1
|
Kumar DS, Prasanth K, Bhandari A, Kumar Jha V, Naveen A, Prasanna M. Innovations and Challenges in the Development of COVID-19 Vaccines for a Safer Tomorrow. Cureus 2024; 16:e60015. [PMID: 38854201 PMCID: PMC11162516 DOI: 10.7759/cureus.60015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/09/2024] [Indexed: 06/11/2024] Open
Abstract
Vaccination, a historically effective public health intervention, has shielded millions from various diseases. Lessons from severe acute respiratory syndrome coronavirus (SARS-CoV) have improved COVID-19 vaccine development. Despite mRNA vaccines' efficacy, emerging variants pose challenges, exhibiting increased transmissibility, infectivity, and severity. Developing COVID-19 vaccines has faced hurdles due to urgency, limited virus understanding, and the need for safe solutions. Genetic variability necessitates continuous vaccine adjustments and production challenges demand scaling up manufacturing with stringent quality control. This review explores SARS-CoV-2's evolution, upcoming mutations that challenge vaccines, and strategies such as structure-based, T cell-based, respiratory mucosal-based, and nanotechnology approaches for vaccine development. This review insight provides a roadmap for navigating virus evolution and improving vaccine development.
Collapse
Affiliation(s)
- Devika S Kumar
- Research, Panimalar Medical College Hospital and Research Institute, Chennai, IND
| | - Krishna Prasanth
- Department of Community Medicine, Sree Balaji Medical College and Hospital, Chennai, IND
| | - Ashni Bhandari
- Department of Community Medicine, Sree Balaji Medical College and Hospital, Chennai, IND
| | - Vivek Kumar Jha
- Department of Audiology and Speech Language Pathology, Shree Guru Gobind Singh Tricentenary (SGT) University, Haryana, IND
| | - Avula Naveen
- Pharmacology and Therapeutics, All India Institute Of Medical Science Bilaspur, Bilaspur, IND
| | - Muthu Prasanna
- Pharmaceutics, Pharmaceutical Biotechnology, Surya School of Pharmacy, Surya Group of Institutions, Villupuram, IND
| |
Collapse
|
2
|
Abbasi H, Behrouzikhah M, Divbandi M, Tabaraei A, Khosravi A, Razavi Nikoo H. Genomic analysis of SARS-CoV-2 variants: diagnosis and vaccination challenges. J Biomol Struct Dyn 2023; 41:14939-14951. [PMID: 37676289 DOI: 10.1080/07391102.2023.2252069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 02/18/2023] [Indexed: 09/08/2023]
Abstract
SARS-CoV-2 put a heavy financial burden on the healthcare system, with millions of laboratory-confirmed cases and deaths worldwide in the last 2 years. During the seventh wave of this pandemic, the continuously evolving nature of SARS-CoV-2 resulted in the emergence of new variants that harbor different mutations. Mutations are associated with changes in the virus behavior, including increased transmissibility, increased virulence, and evasion of neutralizing antibodies. Currently, we need detailed and comprehensive genomic information on all SARS-CoV-2 variants. One of the key points in this study was the genome survey of mutation profiles across variants as a genomic data source, to determine the efficiency of RT-qPCR assays. We also used the source to calculate the binding affinity changes of neutralizing antibodies-mutant receptor binding domain (RBD) complexes and determine vaccine efficacy. Our result revealed that the number of nucleotide mismatches is variable in the WHO-recommended primer-probe sets. Mismatches located at the 3' ends of the oligonucleotide, may lead to false-negative results. Only the primer-probe sets designed by the Ministry of Public Health of Thailand were exclusive and cannot detect the omicron variant reliably. Binding affinity changes showed that E484K was more deleterious than other mutations and decreased stability between the mutant RBD protein and neutralizing antibodies. The Omicrons show the highest change in binding affinity which may lead to immune escape and increase transmissibility. Additionally, the 7D6 monoclonal antibody in the 7eam complex could neutralize all variants of SARS-CoV-2. We strongly recommend creating and improving a matrix accuracy by processing a large number of SARS-CoV-2 sequences to update RT-qPCR assays and identified immunogenic residues among conserved RBD. Also, a detail computational analysis is needed to investigate distinctive amino acid substitution patterns which may be foundational in the vaccines. Finally, designing in-vitro studies can help confirm the present study and manage COVID-19 patients.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Hamidreza Abbasi
- Department of Medical Biotechnology, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Mehdi Behrouzikhah
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Marzieh Divbandi
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Alijan Tabaraei
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
| | - Ayyoob Khosravi
- Stem Cell Research Center, Golestan University of Medical Sciences, Gorgan, Iran
- Department of Molecular Medicine, Faculty of Advanced Medical Technologies, Golestan University of Medical Sciences, Gorgan, Iran
| | - Hadi Razavi Nikoo
- Department of Microbiology, Faculty of Medicine, Golestan University of Medical Sciences, Gorgan, Iran
- Infectious Disease Research Center, Golestan University of Medical Sciences, Gorgan, Iran
| |
Collapse
|
3
|
Feng Y, Cao Y, Qu Z, Janjua TI, Popat A. Virus-like Silica Nanoparticles Improve Permeability of Macromolecules across the Blood-Brain Barrier In Vitro. Pharmaceutics 2023; 15:2239. [PMID: 37765208 PMCID: PMC10536620 DOI: 10.3390/pharmaceutics15092239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 08/23/2023] [Accepted: 08/25/2023] [Indexed: 09/29/2023] Open
Abstract
The presence of the blood-brain barrier (BBB) limits the delivery of therapies into the brain. There has been significant interest in overcoming the BBB for the effective delivery of therapies to the brain. Inorganic nanomaterials, especially silica nanoparticles with varying surface chemistry and surface topology, have been recently used as permeation enhancers for oral protein delivery. In this context, nanoparticles with varying sizes and surface chemistries have been employed to overcome this barrier; however, there is no report examining the effect of nanoscale roughness on BBB permeability. This paper reports the influence of nanoscale surface roughness on the integrity and permeability of the BBB in vitro, using smooth surface Stöber silica nanoparticles (60 nm) compared to rough surface virus-like silica nanoparticles (VSNP, 60 nm). Our findings reveal that VSNP (1 mg/mL) with virus-mimicking-topology spiky surface have a greater effect on transiently opening endothelial tight junctions of the BBB than the same dose of Stöber silica nanoparticles (1 mg/mL) by increasing the FITC-Dextran (70 kDa) permeability 1.9-fold and by decreasing the trans-endothelial electrical resistance (TEER) by 2.7-fold. This proof-of-concept research paves the way for future studies to develop next-generation tailored surface-modified silica nanoparticles, enabling safe and efficient macromolecule transport across the BBB.
Collapse
Affiliation(s)
| | | | | | - Taskeen Iqbal Janjua
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; (Y.F.); (Y.C.); (Z.Q.)
| | - Amirali Popat
- School of Pharmacy, The University of Queensland, Brisbane, QLD 4102, Australia; (Y.F.); (Y.C.); (Z.Q.)
| |
Collapse
|
4
|
Gerardi V, Rohaim MA, Naggar RFE, Atasoy MO, Munir M. Deep Structural Analysis of Myriads of Omicron Sub-Variants Revealed Hotspot for Vaccine Escape Immunity. Vaccines (Basel) 2023; 11:668. [PMID: 36992252 PMCID: PMC10059128 DOI: 10.3390/vaccines11030668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 03/14/2023] [Accepted: 03/15/2023] [Indexed: 03/18/2023] Open
Abstract
The emergence of the Omicron variant has reinforced the importance of continued SARS-CoV-2 evolution and its possible impact on vaccine effectiveness. Specifically, mutations in the receptor-binding domain (RBD) are critical to comprehend the flexibility and dynamicity of the viral interaction with the human agniotensin-converting enzyme 2 (hACE2) receptor. To this end, we have applied a string of deep structural and genetic analysis tools to map the substitution patterns in the S protein of major Omicron sub-variants (n = 51) with a primary focus on the RBD mutations. This head-to-head comparison of Omicron sub-variants revealed multiple simultaneous mutations that are attributed to antibody escape, and increased affinity and binding to hACE2. Our deep mapping of the substitution matrix indicated a high level of diversity at the N-terminal and RBD domains compared with other regions of the S protein, highlighting the importance of these two domains in a matched vaccination approach. Structural mapping identified highly variable mutations in the up confirmation of the S protein and at sites that critically define the function of the S protein in the virus pathobiology. These substitutional trends offer support in tracking mutations along the evolutionary trajectories of SAR-CoV-2. Collectively, the findings highlight critical areas of mutations across the major Omicron sub-variants and propose several hotspots in the S proteins of SARS-CoV-2 sub-variants to train the future design and development of COVID-19 vaccines.
Collapse
Affiliation(s)
- Valeria Gerardi
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Mohammed A. Rohaim
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
- Department of Virology, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt
| | - Rania F. El Naggar
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
- Department of Virology, Faculty of Veterinary Medicine, University of Sadat City, Sadat 32897, Egypt
| | - Mustafa O. Atasoy
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| | - Muhammad Munir
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster LA1 4YG, UK
| |
Collapse
|
5
|
Intramuscular injection of a mixture of COVID-19 peptide vaccine and tetanus vaccine in horse induced neutralizing antibodies against authentic virus of SARS-CoV-2 Delta variant. Vaccine X 2022; 12:100230. [PMID: 36276875 PMCID: PMC9580217 DOI: 10.1016/j.jvacx.2022.100230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022] Open
Abstract
Peptide vaccine is not effective due to its low immunogenicity. To improve the efficacy of peptide vaccine against COVID-19, a novel method was developed by mixing a COVID-19 peptide vaccine with a tetanus vaccine. In this study, intramuscular injection of a mixture of COVID-19 peptide vaccine and tetanus vaccine twice, i.e., first dose on day 0 and second dose on day 21, induced neutralizing antibodies against authentic virus of SARS-CoV-2 Delta variant in a horse. Horse serum of day 35, i.e., two weeks after the second dose, neutralized authentic virus of SARS-CoV-2 Delta variant, equal to half effectiveness of human serum from vaccinees of Moderna COVID-19 vaccine. However, neither horse serum nor human serum neutralized Omicron variant authentic virus. No side effects were observed after each dose. This study indicates intramuscular injection of a mixture of COVID-19 peptide vaccine and tetanus vaccine may work in humans to improve peptide vaccine efficacy against SARS-CoV-2.
Collapse
|