1
|
Islam F, Pillai S, Gopalan V, Lam AKY. Identification of Novel Mutations and Expressions of EPAS1 in Phaeochromocytomas and Paragangliomas. Genes (Basel) 2020; 11:1254. [PMID: 33114456 PMCID: PMC7693385 DOI: 10.3390/genes11111254] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/14/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
Endothelial PAS domain-containing protein 1 (EPAS1) is an oxygen-sensitive component of the hypoxia-inducible factors (HIFs) having reported implications in many cancers by inducing a pseudo-hypoxic microenvironment. However, the molecular dysregulation and clinical significance of EPAS1 has never been investigated in depth in phaeochromocytomas/paragangliomas. This study aims to identify EPAS1 mutations and alterations in DNA copy number, mRNA and protein expression in patients with phaeochromocytomas/paragangliomas. The association of molecular dysregulations of EPAS1 with clinicopathological factors in phaeochromocytomas and paragangliomas were also analysed. High-resolution melt-curve analysis followed by Sanger sequencing was used to detect mutations in EPAS1. EPAS1 DNA number changes and mRNA expressions were examined by polymerase chain reaction (PCR). Immunofluorescence assay was used to study EPAS1 protein expression. In phaeochromocytomas, 12% (n = 7/57) of patients had mutations in the EPAS1 sequence, which includes two novel mutations (c.1091A > T; p.Lys364Met and c.1129A > T; p.Ser377Cys). Contrastingly, in paragangliomas, 7% (n = 1/14) of patients had EPAS1 mutations and only the c.1091A > T; p.Lys364Met mutation was detected. In silico analysis revealed that the p.Lys364Met mutation has pathological potential based on the functionality of the protein, whereas the p.Ser377Cys mutation was predicted to be neutral or tolerated. The majority of the patients had EPAS1 DNA amplification (79%; n = 56/71) and 53% (n = 24/45) patients shown mRNA overexpression. Most of the patients with EPAS1 mutations exhibited aberrant DNA changes, mRNA and protein overexpression. In addition, these alterations of EPAS1 were associated with tumour weight and location. Thus, the molecular dysregulation of EPAS1 could play crucial roles in the pathogenesis of phaeochromocytomas and paragangliomas.
Collapse
Affiliation(s)
- Farhadul Islam
- Institute for Glycomics, Griffith University, Gold Coast, QLD 4222, Australia;
- Department of Biochemistry and Molecular Biology, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Suja Pillai
- Faculty of Medicine, School of Biomedical Sciences, University of Queensland, Brisbane, QLD 4072, Australia;
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine, Gold Coast, QLD 4222, Australia;
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine, Gold Coast, QLD 4222, Australia;
| |
Collapse
|
2
|
Mahaki H, Tanzadehpanah H, Abou-Zied OK, Moghadam NH, Bahmani A, Salehzadeh S, Dastan D, Saidijam M. Cytotoxicity and antioxidant activity of Kamolonol acetate from Ferula pseudalliacea, and studying its interactions with calf thymus DNA (ct-DNA) and human serum albumin (HSA) by spectroscopic and molecular docking techniques. Process Biochem 2019. [DOI: 10.1016/j.procbio.2018.12.004] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
3
|
Liposomal Delivery of miR-34b-5p Induced Cancer Cell Death in Thyroid Carcinoma. Cells 2018; 7:cells7120265. [PMID: 30544959 PMCID: PMC6315437 DOI: 10.3390/cells7120265] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 11/30/2018] [Accepted: 12/10/2018] [Indexed: 01/03/2023] Open
Abstract
This study aims to determine the functional roles of microRNA-34b-5p (miR-34b) in the suppression of anaplastic thyroid carcinoma. We used hydration-of-freeze-dried-matrix (HFDM) formulated liposomes (liposome-loaded miR-34b) for effective delivery of miR-34b to anaplastic thyroid carcinoma in vitro and in vivo. Real time polymerase chain was used to determine the level of miR-34b. Immunocytochemistry, Western blot and ELISA were carried out to determine the effect of this manipulation on VEGF-A expression. In addition, an in vivo xenotransplantation mouse model was used to investigate the functional roles of overexpression of miR-34b in the carcinoma. In anaplastic thyroid carcinoma cells, miR-34b expression was low and significant overexpression (p < 0.05) was noted following transfection with liposome-loaded miR-34b. The miR-34b overexpressed thyroid carcinoma cell lines showed reduction in VEGF-A protein expression, decreased cell proliferation, decreased wound healing, reduced cell cycle progression and increased apoptosis (p < 0.05). In in vivo experiments, when compared to control groups, smaller tumours formed upon intravenous administration of liposome-loaded miR-34b. To conclude, the current study confirmed the tumour suppressor properties of miR-34b via VEGF-A regulation in anaplastic thyroid carcinoma. In addition, delivery of miR-34b using cationic liposome could be a useful therapeutic strategy for targeting therapy in the carcinoma.
Collapse
|
4
|
Islam F, Chaousis S, Wahab R, Gopalan V, Lam AK. Protein interactions of FAM134B with EB1 and APC/beta‐catenin in vitro in colon carcinoma. Mol Carcinog 2018; 57:1480-1491. [DOI: 10.1002/mc.22871] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 06/25/2018] [Accepted: 06/28/2018] [Indexed: 12/13/2022]
Abstract
FAM134B is an autophagy regulator of endoplasmic reticulum and acts as a cancer suppressor in colon cancer. However, the molecular signaling pathways by which FAM134B interacts within colon carcinogenesis is still unknown. Herein, this study aims to determine the interacting partners of FAM134B for the first time in colon cancer and to explore the precise location of FAM134B in cancer signalling pathways. Liquid chromatography coupled with tandem mass spectrometry (LC‐MS/MS) followed by anti‐FAM134B co‐immune precipitation of FAM134B interacting complex was used to identify the potential interactors of FAM134B in colon cancer cells. Western blot and confocal microscopic analysis were used to validate the physical interactions of FAM134B with the interactors. Lentiviral shRNA mediated silencing of FAM134B was used to examine the modulation of FAM134B interactors in cells. We have identified 29 novel binding partners, including CAP1, RPS28, FTH1, KDELR2, MAP4, EB1, PSMD6, PPIB/CYPB etc. Subsequent immunoassays confirmed the direct physical interactions of FAM134B with CAP1, EB1, CYPB, and KDELR2 in colon cancer cells. Exogenous suppression of FAM134B has led to significant upregulation of EB1 as well as reduction of KDELR2 expression. It was noted that overexpression of EB1 promotes WNT/β‐catenin signaling pathways via inactivating tumor suppressor APC followed by activating β‐catenin in colorectal carcinogenesis. This study has first time reported the gene signaling networks with which FAM134B interacts and noted that FAM134B is involved in the regulation of WNT/β‐catenin pathway by EB1‐mediated modulating of APC in colon cancer cells.
Collapse
Affiliation(s)
- Farhadul Islam
- Cancer Molecular Pathology School of Medicine Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
- Department of Biochemistry and Molecular Biology University of Rajshahi Rajshahi Bangladesh
| | - Stephanie Chaousis
- Australian Rivers Institute and School of Environment Griffith University Gold Coast Queensland Australia
| | - Riajul Wahab
- Cancer Molecular Pathology School of Medicine Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology School of Medicine Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
- School of Medical Science Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
| | - Alfred K.‐Y. Lam
- Cancer Molecular Pathology School of Medicine Menzies Health Institute Queensland Griffith University Gold Coast Queensland Australia
| |
Collapse
|
5
|
Lee KTW, Gopalan V, Islam F, Wahab R, Mamoori A, Lu CT, Smith RA, Lam AKY. GAEC1 mutations and copy number aberration is associated with biological aggressiveness of colorectal cancer. Eur J Cell Biol 2018; 97:230-241. [PMID: 29555101 DOI: 10.1016/j.ejcb.2018.03.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 03/05/2018] [Indexed: 12/17/2022] Open
Abstract
GAEC1 (gene amplified in oesophageal cancer 1) is a transforming oncogene with tumorigenic potential observed in both oesophageal squamous cell carcinoma and colorectal cancer. Nonetheless, there has been a lack of study done on this gene to understand how this gene exert its oncogenic properties in cancer. This study aims to identify novel mutation sites in GAEC1. To do so, seventy-nine matched colorectal cancers were tested for GAEC1 mutation via Sanger sequencing. The mutations noted were investigated for the correlations with the clinicopathological parameters of the patients with the cancer. Additionally, GAEC1 copy number aberration (CNA), mRNA and protein expression were determined with the use of droplet digital (dd) polymerase chain reaction (PCR), real-time PCR and Western blot (confirmed with immunofluorescence analysis). GAEC1 mutation was noted in 8.8% (n = 7/79) of the cancer tissues including one missense mutation, four loss of heterozygosity (LOH) and two substitutions. These mutations were significantly associated with cancer perforation (p = 0.021). GAEC1 mutation is frequently associated with increased GAEC1 protein expression. Nevertheless, GAEC1 mRNA and protein are only weakly associated. Taken together, GAEC1 mutation affects GAEC1 expression and is associated with poorer clinical outcomes. This further strengthens the role of GAEC1 as an oncogene.
Collapse
Affiliation(s)
- Katherine Ting-Wei Lee
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Vinod Gopalan
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Farhadul Islam
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, 4222, Australia; Department of Biochemistry of Molecular Biology, University of Rajshahi, 6205, Bangladesh
| | - Riajul Wahab
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Afraa Mamoori
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, 4222, Australia
| | - Cu-Tai Lu
- Department of Surgery, Gold Coast University Hospital, Southport, Queensland, 4215, Australia
| | - Robert Anthony Smith
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, 4222, Australia; Genomics Research Centre, Institute of Health and Biomedical Innovation, Queensland University of Technology, Kelvin Grove, Queensland, 4059, Australia
| | - Alfred King-Yin Lam
- Cancer Molecular Pathology, School of Medicine and Griffith Health Institute, Griffith University, Gold Coast, Queensland, 4222, Australia.
| |
Collapse
|
6
|
Wahab R, Gopalan V, Islam F, Mamoori A, Lee KTW, Lu CT, Lam AKY. Expression of GAEC1 mRNA and protein and its association with clinical and pathological parameters of patients with colorectal adenocarcinoma. Exp Mol Pathol 2018; 104:71-75. [DOI: 10.1016/j.yexmp.2018.01.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2017] [Accepted: 01/10/2018] [Indexed: 01/18/2023]
|