1
|
Kehoe DM, Biswas A, Chen B, Dufour L, Grébert T, Haney AM, Joseph KL, Kumarapperuma I, Nguyen AA, Ratin M, Sanfilippo JE, Shukla A, Garczarek L, Yang X, Schluchter WM, Partensky F. Light Color Regulation of Photosynthetic Antennae Biogenesis in Marine Phytoplankton. PLANT & CELL PHYSIOLOGY 2025; 66:168-180. [PMID: 39361137 DOI: 10.1093/pcp/pcae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/21/2024] [Accepted: 10/01/2024] [Indexed: 03/06/2025]
Abstract
Photosynthesis in the world's oceans is primarily conducted by phytoplankton, microorganisms that use many different pigments for light capture. Synechococcus is a unicellular cyanobacterium estimated to be the second most abundant marine phototroph, with a global population of 7 × 1026 cells. This group's success is partly due to the pigment diversity in their photosynthetic light harvesting antennae, which maximize photon capture for photosynthesis. Many Synechococcus isolates adjust their antennae composition in response to shifts in the blue:green ratio of ambient light. This response was named type 4 chromatic acclimation (CA4). Research has made significant progress in understanding CA4 across scales, from its global ecological importance to its molecular mechanisms. Two forms of CA4 exist, each correlated with the occurrence of one of two distinct but related genomic islands. Several genes in these islands are differentially transcribed by the ambient blue:green light ratio. The encoded proteins control the addition of different pigments to the antennae proteins in blue versus green light, altering their absorption characteristics to maximize photon capture. These genes are regulated by several putative transcription factors also encoded in the genomic islands. Ecologically, CA4 is the most abundant of marine Synechococcus pigment types, occurring in over 40% of the population oceanwide. It predominates at higher latitudes and at depth, suggesting that CA4 is most beneficial under sub-saturating photosynthetic light irradiances. Future CA4 research will further clarify the ecological role of CA4 and the molecular mechanisms controlling this globally important form of phenotypic plasticity.
Collapse
Affiliation(s)
- David M Kehoe
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA
| | - Avijit Biswas
- Department of Biological Sciences, Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | - Bo Chen
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA
| | - Louison Dufour
- UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Sorbonne Université and Centre National de La Recherche Scientifique, Roscoff 29680, France
| | - Théophile Grébert
- UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Sorbonne Université and Centre National de La Recherche Scientifique, Roscoff 29680, France
| | - Allissa M Haney
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA
| | - Kes Lynn Joseph
- Department of Biological Sciences, Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | - Indika Kumarapperuma
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60612, USA
| | - Adam A Nguyen
- Department of Biological Sciences, Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | - Morgane Ratin
- UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Sorbonne Université and Centre National de La Recherche Scientifique, Roscoff 29680, France
| | - Joseph E Sanfilippo
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA
| | - Animesh Shukla
- Department of Biology, Indiana University, 1001 East 3rd Street, Bloomington, IN 47405, USA
| | - Laurence Garczarek
- UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Sorbonne Université and Centre National de La Recherche Scientifique, Roscoff 29680, France
| | - Xiaojing Yang
- Department of Chemistry, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60612, USA
| | - Wendy M Schluchter
- Department of Biological Sciences, Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
- Department of Chemistry, University of New Orleans, 2000 Lakeshore Drive, New Orleans, LA 70148, USA
| | - Frédéric Partensky
- UMR 7144 Adaptation and Diversity in the Marine Environment, Station Biologique, Sorbonne Université and Centre National de La Recherche Scientifique, Roscoff 29680, France
| |
Collapse
|
2
|
Liu Z, Sun J. The heat and irradiation driven degradation of the diagnostic pigments in marine phytoplankton and the compositions of special degradation products. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 366:125406. [PMID: 39615568 DOI: 10.1016/j.envpol.2024.125406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 11/03/2024] [Accepted: 11/26/2024] [Indexed: 12/06/2024]
Abstract
Marine phytoplankton stands as one of the most crucial components of marine ecosystems, so tracking it using appropriate biomarkers holds significant meaning. Chlorins are a sort of degradation products derived from the diagnostic pigment of marine phytoplankton and serve as valuable biomarkers for describing the temporal and spatial distribution of phytoplankton. However, previous research has not qualitatively or quantitatively studied multiple Chlorins, nor has it clearly revealed the conditions of their formation. Thus, this study investigated the chemical structure and formation mechanism of Chlorins in Chlorophytes, Prochlorococcus, and Chrysophytes communities by experiencing specific heat and irradiation conditions. According to the standardized redundancy analysis results, Phytin-a and its analogues with shorter phytyl chain are sensitive to irradiation intensity, and different Phytin-a analogues represent different degradation pathway of Chl-a. The composition and concentration of Phide-a and its further degradation products emerged as the primary thermosensitive components, capable of indicating and reversing temperature fluctuations within the environment. During the degradation processes of Chl-a, the carotenoids of each phytoplankton can also affect the degradation direction of Chl-a. Phycourobilin can cause Chl-a in the Prochlorococcus group to transform into special Phide-a analogues relying on low irradiation intensity. Zeaxanthin and Diatoxanthin dominate the conversion of Chl-a in Chrysophytes, and tend to cause heat-driven degradation of pigments. Zeaxanthin and Prasinoxanthin can also mediate the degradation of Chl-a in Chlorophytes. Thus, Chlorophyll and the composition of its Chlorins briefly reveal the rates of degradation and light intensity, and the carotenoids and their Chlorins can represent the temperature condition in the environment. These results imply that Chlorins can be utilized as biomarkers to infer the distribution and abundance of phytoplankton communities, reflecting the environmental factors in which phytoplankton live.
Collapse
Affiliation(s)
- Zishi Liu
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Institute of Advanced Marine Research of Geosciences, Guangzhou, Guangdong, China
| | - Jun Sun
- State Key Laboratory of Biogeology and Environmental Geology, China University of Geosciences (Wuhan), Wuhan, 430074, China; Research Centre for Indian Ocean Ecosystem, Tianjin University of Science and Technology, Tianjin, 300457, China; Institute of Advanced Marine Research of Geosciences, Guangzhou, Guangdong, China.
| |
Collapse
|
3
|
Mondal S, Pandey D, Singh SP. Chromatic acclimation in cyanobacteria renders robust photosynthesis and fitness in dynamic light environment: Recent advances and future perspectives. PHYSIOLOGIA PLANTARUM 2024; 176:e14536. [PMID: 39323055 DOI: 10.1111/ppl.14536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/27/2024]
Abstract
Cyanobacteria are photoautotrophic organisms that use light and water as a source of energy and electrons, respectively, to fix atmospheric carbon dioxide and release oxygen as a by-product during photosynthesis. However, photosynthesis and fitness of organisms are challenged by seasonal and diurnal fluctuations in light environments. Also, the distribution of cyanobacteria in a water column is subject to changes in the light regime. The quality and quantity of light change significantly in low and bright light environments that either limit photochemistry or result in photoinhibition due to an excess amount of light reaching reaction centers. Therefore, cyanobacteria have to adjust their light-harvesting machinery and cell morphology for the optimal harvesting of light. This adjustment of light-harvesting involves remodeling of the light-harvesting complex called phycobilisome or incorporation of chlorophyll molecules such as chlorophyll d and f into their light-harvesting machinery. Thus, photoacclimation responses of cyanobacteria at the level of pigment composition and cell morphology maximize their photosynthetic ability and fitness under a dynamic light environment. Cyanobacteria exhibit different types of photoacclimation responses that are commonly known as chromatic acclimation (CA). In this work, we discuss different types of CA reported in cyanobacteria and present a molecular mechanism of well-known type 3 CA where phycoerythrin and phycocyanin of phycobilisome changes according to light signals. We also include other aspects of type 3 CA that have been recently studied at a molecular level and highlight the importance of morphogenes, cytoskeleton, and carboxysome proteins. In summary, CA gives a unique competitive benefit to cyanobacteria by increasing their resource utilization ability and fitness.
Collapse
Affiliation(s)
- Soumila Mondal
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Deepa Pandey
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| | - Shailendra P Singh
- Department of Botany, Institute of Science, Banaras Hindu University, Varanasi, India
| |
Collapse
|
4
|
Phycobilisomes and Phycobiliproteins in the Pigment Apparatus of Oxygenic Photosynthetics: From Cyanobacteria to Tertiary Endosymbiosis. Int J Mol Sci 2023; 24:ijms24032290. [PMID: 36768613 PMCID: PMC9916406 DOI: 10.3390/ijms24032290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 01/26/2023] Open
Abstract
Eukaryotic photosynthesis originated in the course of evolution as a result of the uptake of some unstored cyanobacterium and its transformation to chloroplasts by an ancestral heterotrophic eukaryotic cell. The pigment apparatus of Archaeplastida and other algal phyla that emerged later turned out to be arranged in the same way. Pigment-protein complexes of photosystem I (PS I) and photosystem II (PS II) are characterized by uniform structures, while the light-harvesting antennae have undergone a series of changes. The phycobilisome (PBS) antenna present in cyanobacteria was replaced by Chl a/b- or Chl a/c-containing pigment-protein complexes in most groups of photosynthetics. In the form of PBS or phycobiliprotein aggregates, it was inherited by members of Cyanophyta, Cryptophyta, red algae, and photosynthetic amoebae. Supramolecular organization and architectural modifications of phycobiliprotein antennae in various algal phyla in line with the endosymbiotic theory of chloroplast origin are the subject of this review.
Collapse
|
5
|
Sanfilippo JE, Garczarek L, Partensky F, Kehoe DM. Chromatic Acclimation in Cyanobacteria: A Diverse and Widespread Process for Optimizing Photosynthesis. Annu Rev Microbiol 2020; 73:407-433. [PMID: 31500538 DOI: 10.1146/annurev-micro-020518-115738] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Chromatic acclimation (CA) encompasses a diverse set of molecular processes that involve the ability of cyanobacterial cells to sense ambient light colors and use this information to optimize photosynthetic light harvesting. The six known types of CA, which we propose naming CA1 through CA6, use a range of molecular mechanisms that likely evolved independently in distantly related lineages of the Cyanobacteria phylum. Together, these processes sense and respond to the majority of the photosynthetically relevant solar spectrum, suggesting that CA provides fitness advantages across a broad range of light color niches. The recent discoveries of several new CA types suggest that additional CA systems involving additional light colors and molecular mechanisms will be revealed in coming years. Here we provide a comprehensive overview of the currently known types of CA and summarize the molecular details that underpin CA regulation.
Collapse
Affiliation(s)
- Joseph E Sanfilippo
- Department of Molecular Biology, Princeton University, Princeton, New Jersey 08540, USA;
| | - Laurence Garczarek
- Adaptation et Diversité en Milieu Marin (AD2M), Station Biologique de Roscoff, CNRS UMR 7144, Sorbonne Université, 29680 Roscoff, France; ,
| | - Frédéric Partensky
- Adaptation et Diversité en Milieu Marin (AD2M), Station Biologique de Roscoff, CNRS UMR 7144, Sorbonne Université, 29680 Roscoff, France; ,
| | - David M Kehoe
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA;
| |
Collapse
|
6
|
Chen Z, Jiang H, Gao K, Qiu B. Acclimation to low ultraviolet‐B radiation increases photosystem I abundance and cyclic electron transfer with enhanced photosynthesis and growth in the cyanobacterium
Nostoc sphaeroides. Environ Microbiol 2019; 22:183-197. [DOI: 10.1111/1462-2920.14836] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 10/18/2019] [Indexed: 01/24/2023]
Affiliation(s)
- Zhen Chen
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative BiologyCentral China Normal University Wuhan Hubei 430079 People's Republic of China
| | - Hai‐Bo Jiang
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative BiologyCentral China Normal University Wuhan Hubei 430079 People's Republic of China
| | - Kunshan Gao
- State Key Laboratory of Marine Environmental ScienceXiamen University Xiamen Fujian 361005 People's Republic of China
| | - Bao‐Sheng Qiu
- School of Life Sciences, Hubei Key Laboratory of Genetic Regulation and Integrative BiologyCentral China Normal University Wuhan Hubei 430079 People's Republic of China
| |
Collapse
|
7
|
Sun D, Zang X, Guo Y, Xiao D, Cao X, Liu Z, Zhang F, Jin Y, Shi J, Wang Z, Li R, Yangzong Z. Cloning of pcB and pcA Gene from Gracilariopsis lemaneiformis and Expression of a Fluorescent Phycocyanin in Heterologous Host. Genes (Basel) 2019; 10:genes10050322. [PMID: 31035529 PMCID: PMC6562448 DOI: 10.3390/genes10050322] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 04/16/2019] [Accepted: 04/18/2019] [Indexed: 11/16/2022] Open
Abstract
In order to study the assembly mechanism of phycocyanin in red algae, the apo-phycocyanin genes (pcB and pcA) were cloned from Gracilariopsis lemaneiformis. The full length of phycocyanin β-subunit (pcB) contained 519 nucleotides encoding a protein of 172 amino acids, and the full length of phycocyanin α-subunit(pcA) contained 489 nucleotides encoding a protein of 162 amino acids. Expression vector pACYCDuet-pcB-pcA was constructed and transformed into E. coli BL21 with pET-ho-pcyA (containing ho and pcyA gene to synthesize phycocyanobilin). The recombinant strain showed fluorescence activity, indicating the expression of optically active phycocyanin in E. coli. To further investigate the possible binding sites between phycocyanobilin and apo-phycocyanin, Cys-82 and Cys-153 of the β subunit and the Cys-84 of the α subunit were respectively mutated, and four mutants were obtained. All mutant strains had lower fluorescence intensity than the non-mutant strains, which indicated that these mutation sites could be the active binding sites between apo-phycocyanin and phycocyanobilin (PCB). This research provides a supplement for the comprehensive understanding of the assembly mechanism of optically active phycocyanin in red algae.
Collapse
Affiliation(s)
- Deguang Sun
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Xiaonan Zang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Yalin Guo
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Dongfang Xiao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Xuexue Cao
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Zhu Liu
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Feng Zhang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Yuming Jin
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Jiawei Shi
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Zhendong Wang
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Rui Li
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| | - Zhaxi Yangzong
- Key Laboratory of Marine Genetics and Breeding, Ministry of Education, Ocean University of China, Qingdao 266003, Shandong, China.
| |
Collapse
|
8
|
Gaignard C, Gargouch N, Dubessay P, Delattre C, Pierre G, Laroche C, Fendri I, Abdelkafi S, Michaud P. New horizons in culture and valorization of red microalgae. Biotechnol Adv 2018; 37:193-222. [PMID: 30500354 DOI: 10.1016/j.biotechadv.2018.11.014] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Revised: 11/26/2018] [Accepted: 11/26/2018] [Indexed: 01/16/2023]
Abstract
Research on marine microalgae has been abundantly published and patented these last years leading to the production and/or the characterization of some biomolecules such as pigments, proteins, enzymes, biofuels, polyunsaturated fatty acids, enzymes and hydrocolloids. This literature focusing on metabolic pathways, structural characterization of biomolecules, taxonomy, optimization of culture conditions, biorefinery and downstream process is often optimistic considering the valorization of these biocompounds. However, the accumulation of knowledge associated with the development of processes and technologies for biomass production and its treatment has sometimes led to success in the commercial arena. In the history of the microalgae market, red marine microalgae are well positioned particularly for applications in the field of high value pigment and hydrocolloid productions. This review aims to establish the state of the art of the diversity of red marine microalgae, the advances in characterization of their metabolites and the developments of bioprocesses to produce this biomass.
Collapse
Affiliation(s)
- Clement Gaignard
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Nesrine Gargouch
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France; Laboratoire de Biotechnologies Végétales appliquées à l'amélioration des cultures, Life Sciences Department, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Pascal Dubessay
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Cedric Delattre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Guillaume Pierre
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Celine Laroche
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France
| | - Imen Fendri
- Laboratoire de Biotechnologies Végétales appliquées à l'amélioration des cultures, Life Sciences Department, Faculty of Sciences of Sfax, University of Sfax, Sfax, Tunisia
| | - Slim Abdelkafi
- Unité de Biotechnologie des Algues, Biological Engineering Department, National School of Engineers of Sfax, University of Sfax, Sfax, Tunisia
| | - Philippe Michaud
- CNRS, SIGMA Clermont, Institut Pascal, Université Clermont Auvergne, F-63000 Clermont-Ferrand, France.
| |
Collapse
|
9
|
Gautam R, Petritis SJ, Astashkin AV, Tomat E. Paramagnetism and Fluorescence of Zinc(II) Tripyrrindione: A Luminescent Radical Based on a Redox-Active Biopyrrin. Inorg Chem 2018; 57:15240-15246. [PMID: 30418755 DOI: 10.1021/acs.inorgchem.8b02532] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability of bilins and other biopyrrins to form fluorescent zinc complexes has been known for more than a century; however, the exact identity of the emissive species remains uncertain in many cases. Herein, we characterize the hitherto elusive zinc complex of tripyrrin-1,14-dione, an analogue of several orange urinary pigments. As previously observed for its Pd(II), Cu(II), and Ni(II) complexes, tripyrrindione binds Zn(II) as a dianionic radical and forms a paramagnetic complex carrying an unpaired electron on the ligand π-system. This species is stable at room temperature and undergoes quasi-reversible ligand-based redox chemistry. Although the complex is isolated as a coordination dimer in the solid state, optical absorption and electron paramagnetic resonance spectroscopic studies indicate that the monomer is prevalent in a tetrahydrofuran solution. The paramagnetic Zn(II) tripyrrindione complex is brightly fluorescent (λabs = 599 nm, λem = 644 nm, ΦF = 0.23 in THF), and its study provides a molecular basis for the observation, made over several decades since the 1930s, of fluorescent behavior of tripyrrindione pigments in the presence of zinc salts. The zinc-bound tripyrrindione radical is thus a new addition to the limited number of stable radicals that are fluorescent at room temperature.
Collapse
Affiliation(s)
- Ritika Gautam
- Department of Chemistry and Biochemistry , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Steven J Petritis
- Department of Chemistry and Biochemistry , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Andrei V Astashkin
- Department of Chemistry and Biochemistry , The University of Arizona , Tucson , Arizona 85721 , United States
| | - Elisa Tomat
- Department of Chemistry and Biochemistry , The University of Arizona , Tucson , Arizona 85721 , United States
| |
Collapse
|
10
|
Sjaastad FV, Condotta SA, Kotov JA, Pape KA, Dail C, Danahy DB, Kucaba TA, Tygrett LT, Murphy KA, Cabrera-Perez J, Waldschmidt TJ, Badovinac VP, Griffith TS. Polymicrobial Sepsis Chronic Immunoparalysis Is Defined by Diminished Ag-Specific T Cell-Dependent B Cell Responses. Front Immunol 2018; 9:2532. [PMID: 30429857 PMCID: PMC6220049 DOI: 10.3389/fimmu.2018.02532] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/15/2018] [Indexed: 12/30/2022] Open
Abstract
Immunosuppression is one hallmark of sepsis, decreasing the host response to the primary septic pathogens and/or secondary nosocomial infections. CD4 T cells and B cells are among the array of immune cells that experience reductions in number and function during sepsis. “Help” from follicular helper (Tfh) CD4 T cells to B cells is needed for productive and protective humoral immunity, but there is a paucity of data defining the effect of sepsis on a primary CD4 T cell-dependent B cell response. Using the cecal ligation and puncture (CLP) mouse model of sepsis induction, we observed reduced antibody production in mice challenged with influenza A virus or TNP-KLH in alum early (2 days) and late (30 days) after CLP surgery compared to mice subjected to sham surgery. To better understand how these CD4 T cell-dependent B cell responses were altered by a septic event, we immunized mice with a Complete Freund's Adjuvant emulsion containing the MHC II-restricted peptide 2W1S56−68 coupled to the fluorochrome phycoerythrin (PE). Immunization with 2W1S-PE/CFA results in T cell-dependent B cell activation, giving us the ability to track defined populations of antigen-specific CD4 T cells and B cells responding to the same immunogen in the same mouse. Compared to sham mice, differentiation and class switching in PE-specific B cells were blunted in mice subjected to CLP surgery. Similarly, mice subjected to CLP had reduced expansion of 2W1S-specific T cells and Tfh differentiation after immunization. Our data suggest CLP-induced sepsis impacts humoral immunity by affecting the number and function of both antigen-specific B cells and CD4 Tfh cells, further defining the period of chronic immunoparalysis after sepsis induction.
Collapse
Affiliation(s)
- Frances V Sjaastad
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN, United States
| | | | - Jessica A Kotov
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN, United States
| | - Kathryn A Pape
- Department of Microbiology and Immunology, University of Minnesota, Minneapolis, MN, United States
| | - Cody Dail
- Medical Student Summer Research Program in Infection and Immunity, University of Minnesota, Minneapolis, MN, United States
| | - Derek B Danahy
- Department of Pathology, University of Iowa, Iowa City, IA, United States.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States
| | - Tamara A Kucaba
- Department of Urology, University of Minnesota, Minneapolis, MN, United States
| | - Lorraine T Tygrett
- Department of Pathology, University of Iowa, Iowa City, IA, United States
| | - Katherine A Murphy
- Department of Urology, University of Minnesota, Minneapolis, MN, United States
| | - Javier Cabrera-Perez
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN, United States.,Medical Scientist Training Program, University of Minnesota, Minneapolis, MN, United States
| | | | - Vladimir P Badovinac
- Department of Pathology, University of Iowa, Iowa City, IA, United States.,Interdisciplinary Graduate Program in Immunology, University of Iowa, Iowa City, IA, United States.,Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, United States
| | - Thomas S Griffith
- Microbiology, Immunology, and Cancer Biology Ph.D. Program, University of Minnesota, Minneapolis, MN, United States.,Department of Urology, University of Minnesota, Minneapolis, MN, United States.,Center for Immunology, University of Minnesota, Minneapolis, MN, United States.,Masonic Cancer Center, University of Minnesota, Minneapolis, MN, United States.,Minneapolis VA Health Care System, Minneapolis, MN, United States
| |
Collapse
|
11
|
Soitamo A, Havurinne V, Tyystjärvi E. Photoinhibition in marine picocyanobacteria. PHYSIOLOGIA PLANTARUM 2017; 161:97-108. [PMID: 28370227 DOI: 10.1111/ppl.12571] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 01/19/2017] [Accepted: 02/22/2017] [Indexed: 05/28/2023]
Abstract
Marine Synechococcus and Prochlorococcus cyanobacteria have different antenna compositions although they are genetically near to each other, and different strains thrive in very different illumination conditions. We measured growth and photoinhibition of PSII in two low-light and one high-light Prochlorococcus strains and in one Synechococcus strain. All strains were found to be able to shortly utilize moderate or even high light, but the low-light strains bleached rapidly in moderate light. Measurements of photoinhibition in the presence of the antibiotic lincomycin showed that a low-light Prochlorococcus strain was more sensitive than a high-light strain and both were more sensitive than the marine Synechococcus. The action spectrum of photoinhibition showed an increase from blue to ultraviolet wavelengths in all strains, suggesting contribution of manganese absorption to photoinhibition, but blue light caused less photoinhibition in marine cyanobacteria than expected on the basis of earlier results from plants and cyanobacteria. The visible-light part of the action spectrum resembled the absorption spectrum of the organism, suggesting that photosynthetic antenna pigments, especially divinyl chlorophylls, have a more important role as photoreceptors of visible-light photoinhibition in marine cyanobacteria than in other photoautotrophs.
Collapse
Affiliation(s)
- Arto Soitamo
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Vesa Havurinne
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| | - Esa Tyystjärvi
- Department of Biochemistry/Molecular Plant Biology, University of Turku, Turku, Finland
| |
Collapse
|
12
|
Nies F, Wörner S, Wunsch N, Armant O, Sharma V, Hesselschwerdt A, Falk F, Weber N, Weiß J, Trautmann A, Posten C, Prakash T, Lamparter T. Characterization of Phormidium lacuna strains from the North Sea and the Mediterranean Sea for biotechnological applications. Process Biochem 2017. [DOI: 10.1016/j.procbio.2017.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
13
|
Murphy CD, Roodvoets MS, Austen EJ, Dolan A, Barnett A, Campbell DA. Photoinactivation of Photosystem II in Prochlorococcus and Synechococcus. PLoS One 2017; 12:e0168991. [PMID: 28129341 PMCID: PMC5271679 DOI: 10.1371/journal.pone.0168991] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Accepted: 12/10/2016] [Indexed: 01/15/2023] Open
Abstract
The marine picocyanobacteria Synechococcus and Prochlorococcus numerically dominate open ocean phytoplankton. Although evolutionarily related they are ecologically distinct, with different strategies to harvest, manage and exploit light. We grew representative strains of Synechococcus and Prochlorococcus and tracked their susceptibility to photoinactivation of Photosystem II under a range of light levels. As expected blue light provoked more rapid photoinactivation than did an equivalent level of red light. The previous growth light level altered the susceptibility of Synechococcus, but not Prochlorococcus, to this photoinactivation. We resolved a simple linear pattern when we expressed the yield of photoinactivation on the basis of photons delivered to Photosystem II photochemistry, plotted versus excitation pressure upon Photosystem II, the balance between excitation and downstream metabolism. A high excitation pressure increases the generation of reactive oxygen species, and thus increases the yield of photoinactivation of Photosystem II. Blue photons, however, retained a higher baseline photoinactivation across a wide range of excitation pressures. Our experiments thus uncovered the relative influences of the direct photoinactivation of Photosystem II by blue photons which dominates under low to moderate blue light, and photoinactivation as a side effect of reactive oxygen species which dominates under higher excitation pressure. Synechococcus enjoyed a positive metabolic return upon the repair or the synthesis of a Photosystem II, across the range of light levels we tested. In contrast Prochlorococcus only enjoyed a positive return upon synthesis of a Photosystem II up to 400 μmol photons m-2 s-1. These differential cost-benefits probably underlie the distinct photoacclimation strategies of the species.
Collapse
Affiliation(s)
- Cole D. Murphy
- Biochemistry and Chemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Mitchell S. Roodvoets
- Biochemistry and Chemistry, Mount Allison University, Sackville, New Brunswick, Canada
| | - Emily J. Austen
- Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Allison Dolan
- Biology, Mount Allison University, Sackville, New Brunswick, Canada
| | - Audrey Barnett
- Michigan Technological University, Houghton, Michigan, United States of America
| | | |
Collapse
|
14
|
Ledermann B, Aras M, Frankenberg-Dinkel N. Biosynthesis of Cyanobacterial Light-Harvesting Pigments and Their Assembly into Phycobiliproteins. MODERN TOPICS IN THE PHOTOTROPHIC PROKARYOTES 2017:305-340. [DOI: 10.1007/978-3-319-51365-2_9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
15
|
Puxty RJ, Millard AD, Evans DJ, Scanlan DJ. Shedding new light on viral photosynthesis. PHOTOSYNTHESIS RESEARCH 2015; 126:71-97. [PMID: 25381655 DOI: 10.1007/s11120-014-0057-x] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2014] [Accepted: 10/29/2014] [Indexed: 06/04/2023]
Abstract
Viruses infecting the environmentally important marine cyanobacteria Prochlorococcus and Synechococcus encode 'auxiliary metabolic genes' (AMGs) involved in the light and dark reactions of photosynthesis. Here, we discuss progress on the inventory of such AMGs in the ever-increasing number of viral genome sequences as well as in metagenomic datasets. We contextualise these gene acquisitions with reference to a hypothesised fitness gain to the phage. We also report new evidence with regard to the sequence and predicted structural properties of viral petE genes encoding the soluble electron carrier plastocyanin. Viral copies of PetE exhibit extensive modifications to the N-terminal signal peptide and possess several novel residues in a region responsible for interaction with redox partners. We also highlight potential knowledge gaps in this field and discuss future opportunities to discover novel phage-host interactions involved in the photosynthetic process.
Collapse
Affiliation(s)
- Richard J Puxty
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
- School of Biological Sciences, University of California, Irvine, CA 92697, USA
| | - Andrew D Millard
- Warwick Medical School, University of Warwick, Coventry, CV4 7AL, UK
| | - David J Evans
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK
| | - David J Scanlan
- School of Life Sciences, University of Warwick, Coventry, CV4 7AL, UK.
| |
Collapse
|
16
|
|
17
|
Rastogi RP, Sonani RR, Patel AB, Madamwar D. Occurrence of a functionally stable photoharvesting single peptide allophycocyanin α-subunit (16.4 kDa) in the cyanobacterium Nostoc sp. R76DM. RSC Adv 2015. [DOI: 10.1039/c5ra14508b] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We report the occurrence of a functionally stable single peptide APC α-subunit in cyanobacterium Nostoc sp. R76DM.
Collapse
Affiliation(s)
- Rajesh P. Rastogi
- BRD School of Biosciences
- Sardar Patel University
- Vallabh Vidyanagar 388120
- India
| | - Ravi R. Sonani
- BRD School of Biosciences
- Sardar Patel University
- Vallabh Vidyanagar 388120
- India
| | - Avani B. Patel
- BRD School of Biosciences
- Sardar Patel University
- Vallabh Vidyanagar 388120
- India
| | - Datta Madamwar
- BRD School of Biosciences
- Sardar Patel University
- Vallabh Vidyanagar 388120
- India
| |
Collapse
|
18
|
Sonani RR, Rastogi RP, Joshi M, Madamwar D. A stable and functional single peptide phycoerythrin (15.45 kDa) from Lyngbya sp. A09DM. Int J Biol Macromol 2014; 74:29-35. [PMID: 25485942 DOI: 10.1016/j.ijbiomac.2014.11.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Revised: 11/25/2014] [Accepted: 11/27/2014] [Indexed: 12/23/2022]
Abstract
A functional and stable truncated-phycoerythrin (T-PE) was found as a result of spontaneous in vitro truncation. Truncation was noticed to occur during storage of purified native-phycoerythrin (N-PE) isolated from Lyngbya sp. A09DM. SDS and native-PAGE analysis revealed the truncation of N-PE, containing α (19.0 kDa)--and β (21.5 kDa)--subunits to the only single peptide of ∼15.45 kDa (T-PE). The peptide mass fingerprinting (PMF) and MS/MS analysis indicated that T-PE is the part of α-subunit of N-PE. UV-visible absorption peak of N-PE was found to split into two peaks (540 and 565 nm) after truncation, suggesting the alterations in its folded state. The emission spectra of both N-PE and T-PE show the emission band centered at 581 nm (upon excitation at 559 nm) suggested the maintenance of fluorescence even after significant truncation. Urea-induced denaturation and Gibbs-free energy (ΔGD°) calculations suggested that the folding and structural stability of T-PE was almost similar to that of N-PE. Presented bunch of evidences revealed the truncation in N-PE without perturbing its folding, structural stability and functionality (fluorescence), and thereby suggested its applicability in fluorescence based biomedical techniques where smaller fluorescence molecules are more preferable.
Collapse
Affiliation(s)
- Ravi Raghav Sonani
- BRD School of Biosciences, Sardar Patel University, Vadtal Road, Satellite Campus, Post Box No. 39, Vallabh Vidyanagar 388120, Gujarat, India.
| | - Rajesh Prasad Rastogi
- BRD School of Biosciences, Sardar Patel University, Vadtal Road, Satellite Campus, Post Box No. 39, Vallabh Vidyanagar 388120, Gujarat, India.
| | - Meghna Joshi
- BRD School of Biosciences, Sardar Patel University, Vadtal Road, Satellite Campus, Post Box No. 39, Vallabh Vidyanagar 388120, Gujarat, India
| | - Datta Madamwar
- BRD School of Biosciences, Sardar Patel University, Vadtal Road, Satellite Campus, Post Box No. 39, Vallabh Vidyanagar 388120, Gujarat, India.
| |
Collapse
|
19
|
Takabayashi A, Kadoya R, Kuwano M, Kurihara K, Ito H, Tanaka R, Tanaka A. Protein co-migration database (PCoM -DB) for Arabidopsis thylakoids and Synechocystis cells. SPRINGERPLUS 2013; 2:148. [PMID: 23667806 PMCID: PMC3647082 DOI: 10.1186/2193-1801-2-148] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2013] [Accepted: 03/25/2013] [Indexed: 11/22/2022]
Abstract
Protein-protein interactions are critical for most cellular processes; however, many remain to be identified. Here, to comprehensively identify protein complexes in photosynthetic organisms, we applied the recently developed approach of blue native PAGE (BN-PAGE) coupled with LC-MS/MS to the thylakoid proteins of Arabidopsis thaliana and the whole cell proteins of whole cell proteins of Synechocystis sp. PCC 6803. We identified 245 proteins from the purified Arabidopsis thylakoid membranes and 1,458 proteins from the whole cells of Synechocystis using the method. Next, we generated protein migration profiles that were assessed by plotting the label-free estimations of protein abundances versus migration distance in BN-PAGE. Comparisons between the migration profiles of the major photosynthetic complexes and their band patterns showed that the protein migration profiles were well correlated. Thus, the protein migration profiles allowed us to estimate the molecular size of each protein complex and to identify co-migrated proteins with the proteins of interest by determining the protein pairs that contained peaks in the same gel slice. Finally, we built the protein co-migration database for photosynthetic organisms (PCoM-DB: http://pcomdb.lowtem.hokudai.ac.jp/proteins/top) to make our data publicly accessible online, which stores the analyzed data with a user-friendly interface to compare the migration profiles of proteins of interest. It helps users to find unidentified protein complexes in Arabidopsis thylakoids and Synechocystis cells. The accumulation of the data from the BN-PAGE coupled with LC-MS/MS should reveal unidentified protein complexes and should aid in understanding the adaptation and the evolution of photosynthetic organisms.
Collapse
Affiliation(s)
- Atsushi Takabayashi
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo, 060-0819 Japan
- Japan Core Research for Evolutionary Science and Technology (CREST), Sapporo, Japan
| | - Ryosuke Kadoya
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo, 060-0819 Japan
| | - Masayoshi Kuwano
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo, 060-0819 Japan
| | - Katsunori Kurihara
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo, 060-0819 Japan
| | - Hisashi Ito
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo, 060-0819 Japan
- Japan Core Research for Evolutionary Science and Technology (CREST), Sapporo, Japan
| | - Ryouichi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo, 060-0819 Japan
- Japan Core Research for Evolutionary Science and Technology (CREST), Sapporo, Japan
| | - Ayumi Tanaka
- Institute of Low Temperature Science, Hokkaido University, N19 W8 Kita-Ku, Sapporo, 060-0819 Japan
- Japan Core Research for Evolutionary Science and Technology (CREST), Sapporo, Japan
| |
Collapse
|
20
|
Takaichi S, Mochimaru M, Uchida H, Murakami A, Hirose E, Maoka T, Tsuchiya T, Mimuro M. Opposite chirality of α-carotene in unusual cyanobacteria with unique chlorophylls, Acaryochloris and Prochlorococcus. PLANT & CELL PHYSIOLOGY 2012; 53:1881-8. [PMID: 22968452 DOI: 10.1093/pcp/pcs126] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Among all photosynthetic and non-photosynthetic prokaryotes, only cyanobacterial species belonging to the genera Acaryochloris and Prochlorococcus have been reported to synthesize α-carotene. We reviewed the carotenoids, including their chirality, in unusual cyanobacteria containing diverse Chls. Predominantly Chl d-containing Acaryochloris (two strains) and divinyl-Chl a and divinyl-Chl b-containing Prochlorococcus (three strains) contained β-carotene and zeaxanthin as well as α-carotene, whereas Chl b-containing Prochlorothrix (one strain) and Prochloron (three isolates) contained only β-carotene and zeaxanthin but no α-carotene as in other cyanobacteria. Thus, the capability to synthesize α-carotene seemed to have been acquired only by Acaryochloris and Prochlorococcus. In addition, we unexpectedly found that α-carotene in both cyanobacteria had the opposite chirality at C-6': (6'S)-chirality in Acaryochloris and normal (6'R)-chirality in Prochlorococcus, as reported in some green algae and land plants. The results represent the first evidence for the natural occurrence and biosynthesis of (6'S)-α-carotene. All the zeaxanthins in these species were of the usual (3R,3'R)-chirality. Therefore, based on the identification of the carotenoids and genome sequence data, we propose a biosynthetic pathway for the carotenoids, particularly α-carotene, including the participating genes and enzymes.
Collapse
Affiliation(s)
- Shinichi Takaichi
- Department of Biology, Nippon Medical School, Kawasaki, 211-0063 Japan.
| | | | | | | | | | | | | | | |
Collapse
|