1
|
Liu C, Huang X, Kong J, Li X, Wang Y, Zhang F, Duan J. Podophyllotoxin mediates hepatic toxicity via the C5a/C5aR/ROS/NLRP3 and cGMP/PKG/mTOR axis in rats based on toxicological evidence chain (TEC) concept by phosphoproteomic analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117441. [PMID: 39644570 DOI: 10.1016/j.ecoenv.2024.117441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 11/23/2024] [Accepted: 11/28/2024] [Indexed: 12/09/2024]
Abstract
BACKGROUND Podophyllotoxin (PPT), a highly active compound extracted from the rhizome of Dysosma versipellis (DV), has been used as an effective anti-cancer drug clinically since the 1950s. It possesses various biological activities, including antiviral and antitumor effects. However, its clinical application is severely limited due to its hepatotoxicity, and the underlying mechanisms remain unclear. This study aims to elucidate the mechanisms of PPT-induced hepatotoxicity using tandem quality tag (TMT) based quantitative proteomics and phosphoproteomics, providing potential targets and directions for developing new therapeutic strategies to facilitate the safe and rational use of podophyllotoxin in clinical settings. METHODS We employed a comprehensive assessment of PPT-induced hepatotoxicity based on the Toxicology Evidence Chain (TEC) concept, originally proposed by our research group in 2018. This approach involves a tiered search for evidence of Harmful Ingredients Evidence (HIE), Injury Phenotype Evidence (IPE), Adverse Outcomes Evidence (AOE), and Toxic Events Evidence (TEE) during the development of PPT-induced hepatotoxicity, thereby constructing a guiding toxicology evidence chain. Sprague-Dawley (SD) rats were administered 20 mg/kg PPT for 4 consecutive days (HIE). Indicators such as hepatic function, oxidative stress, inflammatory factors, as well as the histopathology of liver tissue were evaluated to assess liver damage and synthetic function (AOE). Proteomics and phosphoproteomics were conducted to systematically assess PPT-induced hepatotoxicity at the level of modified proteins and verify the molecular mechanisms of key molecular pathways (TEE1). Furthermore, in vitro THLE-2 cell models were used in conjunction with CCK8, immunofluorescence, and ELISA assays to validate cytotoxicity and its underlying mechanisms (TEE2). RESULTS Our results showed that after 4 days of PPT administration at 20 mg/kg (HIE), serum levels of AST/ALT, TBA, TP, and ALB in SD rats were significantly increased (P < 0.05), indicating severe liver damage. SOD and T-AOC levels were significantly decreased (P < 0.05), suggesting an oxidative stress state. TNF-α levels were significantly elevated, while IL-10 and IL-3 levels were significantly reduced (P < 0.05), indicating strong activation of the inflammatory response in the liver. Histopathological examination revealed liver sinusoidal congestion in the liver tissue (AOE). Omics analysis revealed that hepatotoxicity primarily affected the complement-pyroptosis and cGMP-PKG-autophagy pathways. Western blot (WB) and RT-qPCR results showed significant upregulation of complement-pyroptosis pathway proteins (C5a, C5aR, NLRP3) and cGMP-PKG-autophagy pathway proteins (PKG, mTOR) in the PPT group (P < 0.05) (TEE1). In vitro cell experiments showed that PPT significantly reduced cell viability (P < 0.05) and increased the expression of proteins associated with pyroptosis and autophagy pathways, including ROS, NLRP3, PKG, and mTOR (P < 0.05) (TEE2). CONCLUSION PPT activates the complement system through the C5a/C5aR/ROS/NLRP3 pathway and induces the formation of inflammasomes, promoting pyroptosis. Simultaneously, PPT activates the cGMP-PKG pathway, inhibiting autophagy and further accelerating pyroptosis, ultimately leading to hepatotoxicity. In conclusion, this study comprehensively revealed the underlying mechanisms of PPT-induced hepatotoxicity using the TEC concept. This approach transforms fragmented toxicity indicators into systematic evidence of toxicity, presenting a hierarchical progression of toxicity evidence and avoiding data accumulation in natural drug toxicology. Our findings represent a significant breakthrough in the elucidation of the mechanisms of hepatotoxicity induced by podophyllotoxin.
Collapse
Affiliation(s)
- Chuanxin Liu
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Key Laboratory of Hereditary Rare Diseases of Health Commission of Henan Province, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China.
| | - Xiaobin Huang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Fangshan District, Beijing 102488, China.
| | - Jiao Kong
- Institute of Drug Metabolism and Pharmaceutical Analysis, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xuejiao Li
- Luoyang Key Laboratory of Clinical Multiomics and Translational Medicine, Key Laboratory of Hereditary Rare Diseases of Health Commission of Henan Province, Henan Key Laboratory of Rare Diseases, Endocrinology and Metabolism Center, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang 471003, China
| | - Yuming Wang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fangfang Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jiajia Duan
- Department of Clinical Laboratory, The First Affiliated Hospital, and College of Clinical Medicine of Henan University of Science and Technology, Luoyang, China.
| |
Collapse
|
2
|
Sen MG, Sanislav O, Fisher PR, Annesley SJ. The Multifaceted Interactions of Dictyostelium Atg1 with Mitochondrial Function, Endocytosis, Growth, and Development. Cells 2024; 13:1191. [PMID: 39056773 PMCID: PMC11274416 DOI: 10.3390/cells13141191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 07/04/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Autophagy is a degradative recycling process central to the maintenance of homeostasis in all eukaryotes. By ensuring the degradation of damaged mitochondria, it plays a key role in maintaining mitochondrial health and function. Of the highly conserved autophagy proteins, autophagy-related protein 1 (Atg1) is essential to the process. The involvement of these proteins in intracellular signalling pathways, including those involving mitochondrial function, are still being elucidated. Here the role of Atg1 was investigated in the simple model organism Dictyostelium discoideum using an atg1 null mutant and mutants overexpressing or antisense-inhibiting atg1. When evaluated against the well-characterised outcomes of mitochondrial dysfunction in this model, altered atg1 expression resulted in an unconventional set of phenotypic outcomes in growth, endocytosis, multicellular development, and mitochondrial homeostasis. The findings here show that Atg1 is involved in a tightly regulated signal transduction pathway coordinating energy-consuming processes such as cell growth and multicellular development, along with nutrient status and energy production. Furthermore, Atg1's effects on energy homeostasis indicate a peripheral ancillary role in the mitochondrial signalling network, with effects on energy balance rather than direct effects on electron transport chain function. Further research is required to tease out these complex networks. Nevertheless, this study adds further evidence to the theory that autophagy and mitochondrial signalling are not opposing but rather linked, yet strictly controlled, homeostatic mechanisms.
Collapse
Affiliation(s)
| | | | | | - Sarah Jane Annesley
- Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Bundoora, Melbourne 3086, Australia; (M.G.S.); (O.S.); (P.R.F.)
| |
Collapse
|
3
|
Xu Y, Liu W, Sun Z, Yu Y, Yang T, Lu X, Zhang G, Jiao J, Duan X. The two autophagy-related proteins 8a and 8b play distinct physiological roles in Drosophila. Genomics 2024; 116:110853. [PMID: 38701988 DOI: 10.1016/j.ygeno.2024.110853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 04/17/2024] [Accepted: 04/30/2024] [Indexed: 05/06/2024]
Abstract
Atg8 family proteins play crucial roles in autophagy to maintain cellular homeostasis. However, the physiological roles of Atg8 family proteins have not been systematically determined. In this study, we generated Atg8a and Atg8b (homologs of Atg8 in Drosophila melanogaster) knockout flies. We found that the loss of Atg8a affected autophagy and resulted in partial lethality, abnormal wings, decreased lifespan, and decreased climbing ability in flies. Furthermore, the loss of Atg8a resulted in reduced muscle integrity and the progressive degeneration of the neuron system. We also found that the phosphorylation at Ser88 of Atg8a is important for autophagy and neuronal integrity. The loss of Atg8b did not affect autophagy but induced male sterility in flies. Here, we take full advantage of the fly system to elucidate the physiological function of Atg8a and Atg8b in Drosophila.
Collapse
Affiliation(s)
- Yuchen Xu
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Wei Liu
- College of Basic Medicine, Xuzhou Medical University, Xuzhou 221004, China
| | - Zhaolin Sun
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yurun Yu
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Tianhao Yang
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Xirui Lu
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Guiqiang Zhang
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Jianwei Jiao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China.
| | - Xiuying Duan
- School of Life Sciences, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China.
| |
Collapse
|
4
|
Gerstenmaier L, Colasanti O, Behrens H, Kolonko M, Hammann C, Hagedorn M. Recruitment of both the ESCRT and autophagic machineries to ejecting Mycobacterium marinum. Mol Microbiol 2024; 121:385-393. [PMID: 37230756 DOI: 10.1111/mmi.15075] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 04/24/2023] [Accepted: 05/01/2023] [Indexed: 05/27/2023]
Abstract
Cytosolic Mycobacterium marinum are ejected from host cells such as macrophages or the amoeba Dictyostelium discoideum in a non-lytic fashion. As described previously, the autophagic machinery is recruited to ejecting bacteria and supports host cell integrity during egress. Here, we show that the ESCRT machinery is also recruited to ejecting bacteria, partially dependent on an intact autophagic pathway. As such, the AAA-ATPase Vps4 shows a distinct localization at the ejectosome structure in comparison to fluorescently tagged Vps32, Tsg101 and Alix. Along the bacterium engaged in ejection, ESCRT and the autophagic component Atg8 show partial colocalization. We hypothesize that both, the ESCRT and autophagic machinery localize to the bacterium as part of a membrane damage response, as well as part of a "frustrated autophagosome" that is unable to engulf the ejecting bacterium.
Collapse
Affiliation(s)
| | | | - Hannah Behrens
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Margot Kolonko
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | - Christian Hammann
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
- Health and Medical University, Potsdam, Germany
| | - Monica Hagedorn
- Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
- Ribogenetics Biochemistry Lab, Department of Life Sciences and Chemistry, Jacobs University Bremen gGmbH, Bremen, Germany
- Health and Medical University, Potsdam, Germany
| |
Collapse
|
5
|
Su P, Chen JG, Tang DH. Exercise against nonalcoholic fatty liver disease: Possible role and mechanism of lipophagy. Life Sci 2023; 327:121837. [PMID: 37301321 DOI: 10.1016/j.lfs.2023.121837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/25/2023] [Accepted: 06/05/2023] [Indexed: 06/12/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease worldwide. NAFLD is prevalent in about 30% of people worldwide. The lack of physical activity is considered as one of the risks for NAFLD, and approximately one-third of NAFLD patients hardly engage in physical activity. It is acknowledged that exercise is one of the optimal non-pharmacological methods for preventing and treating NAFLD. Different forms of exercise such as aerobic exercise, resistance exercise and even simply physical activity in a higher level can be beneficial in reducing liver lipid accumulation and disease progression for NAFLD patients. In NAFLD patients, exercise is helpful in lowering steatosis and enhancing liver function. The mechanisms underlying the prevention and treatment of NAFLD by exercise are various and complex. Current studies on the mechanisms have focused on the pro-lipolytic, anti-inflammatory, and antioxidant and lipophagy. Promotion of lipophagy is regarded as an important mechanism for prevention and improvement of NAFLD by exercise. Recent studies have investigated the above mechanism, yet the potential mechanism has not been completely elucidated. Thus, in this review, we cover the recent advances of exercise-promoted lipophagy in NAFLD treatment and prevention. Furthermore, given the fact that exercise activates SIRT1, we discuss the possible regulatory mechanisms of lipophagy by SIRT1 during exercise. These mechanisms need to be verified by further experimental studies.
Collapse
Affiliation(s)
- Pei Su
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| | - Jian-Gang Chen
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| | - Dong-Hui Tang
- Department of College of P.E. and Sport, Beijing Normal University, No. 19, Xinjiekouwai St, Haidian District, Beijing 100875, People's Republic of China.
| |
Collapse
|
6
|
Xiong Q, Feng R, Fischer S, Karow M, Stumpf M, Meßling S, Nitz L, Müller S, Clemen CS, Song N, Li P, Wu C, Eichinger L. Proteasomes of Autophagy-Deficient Cells Exhibit Alterations in Regulatory Proteins and a Marked Reduction in Activity. Cells 2023; 12:1514. [PMID: 37296637 PMCID: PMC10252828 DOI: 10.3390/cells12111514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 05/26/2023] [Indexed: 06/12/2023] Open
Abstract
Autophagy and the ubiquitin proteasome system are the two major processes for the clearance and recycling of proteins and organelles in eukaryotic cells. Evidence is accumulating that there is extensive crosstalk between the two pathways, but the underlying mechanisms are still unclear. We previously found that autophagy 9 (ATG9) and 16 (ATG16) proteins are crucial for full proteasomal activity in the unicellular amoeba Dictyostelium discoideum. In comparison to AX2 wild-type cells, ATG9-and ATG16- cells displayed a 60%, and ATG9-/16- cells a 90%, decrease in proteasomal activity. Mutant cells also showed a significant increase in poly-ubiquitinated proteins and contained large ubiquitin-positive protein aggregates. Here, we focus on possible reasons for these results. Reanalysis of published tandem mass tag-based quantitative proteomic results of AX2, ATG9-, ATG16-, and ATG9-/16- cells revealed no change in the abundance of proteasomal subunits. To identify possible differences in proteasome-associated proteins, we generated AX2 wild-type and ATG16- cells expressing the 20S proteasomal subunit PSMA4 as GFP-tagged fusion protein, and performed co-immunoprecipitation experiments followed by mass spectrometric analysis. The results revealed no significant differences in the abundance of proteasomes between the two strains. However, we found enrichment as well as depletion of proteasomal regulators and differences in the ubiquitination of associated proteins for ATG16-, as compared to AX2 cells. Recently, proteaphagy has been described as a means to replace non-functional proteasomes. We propose that autophagy-deficient D. discoideum mutants suffer from inefficient proteaphagy, which results in the accumulation of modified, less-active, and also of inactive, proteasomes. As a consequence, these cells exhibit a dramatic decrease in proteasomal activity and deranged protein homeostasis.
Collapse
Affiliation(s)
- Qiuhong Xiong
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Rong Feng
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Sarah Fischer
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Malte Karow
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Maria Stumpf
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Susanne Meßling
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Leonie Nitz
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Stefan Müller
- CECAD Proteomics Facility, Center for Molecular Medicine Cologne, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 26, 50931 Cologne, Germany
| | - Christoph S. Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ning Song
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Ping Li
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Changxin Wu
- Shanxi Provincial Key Laboratory of Medical Molecular Cell Biology, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institutes of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China
| | - Ludwig Eichinger
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| |
Collapse
|
7
|
Guo Y, Jin S, Song D, Yang T, Hu J, Hu X, Han Q, Zhao J, Guo Z, Wang X. Amlexanox-modified platinum(IV) complex triggers apoptotic and autophagic bimodal death of cancer cells. Eur J Med Chem 2022; 242:114691. [PMID: 36029563 DOI: 10.1016/j.ejmech.2022.114691] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/10/2022] [Accepted: 08/13/2022] [Indexed: 12/09/2022]
Abstract
Platinum(IV) prodrugs c,c,t-[PtCl2(NH3)2(OH)(amlexanox)] (MAP) and c,c,t-[PtCl2(NH3)2(amlexanox)2] (DAP) were synthesized by reacting amlexanox with oxoplatin and characterized by NMR, HR-MS, HPLC, and elemental analysis. The complexes could be reduced to platinum(II) species and amlexanox to exert antitumor activity. Generally, MAP was more potent than DAP and cisplatin towards various human cancer cell lines; particularly, it was active in cisplatin-resistant Caov-3 ovarian cancer and A549/DDP lung cancer cells. MAP induced serious damage to DNA, remarkable change in mitochondrial morphology, decrease in mitochondrial membrane potential, release of cytochrome c from mitochondria, and up-regulation of pro-apoptotic protein Bax in Caov-3 cells, thereby leading to evident apoptosis. Meanwhile, MAP markedly promoted the autophagic flux, including affecting the expression of microtubule-associated protein light chain 3 (LC3) and autophagy adaptor protein p62 in Caov-3 cells, with an increase in the ratio of LC3-II/LC3-I and a decrease in p62, thus trigging the occurrence of autophagy. The MAP-induced bimodal cell death mode is uncommon for platinum complexes, which presents a new possibility to invent anticancer drugs with unique mechanism of action.
Collapse
Affiliation(s)
- Yan Guo
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Henan, PR China; State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Suxing Jin
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, PR China; State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| | - Dongfan Song
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Tao Yang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Jiyong Hu
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Henan, PR China
| | - Xiaowei Hu
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Henan, PR China
| | - Qingqing Han
- College of Materials and Chemical Engineering, Henan University of Urban Construction, Henan, PR China
| | - Jin'an Zhao
- College of Chemical Engineering and Dyeing Engineering, Henan University of Engineering, Zhengzhou, 450001, China.
| | - Zijian Guo
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210023, PR China
| | - Xiaoyong Wang
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, 210023, PR China.
| |
Collapse
|
8
|
Decanoic Acid Stimulates Autophagy in D. discoideum. Cells 2021; 10:cells10112946. [PMID: 34831171 PMCID: PMC8616062 DOI: 10.3390/cells10112946] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/22/2022] Open
Abstract
Ketogenic diets, used in epilepsy treatment, are considered to work through reduced glucose and ketone generation to regulate a range of cellular process including autophagy induction. Recent studies into the medium-chain triglyceride (MCT) ketogenic diet have suggested that medium-chain fatty acids (MCFAs) provided in the diet, decanoic acid and octanoic acid, cause specific therapeutic effects independent of glucose reduction, although a role in autophagy has not been investigated. Both autophagy and MCFAs have been widely studied in Dictyostelium, with findings providing important advances in the study of autophagy-related pathologies such as neurodegenerative diseases. Here, we utilize this model to analyze a role for MCFAs in regulating autophagy. We show that treatment with decanoic acid but not octanoic acid induces autophagosome formation and modulates autophagic flux in high glucose conditions. To investigate this effect, decanoic acid, but not octanoic acid, was found to induce the expression of autophagy-inducing proteins (Atg1 and Atg8), providing a mechanism for this effect. Finally, we demonstrate a range of related fatty acid derivatives with seizure control activity, 4BCCA, 4EOA, and Epilim (valproic acid), also function to induce autophagosome formation in this model. Thus, our data suggest that decanoic acid and related compounds may provide a less-restrictive therapeutic approach to activate autophagy.
Collapse
|
9
|
McLaren MD, Mathavarajah S, Kim WD, Yap SQ, Huber RJ. Aberrant Autophagy Impacts Growth and Multicellular Development in a Dictyostelium Knockout Model of CLN5 Disease. Front Cell Dev Biol 2021; 9:657406. [PMID: 34291044 PMCID: PMC8287835 DOI: 10.3389/fcell.2021.657406] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 05/28/2021] [Indexed: 12/22/2022] Open
Abstract
Mutations in CLN5 cause a subtype of neuronal ceroid lipofuscinosis (NCL) called CLN5 disease. While the precise role of CLN5 in NCL pathogenesis is not known, recent work revealed that the protein has glycoside hydrolase activity. Previous work on the Dictyostelium discoideum homolog of human CLN5, Cln5, revealed its secretion during the early stages of development and its role in regulating cell adhesion and cAMP-mediated chemotaxis. Here, we used Dictyostelium to examine the effect of cln5-deficiency on various growth and developmental processes during the life cycle. During growth, cln5– cells displayed reduced cell proliferation, cytokinesis, viability, and folic acid-mediated chemotaxis. In addition, the growth of cln5– cells was severely impaired in nutrient-limiting media. Based on these findings, we assessed autophagic flux in growth-phase cells and observed that loss of cln5 increased the number of autophagosomes suggesting that the basal level of autophagy was increased in cln5– cells. Similarly, loss of cln5 increased the amounts of ubiquitin-positive proteins. During the early stages of multicellular development, the aggregation of cln5– cells was delayed and loss of the autophagy genes, atg1 and atg9, reduced the extracellular amount of Cln5. We also observed an increased amount of intracellular Cln5 in cells lacking the Dictyostelium homolog of the human glycoside hydrolase, hexosaminidase A (HEXA), further supporting the glycoside hydrolase activity of Cln5. This observation was also supported by our finding that CLN5 and HEXA expression are highly correlated in human tissues. Following mound formation, cln5– development was precocious and loss of cln5 affected spore morphology, germination, and viability. When cln5– cells were developed in the presence of the autophagy inhibitor ammonium chloride, the formation of multicellular structures was impaired, and the size of cln5– slugs was reduced relative to WT slugs. These results, coupled with the aberrant autophagic flux observed in cln5– cells during growth, support a role for Cln5 in autophagy during the Dictyostelium life cycle. In total, this study highlights the multifaceted role of Cln5 in Dictyostelium and provides insight into the pathological mechanisms that may underlie CLN5 disease.
Collapse
Affiliation(s)
- Meagan D McLaren
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | | | - William D Kim
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Shyong Q Yap
- Environmental and Life Sciences Graduate Program, Trent University, Peterborough, ON, Canada
| | - Robert J Huber
- Department of Biology, Trent University, Peterborough, ON, Canada
| |
Collapse
|
10
|
Liu T, Guo Q, Zheng S, Liu Y, Yang H, Zhao M, Yao L, Zeng K, Tu P. Cephalotaxine Inhibits the Survival of Leukemia Cells by Activating Mitochondrial Apoptosis Pathway and Inhibiting Autophagy Flow. Molecules 2021; 26:molecules26102996. [PMID: 34070111 PMCID: PMC8158396 DOI: 10.3390/molecules26102996] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 05/11/2021] [Accepted: 05/13/2021] [Indexed: 01/01/2023] Open
Abstract
Cephalotaxine (CET) is a natural alkaloid with potent antileukemia effects. However, its underlying molecular mechanism has not been well understood. In this study, we verified that CET significantly inhibited the viability of various leukemia cells, including HL-60, NB4, Jurkat, K562, Raji and MOLT-4. RNA-sequencing and bioinformatics analysis revealed that CET causes mitochondrial function change. Mechanism research indicated that CET activated the mitochondrial apoptosis pathway by reducing the mitochondrial membrane potential, downregulating anti-apoptotic Bcl-2 protein and upregulating pro-apoptotic Bak protein. In addition, the autophagy signaling pathway was highly enriched by RNA-seq analysis. Then, we found that CET blocked the fluorescence colocation of MitoTracker Green and LysoTracker Red and upregulated the level of LC3-II and p62, which indicated that autophagy flow was impaired. Further results demonstrated that CET could impair lysosomal acidification and block autophagy flow. Finally, inhibiting autophagy flow could aggravate apoptosis of HL-60 cells induced by CET. In summary, this study demonstrated that CET exerted antileukemia effects through activation of the mitochondria-dependent pathway and by impairing autophagy flow. Our research provides new insights into the molecular mechanisms of CET in the treatment of leukemia.
Collapse
Affiliation(s)
- Tingting Liu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China;
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Qiang Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Shuze Zheng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Yang Liu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Heng Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Meimei Zhao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Lu Yao
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
| | - Kewu Zeng
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
- Correspondence: (K.Z.); (P.T.)
| | - Pengfei Tu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, China;
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China; (Q.G.); (S.Z.); (Y.L.); (H.Y.); (M.Z.); (L.Y.)
- Correspondence: (K.Z.); (P.T.)
| |
Collapse
|
11
|
Martín‐González J, Montero‐Bullón J, Lacal J. Dictyostelium discoideum as a non-mammalian biomedical model. Microb Biotechnol 2021; 14:111-125. [PMID: 33124755 PMCID: PMC7888446 DOI: 10.1111/1751-7915.13692] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 02/06/2023] Open
Abstract
Dictyostelium discoideum is one of eight non-mammalian model organisms recognized by the National Institute of Health for the study of human pathology. The use of this slime mould is possible owing to similarities in cell structure, behaviour and intracellular signalling with mammalian cells. Its haploid set of chromosomes completely sequenced amenable to genetic manipulation, its unique and short life cycle with unicellular and multicellular stages, and phenotypic richness encoding many human orthologues, make Dictyostelium a representative and simple model organism to unveil cellular processes in human disease. Dictyostelium studies within the biomedical field have provided fundamental knowledge in the areas of bacterial infection, immune cell chemotaxis, autophagy/phagocytosis and mitochondrial and neurological disorders. Consequently, Dictyostelium has been used to the development of related pharmacological treatments. Herein, we review the utilization of Dictyostelium as a model organism in biomedicine.
Collapse
Affiliation(s)
- Javier Martín‐González
- Molecular Genetics of Human Diseases GroupDepartment of Microbiology and GeneticsFaculty of BiologyUniversity of SalamancaCampus Miguel de UnamunoSalamancaE‐37007Spain
| | - Javier‐Fernando Montero‐Bullón
- Metabolic Engineering GroupDepartment of Microbiology and GeneticsUniversity of SalamancaCampus Miguel de UnamunoSalamancaE‐37007Spain
| | - Jesus Lacal
- Molecular Genetics of Human Diseases GroupDepartment of Microbiology and GeneticsFaculty of BiologyUniversity of SalamancaCampus Miguel de UnamunoSalamancaE‐37007Spain
| |
Collapse
|
12
|
Belousov DM, Mikhaylenko EV, Somasundaram SG, Kirkland CE, Aliev G. The Dawn of Mitophagy: What Do We Know by Now? Curr Neuropharmacol 2021; 19:170-192. [PMID: 32442087 PMCID: PMC8033973 DOI: 10.2174/1570159x18666200522202319] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 05/10/2020] [Accepted: 05/17/2020] [Indexed: 01/31/2023] Open
Abstract
Mitochondria are essential organelles for healthy eukaryotic cells. They produce energyrich phosphate bond molecules (ATP) through oxidative phosphorylation using ionic gradients. The presence of mitophagy pathways in healthy cells enhances cell protection during mitochondrial damage. The PTEN-induced putative kinase 1 (PINK1)/Parkin-dependent pathway is the most studied for mitophage. In addition, there are other mechanisms leading to mitophagy (FKBP8, NIX, BNIP3, FUNDC1, BCL2L13). Each of these provides tethering of a mitochondrion to an autophagy apparatus via the interaction between receptor proteins (Optineurin, p62, NDP52, NBR1) or the proteins of the outer mitochondrial membrane with ATG9-like proteins (LC3A, LC3B, GABARAP, GABARAPL1, GATE16). Another pathogenesis of mitochondrial damage is mitochondrial depolarization. Reactive oxygen species (ROS) antioxidant responsive elements (AREs) along with antioxidant genes, including pro-autophagic genes, are all involved in mitochondrial depolarization. On the other hand, mammalian Target of Rapamycin Complex 1 (mTORC1) and AMP-dependent kinase (AMPK) are the major regulatory factors modulating mitophagy at the post-translational level. Protein-protein interactions are involved in controlling other mitophagy processes. The objective of the present review is to analyze research findings regarding the main pathways of mitophagy induction, recruitment of the autophagy machinery, and their regulations at the levels of transcription, post-translational modification and protein-protein interaction that appeared to be the main target during the development and maturation of neurodegenerative disorders.
Collapse
Affiliation(s)
| | | | | | - Cecil E. Kirkland
- Address correspondence to this author at the Department of Biological Sciences, Salem University, Salem, WV, 26426, USA & GALLY International Research Institute, San Antonio, TX 78229, USA;, E-mails: ,
| | - Gjumrakch Aliev
- Address correspondence to this author at the Department of Biological Sciences, Salem University, Salem, WV, 26426, USA & GALLY International Research Institute, San Antonio, TX 78229, USA;, E-mails: ,
| |
Collapse
|
13
|
Zhu L, Wu W, Jiang S, Yu S, Yan Y, Wang K, He J, Ren Y, Wang B. Pan-Cancer Analysis of the Mitophagy-Related Protein PINK1 as a Biomarker for the Immunological and Prognostic Role. Front Oncol 2020; 10:569887. [PMID: 33244455 PMCID: PMC7683787 DOI: 10.3389/fonc.2020.569887] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 10/15/2020] [Indexed: 12/31/2022] Open
Abstract
Introduction The PINK1 gene encodes a serine/threonine protein kinase that localizes to mitochondria and has usually been considered to protect cells from stress-induced mitochondrial dysfunction. PINK1 mutations have been observed to lead to autosomal recessive Parkinson’s disease. However, the immunological and prognostic roles of PINK1 across cancers remain unclear. Material and method In the current study, we used multiple databases, including Oncomine, PrognoScan, Kaplan-Meier Plotter, GEPIA, TIMER, and cBioportal, to investigate the PINK1 expression distribution and its immunological and prognostic role across cancers. Results and discussion Bioinformatics data revealed that the mRNA expression of PINK1 was downregulated in most tumors. Although there was a significant prognostic value of PINK1 expression across cancers, PINK1 played a protective or detrimental role in different kinds of cancers. Liver hepatocellular carcinoma and lung squamous cell carcinoma were selected as representative cancer types for further exploration. We found that PINK1 always played a protective role in liver hepatocellular carcinoma patients in the stratified prognostic analyses of clinicopathological characteristics. There were contradictory results between liver hepatocellular carcinoma and lung squamous cell carcinoma in the correlations of PINK1 expression with immune infiltration, including infiltration of B cells, CD8+ T cells, CD4+ T cells, macrophages, neutrophils, and dendritic cells. Furthermore, specific markers of B cells and CD8+ T cells also exhibited different PINK1-related immune infiltration patterns. In addition, there was a significant association between PINK1 copy number variations and immune infiltrates across cancers. Conclusion The mitophagy-related protein PINK1 can work as a biomarker for prognosis and the immune response across cancers.
Collapse
Affiliation(s)
- Lizhe Zhu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Wei Wu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Siyuan Jiang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Shibo Yu
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Yan
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Ke Wang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jianjun He
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Yu Ren
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Bin Wang
- Department of Breast Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
14
|
Karow M, Fischer S, Meßling S, Konertz R, Riehl J, Xiong Q, Rijal R, Wagle P, S. Clemen C, Eichinger L. Functional Characterisation of the Autophagy ATG12~5/16 Complex in Dictyostelium discoideum. Cells 2020; 9:cells9051179. [PMID: 32397394 PMCID: PMC7290328 DOI: 10.3390/cells9051179] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 12/21/2022] Open
Abstract
Macroautophagy, a highly conserved and complex intracellular degradative pathway, involves more than 20 core autophagy (ATG) proteins, among them the hexameric ATG12~5/16 complex, which is part of the essential ubiquitin-like conjugation systems in autophagy. Dictyostelium discoideumatg5 single, atg5/12 double, and atg5/12/16 triple gene knock-out mutant strains displayed similar defects in the conjugation of ATG8 to phosphatidylethanolamine, development, and cell viability upon nitrogen starvation. This implies that ATG5, 12 and 16 act as a functional unit in canonical autophagy. Macropinocytosis of TRITC dextran and phagocytosis of yeast were significantly decreased in ATG5¯ and ATG5¯/12¯ and even further in ATG5¯/12¯/16¯ cells. In contrast, plaque growth on Klebsiella aerogenes was about twice as fast for ATG5¯ and ATG5¯/12¯/16¯ cells in comparison to AX2, but strongly decreased for ATG5¯/12¯ cells. Along this line, phagocytic uptake of Escherichia coli was significantly reduced in ATG5¯/12¯ cells, while no difference in uptake, but a strong increase in membrane association of E. coli, was seen for ATG5¯ and ATG5¯/12¯/16¯ cells. Proteasomal activity was also disturbed in a complex fashion, consistent with an inhibitory activity of ATG16 in the absence of ATG5 and/or ATG12. Our results confirm the essential function of the ATG12~5/16 complex in canonical autophagy, and furthermore are consistent with autophagy-independent functions of the complex and its individual components. They also strongly support the placement of autophagy upstream of the ubiquitin-proteasome system (UPS), as a fully functional UPS depends on autophagy.
Collapse
Affiliation(s)
- Malte Karow
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Sarah Fischer
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Susanne Meßling
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Roman Konertz
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Jana Riehl
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
| | - Qiuhong Xiong
- Institute of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, Taiyuan 030006, China;
| | - Ramesh Rijal
- Department of Biology, Texas A&M University, College Station, TX 77843-3474, USA;
| | - Prerana Wagle
- Bioinformatics Core Facility, CECAD Research Center, University of Cologne, 50931 Cologne, Germany;
| | - Christoph S. Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), 51147 Cologne, Germany;
- Center for Physiology and Pathophysiology, Institute of Vegetative Physiology, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- Institute of Neuropathology, University Hospital Erlangen, Friedrich-Alexander University Erlangen-Nürnberg, 91054 Erlangen, Germany
| | - Ludwig Eichinger
- Centre for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany; (M.K.); (S.F.); (S.M.); (R.K.); (J.R.)
- Correspondence: ; Tel.: +49-221-478-6928; Fax: +49-221-478-97524
| |
Collapse
|
15
|
O'Day DH, Mathavarajah S, Myre MA, Huber RJ. Calmodulin-mediated events during the life cycle of the amoebozoan Dictyostelium discoideum. Biol Rev Camb Philos Soc 2020; 95:472-490. [PMID: 31774219 PMCID: PMC7079120 DOI: 10.1111/brv.12573] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Revised: 10/30/2019] [Accepted: 11/11/2019] [Indexed: 12/14/2022]
Abstract
This review focusses on the functions of intracellular and extracellular calmodulin, its target proteins and their binding proteins during the asexual life cycle of Dictyostelium discoideum. Calmodulin is a primary regulatory protein of calcium signal transduction that functions throughout all stages. During growth, it mediates autophagy, the cell cycle, folic acid chemotaxis, phagocytosis, and other functions. During mitosis, specific calmodulin-binding proteins translocate to alternative locations. Translocation of at least one cell adhesion protein is calmodulin dependent. When starved, cells undergo calmodulin-dependent chemotaxis to cyclic AMP generating a multicellular pseudoplasmodium. Calmodulin-dependent signalling within the slug sets up a defined pattern and polarity that sets the stage for the final events of morphogenesis and cell differentiation. Transected slugs undergo calmodulin-dependent transdifferentiation to re-establish the disrupted pattern and polarity. Calmodulin function is critical for stalk cell differentiation but also functions in spore formation, events that begin in the pseudoplasmodium. The asexual life cycle restarts with the calmodulin-dependent germination of spores. Specific calmodulin-binding proteins as well as some of their binding partners have been linked to each of these events. The functions of extracellular calmodulin during growth and development are also discussed. This overview brings to the forefront the central role of calmodulin, working through its numerous binding proteins, as a primary downstream regulator of the critical calcium signalling pathways that have been well established in this model eukaryote. This is the first time the function of calmodulin and its target proteins have been documented through the complete life cycle of any eukaryote.
Collapse
Affiliation(s)
- Danton H. O'Day
- Cell and Systems BiologyUniversity of TorontoTorontoOntarioM5S 3G5Canada
- Department of BiologyUniversity of Toronto MississaugaMississaugaOntarioL5L 1C6Canada
| | | | - Michael A. Myre
- Department of Biological Sciences, Kennedy College of SciencesUniversity of Massachusetts LowellLowellMassachusetts01854USA
| | - Robert J. Huber
- Department of BiologyTrent UniversityPeterboroughOntarioK9L 0G2Canada
| |
Collapse
|
16
|
Jin Y, Shang Y, Zhang D, An J, Pan D. Hexabromocyclododecanes promoted autophagy through the PI3K/Akt/mTOR pathway in L02 cells. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 244:77-82. [PMID: 31108313 DOI: 10.1016/j.jenvman.2019.05.031] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 04/22/2019] [Accepted: 05/06/2019] [Indexed: 06/09/2023]
Abstract
As additive brominated flame retardants, hexabromocyclododecanes (HBCDs) are being widely used in diverse artificial materials and products, including thermal insulation building materials, housings of electronic equipment, and upholstery textiles. Toxicology studies have shown that HBCDs exposure are closely related to hepatotoxicity and liver diseases. The present study is designed to explore how HBCDs affect cell apoptosis and autophagy process in a human hepatocyte cell line (L02) and to reveal the underline molecular mechanisms. Firstly, HBCDs could elevate the apoptosis rate of L02 cells dose-dependently. Three apoptosis related proteins (apoptotic protease activating factor 1 (Apaf-1), cysteinyl aspartate specific proteinase 3 (caspase-3) and cysteinyl aspartate specific proteinase 9 (caspase-9)) were observed to be up-regulated using western blotting method. Autophagy process was also started by HBCDs in L02 cells as indicated by the increased expressions of LC3-phosphatidylethanolamine conjugate (LC3-II) and other autophagic protein markers (Beclin-1, autophagy related protein 3 (Atg3), autophagy related protein 5 (Atg5), autophagy related protein 7 (Atg7) and autophagy related protein 16L1(Atg16L1)). The results of the green fluorescent protein (GFP)-microtubule-associated protein 1 light chain 3 (LC3) intracellular localization and fluorescence intensity further evidenced the activation of autophagy in L02 cells after treated with HBCDs. In addition, phosphatidylinositide 3-kinases/protein kinase B/mammalian target of rapamycin (PI3K/Akt/mTOR) pathway was activated in L02 cells by HBCDs, suggested by the increased expressions of related proteins. The inhibitors of PI3K (LY294002), DNA-activated protein kinase catalytic subunit (DNA-PKcs) (NU7441), Akt (MK2206), and mTOR (KU0063794) could obviously reduce the autophagic proteins prompted by HBCDs. The fluorescence intensities of GFP-LC3 transfected L02 cells were also decreased significantly after the application of these inhibitors. These results indicated that PI3K/Akt/mTOR pathway was participated in regulating autophagy process promoted by HBCDs. In above, HBCDs could induce mitochondrial-dependent apoptosis and autophagy in L02 cells, which was modulated by PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Yingying Jin
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Yu Shang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Dongping Zhang
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Jing An
- School of Environmental and Chemical Engineering, Shanghai University, Shanghai, 200444, China
| | - Dongyan Pan
- Department of Ophthalmology, Changhai Hospital, Second Military Medical University, Shanghai, 200433, China.
| |
Collapse
|
17
|
Functional Characterization of Ubiquitin-Like Core Autophagy Protein ATG12 in Dictyostelium discoideum. Cells 2019; 8:cells8010072. [PMID: 30669443 PMCID: PMC6356199 DOI: 10.3390/cells8010072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/15/2019] [Accepted: 01/17/2019] [Indexed: 12/12/2022] Open
Abstract
Autophagy is a highly conserved intracellular degradative pathway that is crucial for cellular homeostasis. During autophagy, the core autophagy protein ATG12 plays, together with ATG5 and ATG16, an essential role in the expansion of the autophagosomal membrane. In this study we analyzed gene replacement mutants of atg12 in Dictyostelium discoideum AX2 wild-type and ATG16‾ cells. RNAseq analysis revealed a strong enrichment of, firstly, autophagy genes among the up-regulated genes and, secondly, genes implicated in cell motility and phagocytosis among the down-regulated genes in the generated ATG12‾, ATG16‾ and ATG12‾/16‾ cells. The mutant strains showed similar defects in fruiting body formation, autolysosome maturation, and cellular viability, implying that ATG12 and ATG16 act as a functional unit in canonical autophagy. In contrast, ablation of ATG16 or of ATG12 and ATG16 resulted in slightly more severe defects in axenic growth, macropinocytosis, and protein homeostasis than ablation of only ATG12, suggesting that ATG16 fulfils an additional function in these processes. Phagocytosis of yeast, spore viability, and maximal cell density were much more affected in ATG12‾/16‾ cells, indicating that both proteins also have cellular functions independent of each other. In summary, we show that ATG12 and ATG16 fulfil autophagy-independent functions in addition to their role in canonical autophagy.
Collapse
|
18
|
Xiong Q, Fischer S, Karow M, Müller R, Meßling S, Eichinger L. ATG16 mediates the autophagic degradation of the 19S proteasomal subunits PSMD1 and PSMD2. Eur J Cell Biol 2018; 97:523-532. [PMID: 30269947 DOI: 10.1016/j.ejcb.2018.09.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 08/06/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022] Open
Abstract
Autophagy and the ubiquitin proteasome system are the two major cellular processes for protein and organelle recycling and clearance in eukaryotic cells. Evidence is accumulating that these two pathways are interrelated through adaptor proteins. Here, we found that PSMD1 and PSMD2, both components of the 19S regulatory particle of the proteasome, directly interact with Dictyostelium discoideum autophagy 16 (ATG16), a core autophagosomal protein. ATG16 is composed of an N-terminal domain, which is responsible for homo-dimerization and binding to ATG5 and a C-terminal β-propeller structure. Deletion analysis of ATG16 showed that the N-terminal half of ATG16 interacted directly only with PSMD1, while the C-terminal half interacted with both, PSMD1 and PSMD2. RFP-tagged PSMD1 as well as PSMD2 were enriched in large puncta, reminiscent of autophagosomes, in wild-type cells. These puncta were absent in atg16‾ and atg9‾/16‾ cells and weaker and less frequent in atg9‾ cells, showing that ATG16 was crucial and the autophagic process important for their formation. Co-expression of ATG16-GFP or GFP-ATG8a(LC3) with RFP-PSMD1 or RFP-PSMD2, respectively, in atg16‾ or wild-type cells revealed many instances of co-localization, suggesting that RFP-PSMD1 or RFP-PSMD2 positive puncta constitute autophagosomes. LysoTracker® labeling and a proteolytic cleavage assay confirmed that PSMD1 and PSMD2 were present in lysosomes in wild-type cells. In vivo, ATG16 is required for their enrichment in ATG8a positive puncta, which mature into autolysosomes. We propose that ATG16 links autophagy and the ubiquitin proteasome system.
Collapse
Affiliation(s)
- Qiuhong Xiong
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany.; Institute of Biomedical Sciences, Shanxi University, No. 92 Wucheng Road, 030006 Taiyuan, Shanxi, China
| | - Sarah Fischer
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Malte Karow
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Rolf Müller
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Susanne Meßling
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany
| | - Ludwig Eichinger
- Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany..
| |
Collapse
|
19
|
Song L, Rijal R, Karow M, Stumpf M, Hahn O, Park L, Insall R, Schröder R, Hofmann A, Clemen CS, Eichinger L. Expression of N471D strumpellin leads to defects in the endolysosomal system. Dis Model Mech 2018; 11:dmm033449. [PMID: 30061306 PMCID: PMC6177004 DOI: 10.1242/dmm.033449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Accepted: 07/09/2018] [Indexed: 12/11/2022] Open
Abstract
Hereditary spastic paraplegias (HSPs) are genetically diverse and clinically characterised by lower limb weakness and spasticity. The N471D and several other point mutations of human strumpellin (Str; also known as WASHC5), a member of the Wiskott-Aldrich syndrome protein and SCAR homologue (WASH) complex, have been shown to cause a form of HSP known as spastic paraplegia 8 (SPG8). To investigate the molecular functions of wild-type (WT) and N417D Str, we generated Dictyostelium Str- cells and ectopically expressed StrWT-GFP or StrN471D-GFP in Str- and WT cells. Overexpression of both proteins apparently caused a defect in cell division, as we observed a clear increase in multinucleate cells. Real-time PCR analyses revealed no transcriptional changes in WASH complex subunits in Str- cells, but western blots showed a twofold decrease in the SWIP subunit. GFP-trap experiments in conjunction with mass-spectrometric analysis revealed many previously known, as well as new, Str-interacting proteins, and also proteins that no longer bind to StrN471D At the cellular level, Str- cells displayed defects in cell growth, phagocytosis, macropinocytosis, exocytosis and lysosomal function. Expression of StrWT-GFP in Str- cells rescued all observed defects. In contrast, expression of StrN471D-GFP could not rescue lysosome morphology and exocytosis of indigestible material. Our results underscore a key role for the WASH complex and its core subunit, Str, in the endolysosomal system, and highlight the fundamental importance of the Str N471 residue for maintaining lysosome morphology and dynamics. Our data indicate that the SPG8-causing N471D mutation leads to a partial loss of Str function in the endolysosomal system. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Lin Song
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Ramesh Rijal
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- Department of Biology, Texas A&M University, College Station, TX 3258, USA
| | - Malte Karow
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Maria Stumpf
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| | - Oliver Hahn
- Max Planck Institute for Biology of Ageing, Biological Mechanisms of Ageing, 50931 Cologne, Germany
| | - Laura Park
- CR-UK Beatson Institute, Institute of Cancer Sciences, Glasgow University, Glasgow G12 8QQ, UK
| | - Robert Insall
- CR-UK Beatson Institute, Institute of Cancer Sciences, Glasgow University, Glasgow G12 8QQ, UK
| | - Rolf Schröder
- Institute of Neuropathology, University Hospital Erlangen, 91054 Erlangen, Germany
| | - Andreas Hofmann
- Structural Chemistry Program, Eskitis Institute, Griffith University, N75 Don Young Road, Nathan, QLD 4111, Australia
- Faculty of Veterinary Science, The University of Melbourne, Parkville, VIC 3030, Australia
| | - Christoph S Clemen
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
- Department of Neurology, Heimer Institute for Muscle Research, University Hospital Bergmannsheil, Ruhr-University Bochum, 44789 Bochum, Germany
| | - Ludwig Eichinger
- Center for Biochemistry, Institute of Biochemistry I, Medical Faculty, University of Cologne, 50931 Cologne, Germany
| |
Collapse
|
20
|
Methods to Monitor and Quantify Autophagy in the Social Amoeba Dictyostelium discoideum. Cells 2017; 6:cells6030018. [PMID: 28671610 PMCID: PMC5617964 DOI: 10.3390/cells6030018] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/27/2017] [Accepted: 06/28/2017] [Indexed: 12/30/2022] Open
Abstract
Autophagy is a eukaryotic catabolic pathway that degrades and recycles cellular components to maintain homeostasis. It can target protein aggregates, superfluous biomolecular complexes, dysfunctional and damaged organelles, as well as pathogenic intracellular microbes. Autophagy is a dynamic process in which the different stages from initiation to final degradation of cargo are finely regulated. Therefore, the study of this process requires the use of a palette of techniques, which are continuously evolving and whose interpretation is not trivial. Here, we present the social amoeba Dictyostelium discoideum as a relevant model to study autophagy. Several methods have been developed based on the tracking and observation of autophagosomes by microscopy, analysis of changes in expression of autophagy genes and proteins, and examination of the autophagic flux with various techniques. In this review, we discuss the pros and cons of the currently available techniques to assess autophagy in this organism.
Collapse
|