1
|
Wordeman L, Vicente JJ. Microtubule Targeting Agents in Disease: Classic Drugs, Novel Roles. Cancers (Basel) 2021; 13:5650. [PMID: 34830812 PMCID: PMC8616087 DOI: 10.3390/cancers13225650] [Citation(s) in RCA: 68] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 11/09/2021] [Accepted: 11/10/2021] [Indexed: 12/12/2022] Open
Abstract
Microtubule-targeting agents (MTAs) represent one of the most successful first-line therapies prescribed for cancer treatment. They interfere with microtubule (MT) dynamics by either stabilizing or destabilizing MTs, and in culture, they are believed to kill cells via apoptosis after eliciting mitotic arrest, among other mechanisms. This classical view of MTA therapies persisted for many years. However, the limited success of drugs specifically targeting mitotic proteins, and the slow growing rate of most human tumors forces a reevaluation of the mechanism of action of MTAs. Studies from the last decade suggest that the killing efficiency of MTAs arises from a combination of interphase and mitotic effects. Moreover, MTs have also been implicated in other therapeutically relevant activities, such as decreasing angiogenesis, blocking cell migration, reducing metastasis, and activating innate immunity to promote proinflammatory responses. Two key problems associated with MTA therapy are acquired drug resistance and systemic toxicity. Accordingly, novel and effective MTAs are being designed with an eye toward reducing toxicity without compromising efficacy or promoting resistance. Here, we will review the mechanism of action of MTAs, the signaling pathways they affect, their impact on cancer and other illnesses, and the promising new therapeutic applications of these classic drugs.
Collapse
Affiliation(s)
| | - Juan Jesus Vicente
- Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle, WA 98195, USA;
| |
Collapse
|
2
|
Parker AL, Teo WS, McCarroll JA, Kavallaris M. An Emerging Role for Tubulin Isotypes in Modulating Cancer Biology and Chemotherapy Resistance. Int J Mol Sci 2017; 18:ijms18071434. [PMID: 28677634 PMCID: PMC5535925 DOI: 10.3390/ijms18071434] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 06/24/2017] [Accepted: 06/27/2017] [Indexed: 12/19/2022] Open
Abstract
Tubulin proteins, as components of the microtubule cytoskeleton perform critical cellular functions throughout all phases of the cell cycle. Altered tubulin isotype composition of microtubules is emerging as a feature of aggressive and treatment refractory cancers. Emerging evidence highlighting a role for tubulin isotypes in differentially influencing microtubule behaviour and broader functional networks within cells is illuminating a complex role for tubulin isotypes regulating cancer biology and chemotherapy resistance. This review focuses on the role of different tubulin isotypes in microtubule dynamics as well as in oncogenic changes that provide a survival or proliferative advantage to cancer cells within the tumour microenvironment and during metastatic processes. Consideration of the role of tubulin isotypes beyond their structural function will be essential to improving the current clinical use of tubulin-targeted chemotherapy agents and informing the development of more effective cancer therapies.
Collapse
Affiliation(s)
- Amelia L Parker
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Wee Siang Teo
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Joshua A McCarroll
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Maria Kavallaris
- Tumour Biology and Targeting, Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW 2031, Australia.
- Australian Centre for NanoMedicine, ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of New South Wales, Sydney, NSW 2052, Australia.
| |
Collapse
|
3
|
Sudo H, Nakajima K. The mitotic tensegrity guardian tau protects mammary epithelia from katanin-like1-induced aneuploidy. Oncotarget 2016; 7:53712-53734. [PMID: 27447563 PMCID: PMC5288216 DOI: 10.18632/oncotarget.10728] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Accepted: 06/16/2016] [Indexed: 11/25/2022] Open
Abstract
The microtubule associated-protein tau has been identified as an effective positive prognostic indicator in breast cancer. To explore the physiological function of tau in early carcinogenesis, endogenous tau was knocked down in primary cultured human mammary epithelial cells. This resulted in chromosome-bridging during anaphase followed by micronucleation, both of which were suppressed by a further katanin-like1 knockdown. We also detected that the exogenously expressed katanin-like1 induction of cellular transformation is prevented by exogenous tau in rat fibroblasts. The mutant katanin-like1 (L123V) identified in breast cancer showed an increase in this transformation capacity as well as microtubule severing activity resistant to tau. The tau knockdown resulted in a loss of the kinetochore fibers on which tau is normally localized. This physical fragility was also observed in isolated tau-knockdown mitotic spindles, supporting the relevance of microtubule damage to the onset of transformation. The karyotyping of tau-knockdown cells showed increased frequency of loss of one X chromosome, further suggesting the involvement of tau in breast tumorigenesis. We propose that tau may contribute to tumor progression by protecting spindle microtubules from excess severing by katanin-like1. We also present data indicating that the microtubule-binding octapeptide NAP is a candidate modifier against the tau deficiency in tumor cells.
Collapse
Affiliation(s)
- Haruka Sudo
- Department of Biochemistry, The Nippon Dental University School of Life Dentistry at Tokyo, Chiyoda-ku, Tokyo 102-8159, Japan.,Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| | - Kazunori Nakajima
- Department of Anatomy, Keio University School of Medicine, Shinjuku-ku, Tokyo 160-8582, Japan
| |
Collapse
|
4
|
Foudah D, Monfrini M, Donzelli E, Niada S, Brini AT, Orciani M, Tredici G, Miloso M. Expression of neural markers by undifferentiated mesenchymal-like stem cells from different sources. J Immunol Res 2014; 2014:987678. [PMID: 24741639 PMCID: PMC3987801 DOI: 10.1155/2014/987678] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2013] [Accepted: 01/15/2014] [Indexed: 01/09/2023] Open
Abstract
The spontaneous expression of neural markers, already demonstrated in bone marrow (BM) mesenchymal stem cells (MSCs), has been considered as evidence of the MSCs' predisposition to differentiate toward neural lineages, supporting their use in stem cell-based therapy for neural repair. In this study we have evaluated, by immunocytochemistry, immunoblotting, and flow cytometry experiments, the expression of neural markers in undifferentiated MSCs from different sources: human adipose stem cells (hASCs), human skin-derived mesenchymal stem cells (hS-MSCs), human periodontal ligament stem cells (hPDLSCs,) and human dental pulp stem cells (hDPSCs). Our results demonstrate that the neuronal markers β III-tubulin and NeuN, unlike other evaluated markers, are spontaneously expressed by a very high percentage of undifferentiated hASCs, hS-MSCs, hPDLSCs, and hDPSCs. Conversely, the neural progenitor marker nestin is expressed only by a high percentage of undifferentiated hPDLSCs and hDPSCs. Our results suggest that the expression of β III-tubulin and NeuN could be a common feature of stem cells and not exclusive to neuronal cells. This could result in a reassessment of the use of β III-tubulin and NeuN as the only evidence proving neuronal differentiation. Further studies will be necessary to elucidate the relevance of the spontaneous expression of these markers in stem cells.
Collapse
Affiliation(s)
- Dana Foudah
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900 Monza, Italy
| | - Marianna Monfrini
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900 Monza, Italy
| | - Elisabetta Donzelli
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900 Monza, Italy
| | - Stefania Niada
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milano, Italy
- IRCCS Galeazzi Orthopaedic Institute, 20161 Milano, Italy
| | - Anna T. Brini
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20129 Milano, Italy
- IRCCS Galeazzi Orthopaedic Institute, 20161 Milano, Italy
| | - Monia Orciani
- Department of Clinical and Molecular Sciences—Histology, University Politecnica delle Marche, 60126 Ancona, Italy
| | - Giovanni Tredici
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900 Monza, Italy
| | - Mariarosaria Miloso
- Department of Surgery and Translational Medicine, University of Milano-Bicocca, 20900 Monza, Italy
| |
Collapse
|
5
|
Martínez-Díez M, Guillén-Navarro MJ, Pera B, Bouchet BP, Martínez-Leal JF, Barasoain I, Cuevas C, Andreu JM, García-Fernández LF, Díaz JF, Avilés P, Galmarini CM. PM060184, a new tubulin binding agent with potent antitumor activity including P-glycoprotein over-expressing tumors. Biochem Pharmacol 2014; 88:291-302. [PMID: 24486569 DOI: 10.1016/j.bcp.2014.01.026] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/20/2014] [Accepted: 01/22/2014] [Indexed: 01/05/2023]
Abstract
PM060184 belongs to a new family of tubulin-binding agents originally isolated from the marine sponge Lithoplocamia lithistoides. This compound is currently produced by total synthesis and is under evaluation in clinical studies in patients with advanced cancer diseases. It was recently published that PM060184 presents the highest known affinities among tubulin-binding agents, and that it targets tubulin dimers at a new binding site. Here, we show that PM060184 has a potent antitumor activity in a panel of different tumor xenograft models. Moreover, PM060184 is able to overcome P-gp mediated resistance in vivo, an effect that could be related to its high binding affinity for tubulin. To gain insight into the mechanism responsible of the observed antitumor activity, we have characterized its molecular and cellular effects. We have observed that PM060184 is an inhibitor of tubulin polymerization that reduces microtubule dynamicity in cells by 59%. Interestingly, PM060184 suppresses microtubule shortening and growing at a similar extent. This action affects cells in interphase and mitosis. In the first case, the compound induces a disorganization and fragmentation of the microtubule network and the inhibition of cell migration. In the second case, it induces the appearance of multipolar mitosis and lagging chromosomes at the metaphase plate. These effects correlate with prometaphase arrest and induction of caspase-dependent apoptosis or appearance of cells in a multinucleated interphase-like state unrelated to classical apoptosis pathways. Taken together, these results indicate that PM060184 represents a new tubulin binding agent with promising potential as an anticancer agent.
Collapse
Affiliation(s)
- Marta Martínez-Díez
- PharmaMar S.A., Avda de los Reyes 1, Polígono Industrial La Mina, Colmenar Viejo, 28770 Madrid, Spain
| | | | - Benet Pera
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | | | - Isabel Barasoain
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Carmen Cuevas
- PharmaMar S.A., Avda de los Reyes 1, Polígono Industrial La Mina, Colmenar Viejo, 28770 Madrid, Spain
| | - Jose M Andreu
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | | | - J Fernando Díaz
- Centro de Investigaciones Biológicas, CSIC, Ramiro de Maeztu 9, 28040 Madrid, Spain
| | - Pablo Avilés
- PharmaMar S.A., Avda de los Reyes 1, Polígono Industrial La Mina, Colmenar Viejo, 28770 Madrid, Spain
| | - Carlos M Galmarini
- PharmaMar S.A., Avda de los Reyes 1, Polígono Industrial La Mina, Colmenar Viejo, 28770 Madrid, Spain.
| |
Collapse
|