaptic stability. Postsynaptic density protein-95 (PSD-95)/ Discs-large (Dlg)-like membrane-associated guanylate kinases (DLG-MAGUKs) are principal scaffold proteins at both vertebrate and invertebrate synapses. At Drosophila larval glutamatergic neuromuscular junctions (NMJs) DlgA and DlgS97 exert pleiotropic functions, probably reflecting a few known and a number of yet-unknown binding partners. In this study we have identified Metro, a novel p55/MPP-like Drosophila MAGUK as a major binding partner of perisynaptic DlgS97 at larval NMJs. Based on homotypic LIN-2,-7 (L27) domain interactions, Metro stabilizes junctional DlgS97 in a complex with the highly conserved adaptor protein DLin-7. In a remarkably interdependent manner, Metro and DLin-7 act downstream of DlgS97 to control NMJ expansion and proper establishment of synaptic boutons. Using quantitative 3D-imaging we further demonstrate that the complex controls the size of postsynaptic glutamate receptor fields. Our findings accentuate the importance of perisynaptic scaffold complexes for synaptic stabilization and organization.
Collapse
|
27
|
Richardson ECN, Pichaud F. Crumbs is required to achieve proper organ size control during Drosophila head development. Development 2010; 137:641-50. [PMID: 20110329 DOI: 10.1242/dev.041913] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Crumbs (Crb) is a conserved apical polarity determinant required for zonula adherens specification and remodelling during Drosophila development. Interestingly, crb function in maintaining apicobasal polarity appears largely dispensable in primary epithelia such as the imaginal discs. Here, we show that crb function is not required for maintaining epithelial integrity during the morphogenesis of the Drosophila head and eye. However, although crb mutant heads are properly developed, they are also significantly larger than their wild-type counterparts. We demonstrate that in the eye, this is caused by an increase in cell proliferation that can be attributed to an increase in ligand-dependent Notch (N) signalling. Moreover, we show that in crb mutant cells, ectopic N activity correlates with an increase in N and Delta endocytosis. These data indicate a role for Crb in modulating endocytosis at the apical epithelial plasma membrane, which we demonstrate is independent of Crb function in apicobasal polarity. Overall, our work reveals a novel function for Crb in limiting ligand-dependent transactivation of the N receptor at the epithelial cell membrane.
Collapse
Affiliation(s)
- Emily C N Richardson
- MRC Laboratory for Molecular Cell Biology and Cell Biology Unit, University College London, London, UK
| | | |
Collapse
|
28
|
Charlton-Perkins M, Cook TA. Building a fly eye: terminal differentiation events of the retina, corneal lens, and pigmented epithelia. Curr Top Dev Biol 2010; 93:129-73. [PMID: 20959165 DOI: 10.1016/b978-0-12-385044-7.00005-9] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
In the past, vast differences in ocular structure, development, and physiology throughout the animal kingdom led to the widely accepted notion that eyes are polyphyletic, that is, they have independently arisen multiple times during evolution. Despite the dissimilarity between vertebrate and invertebrate eyes, it is becoming increasingly evident that the development of the eye in both groups shares more similarity at the genetic level than was previously assumed, forcing a reexamination of eye evolution. Understanding the molecular underpinnings of cell type specification during Drosophila eye development has been a focus of research for many labs over the past 25 years, and many of these findings are nicely reviewed in Chapters 1 and 4. A somewhat less explored area of research, however, considers how these cells, once specified, develop into functional ocular structures. This review aims to summarize the current knowledge related to the terminal differentiation events of the retina, corneal lens, and pigmented epithelia in the fly eye. In addition, we discuss emerging evidence that the different functional components of the fly eye share developmental pathways and functions with the vertebrate eye.
Collapse
Affiliation(s)
- Mark Charlton-Perkins
- Department of Pediatric Ophthalmology, Division of Developmental Biology, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | |
Collapse
|
29
|
Richard M, Muschalik N, Grawe F, Ozüyaman S, Knust E. A role for the extracellular domain of Crumbs in morphogenesis of Drosophila photoreceptor cells. Eur J Cell Biol 2009; 88:765-77. [PMID: 19717208 DOI: 10.1016/j.ejcb.2009.07.006] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Revised: 07/30/2009] [Accepted: 07/30/2009] [Indexed: 12/01/2022] Open
Abstract
Morphogenesis of Drosophila photoreceptor cells includes the subdivision of the apical membrane into the photosensitive rhabdomere and the associated stalk membrane, as well as a considerable elongation of the cell. Drosophila Crumbs (Crb), an evolutionarily conserved transmembrane protein, organizes an apical protein scaffold, which is required for elongation of the photoreceptor cell and extension of the stalk membrane. To further elucidate the role played by different Crb domains during eye morphogenesis, we performed a structure-function analysis in the eye. The analysis showed that the three variants tested, namely full-length Crb, the membrane-bound intracellular domain and the extracellular domain were able to rescue the elongation defects of crb mutant rhabdomeres. However, only full-length Crb and the membrane-bound intracellular domain could partially restore the length of the stalk membrane, while the extracellular domain failed to do so. This failure was associated with the inability of the extracellular domain to recruit beta(Heavy)-spectrin to the stalk membrane. These results highlight the functional importance of the extracellular domain of Crb in the Drosophila eye. They are in line with previous observations, which showed that mutations in the extracellular domain of human CRB1 are associated with retinitis pigmentosa 12 and Leber congenital amaurosis, two severe forms of retinal dystrophy.
Collapse
Affiliation(s)
- Mélisande Richard
- Institut für Genetik, Heinrich Heine Universität Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany
| | | | | | | | | |
Collapse
|
30
|
Bulgakova NA, Knust E. The Crumbs complex: from epithelial-cell polarity to retinal degeneration. J Cell Sci 2009; 122:2587-96. [DOI: 10.1242/jcs.023648] [Citation(s) in RCA: 190] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The evolutionarily conserved Crumbs protein complex is a key regulator of cell polarity and cell shape in both invertebrates and vertebrates. The important role of this complex in normal cell function is illustrated by the finding that mutations in one of its components, Crumbs, are associated with retinal degeneration in humans, mice and flies. Recent results suggest that the Crumbs complex plays a role in the development of other disease processes that are based on epithelial dysfunction, such as tumorigenesis or the formation of cystic kidneys. Localisation of the complex is restricted to a distinct region of the apical plasma membrane that abuts the zonula adherens in epithelia and photoreceptor cells of invertebrates and vertebrates, including humans. In addition to the core components, a variety of other proteins can be recruited to the complex, depending on the cell type and/or developmental stage. Together with diverse post-transcriptional and post-translational mechanisms that regulate the individual components, this provides an enormous functional diversity and flexibility of the complex. In this Commentary, we summarise findings concerning the organisation and modification of the Crumbs complex, and the conservation of its constituents from flies to mammals. In addition, we discuss recent results that suggest its participation in various human diseases, including blindness and tumour formation.
Collapse
Affiliation(s)
- Natalia A. Bulgakova
- Max-Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, Germany
| |
Collapse
|
31
|
Bulgakova NA, Kempkens O, Knust E. Multiple domains of Stardust differentially mediate localisation of the Crumbs-Stardust complex during photoreceptor development in Drosophila. J Cell Sci 2008; 121:2018-26. [DOI: 10.1242/jcs.031088] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Drosophila Stardust (Sdt), a member of the MAGUK family of scaffolding proteins, is a constituent of the evolutionarily conserved Crumbs-Stardust (Crb-Sdt) complex that controls epithelial cell polarity in the embryo and morphogenesis of photoreceptor cells. Although apical localisation is a hallmark of the complex in all cell types and in all organisms analysed, only little is known about how individual components are targeted to the apical membrane. We have performed a structure-function analysis of Sdt by constructing transgenic flies that express altered forms of Sdt to determine the roles of individual domains for localisation and function in photoreceptor cells. The results corroborate the observation that the organisation of the Crb-Sdt complex is differentially regulated in pupal and adult photoreceptors. In pupal photoreceptors, only the PDZ domain of Sdt – the binding site of Crb – is required for apical targeting. In adult photoreceptors, by contrast, targeting of Sdt to the stalk membrane, a distinct compartment of the apical membrane between the rhabdomere and the zonula adherens, depends on several domains, and seems to be a two-step process. The N-terminus, including the two ECR domains and a divergent N-terminal L27 domain that binds the multi-PDZ domain protein PATJ in vitro, is necessary for targeting the protein to the apical pole of the cell. The PDZ-, the SH3- and the GUK-domains are required to restrict the protein to the stalk membrane. Drosophila PATJ or Drosophila Lin-7 are stabilised whenever a Sdt variant that contains the respective binding site is present, independently of where the variant is localised. By contrast, only full-length Sdt, confined to the stalk membrane, stabilises and localises Crb, although only in reduced amounts. The amount of Crumbs recruited to the stalk membrane correlates with its length. Our results highlight the importance of the different Sdt domains and point to a more intricate regulation of the Crb-Sdt complex in adult photoreceptor cells.
Collapse
Affiliation(s)
- Natalia A. Bulgakova
- Max-Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, Germany
| | - Özlem Kempkens
- Institut für Genetik, Heinrich-Heine Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Elisabeth Knust
- Max-Planck Institute for Molecular Cell Biology and Genetics, Pfotenhauerstr. 108, Dresden, Germany
| |
Collapse
|
32
|
Bachmann A, Draga M, Grawe F, Knust E. On the role of the MAGUK proteins encoded by Drosophila varicose during embryonic and postembryonic development. BMC DEVELOPMENTAL BIOLOGY 2008; 8:55. [PMID: 18485238 PMCID: PMC2414870 DOI: 10.1186/1471-213x-8-55] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2007] [Accepted: 05/18/2008] [Indexed: 11/10/2022]
Abstract
BACKGROUND Membrane-associated guanylate kinases (MAGUKs) form a family of scaffolding proteins, which are often associated with cellular junctions, such as the vertebrate tight junction, the Drosophila septate junction or the neuromuscular junction. Their capacity to serve as platforms for organising larger protein assemblies results from the presence of several protein-protein interaction domains. They often appear in different variants suggesting that they also mediate dynamic changes in the composition of the complexes. RESULTS Here we show by electron microscopic analysis that Drosophila embryos lacking varicose function fail to develop septate junctions in the tracheae and the epidermis. In the embryo and in imaginal discs varicose expresses two protein isoforms, which belong to the MAGUK family. The two isoforms can be distinguished by the presence or absence of two L27 domains and are differentially affected in different varicose alleles. While the short isoform is essential for viability, the long isoform seems to have a supportive function. Varicose proteins co-localise with Neurexin IV in pleated septate junctions and are necessary, but not sufficient for its recruitment. The two proteins interact in vitro by the PDZ domain of Varicose and the four C-terminal amino acids of Neurexin IV. Postembryonic reduction of varicose function by expressing double-stranded RNA affects pattern formation and morphogenesis of the wing and the development of normal-shaped and -sized eyes. CONCLUSION Expression of two Varicose isoforms in embryonic epithelia and imaginal discs suggests that the composition of Varicose-mediated protein scaffolds at septate junctions is dynamic, which may have important implications for the modulation of their function.
Collapse
Affiliation(s)
- André Bachmann
- Institut für Genetik, Heinrich-Heine-Universität Düsseldorf, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | | | |
Collapse
|