1
|
Zhang Y, Ma T, Lu X, Hua H, Wu L, Chen Z. Mechanical mechanics-reclaiming a new battlefield for chronic liver disease. J Adv Res 2025:S2090-1232(25)00346-7. [PMID: 40379238 DOI: 10.1016/j.jare.2025.05.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/17/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025] Open
Abstract
BACKGROUND In the 21st century, significant breakthroughs have been made in the research of chronic liver disease. New biochemical markers of pathogenicity and corresponding drugs continue to emerge. However, current treatment strategies remain unsatisfactory due to complex pathological changes in the liver, including vascular dysfunction, myofibroblast-like transition, and local tissue necrosis in liver sinusoids. These challenges have created an urgent need for innovative, synergistic treatments. Mechanical mechanics is a growing field, with increasing evidence suggesting that mechanical signals play a role similar to that of biochemical markers. These signals influence response speed, conduction intensity, and functional diversity in regulating cell activities. AIM OF REVIEW This review summarizes the three main mechanical characteristics involved in the progression of "liver fibrosis-cirrhosis-hepatocellular carcinoma" and provides an in-depth interpretation of several mechanically-related targets. Finally, current and cutting-edge therapeutic strategies are proposed from a cellular perspective. Despite the many challenges that remain, this review is both relevant and significant.
Collapse
Affiliation(s)
- Yiheng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Tianle Ma
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - XingXing Lu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Haibing Hua
- Department of Gastroenterology, Jiangyin Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Jiangyin 214400, China.
| | - Li Wu
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| | - Zhipeng Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China; Engineering Center of State Ministry of Education for Standardization of Chinese Medicine Processing, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing 210023, China.
| |
Collapse
|
2
|
Li Y, Li K, Nakamura F. Characterization of open chromatin sensitive to actin polymerization and identification of core-binding factor subunit beta as mechanosensitive nucleocytoplasmic shuttling protein. Cytoskeleton (Hoboken) 2025; 82:260-269. [PMID: 39239837 DOI: 10.1002/cm.21925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 08/01/2024] [Accepted: 08/23/2024] [Indexed: 09/07/2024]
Abstract
Mechanotransduction leads to a variety of biological responses including gene expression, changes in cell shape, migration, tissue development, and immune responses. Dysregulation of mechanotransduction is implicated in the progression of various diseases such as cardiovascular diseases and cancer. The actin cytoskeleton plays a crucial role in transmitting mechanical stimuli. Actin filaments, essential for cell motility and shape changes, respond to mechanical cues by remodeling, influencing gene expression via the linker of nucleoskeleton and cytoskeleton complex and mechanosensitive transcription factors. This study employs the dithiobis(succinimidyl propionate) (DSP)-micrococcal nuclease (MNase) proteogenomics method to explore the relationship between cellular mechanosensing, chromatin architecture, and the identification of proteins involved in mechanosensitive nucleocytoplasmic shuttling, revealing how actin polymerization affects chromatin and gene expression. We found that depolymerization of actin filaments by latrunculin B (Lat B) for 30 min is sufficient to alter open chromatin and identified core-binding factor subunit beta as mechanosensitive nucleocytoplasmic shuttling protein.
Collapse
Affiliation(s)
- Yaxin Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Kangjing Li
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| | - Fumihiko Nakamura
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
3
|
Kim H, Yoon HG, Yoo JY. Plumbagin ameliorates renal fibrosis by suppressing epithelial-mesenchymal transition. Biochem Biophys Res Commun 2025; 750:151325. [PMID: 39884006 DOI: 10.1016/j.bbrc.2025.151325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 01/01/2025] [Accepted: 01/12/2025] [Indexed: 02/01/2025]
Abstract
Renal fibrosis is a common pathological feature of chronic kidney diseases (CKDs), driven by excessive extracellular matrix (ECM) accumulation. Despite its prevalence, therapeutic candidates specifically targeting fibrosis are limited, and the role of renal tubular epithelial cells in fibrosis pathogenesis remains unclear. In this study, we evaluated the anti-fibrotic effects of Plumbagin, a plant-derived natural compound, using a folic acid-induced renal fibrosis model that simulates proximal tubular injury-driven fibrosis. Plumbagin treatment significantly attenuated renal fibrosis in a folic acid-induced model. Furthermore, using the human proximal tubular epithelial cell line HK-2, we assessed EMT, a key fibrosis-promoting biological process, and the expression of fibrosis-related factors. Plumbagin treatment reduced TGF-β-induced EMT and fibrosis-related factor expression in HK-2 cells. In summary, Plumbagin suppresses EMT in renal tubular epithelial cells under fibrotic conditions and alleviates renal fibrosis. These findings highlight the potential of Plumbagin as a therapeutic drug for renal fibrosis and propose a shared therapeutic strategy for CKD patients.
Collapse
Affiliation(s)
- Hyunsik Kim
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea
| | - Ho-Geun Yoon
- Department of Biochemistry and Molecular Biology, Severance Medical Research Institute, Graduate School of Medical Science, Brain Korea 21 Project, Yonsei University College of Medicine, Seoul, 03722, South Korea.
| | - Jung-Yoon Yoo
- Department of Biomedical Laboratory Science, Yonsei University MIRAE Campus, Wonju, 26493, South Korea.
| |
Collapse
|
4
|
Barton AK, Craig NJ, Loganath K, Joshi S, Tsampasian V, Mahendran M, Lenell J, Tzolos E, Singh T, Whittington B, Nash J, Williams MC, van Beek EJR, MacAskill MG, Berkeley B, Vezaides S, Brittan M, Baker AH, Sellers S, Fletcher A, Clark T, Waight C, Slart RHJA, Berman D, Dey D, Slomka P, Newby DE, Dweck MR. Myocardial Fibroblast Activation After Acute Myocardial Infarction: A Positron Emission Tomography and Magnetic Resonance Study. J Am Coll Cardiol 2025; 85:578-591. [PMID: 39772364 PMCID: PMC11835506 DOI: 10.1016/j.jacc.2024.10.103] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 10/24/2024] [Accepted: 10/24/2024] [Indexed: 02/13/2025]
Abstract
BACKGROUND Myocardial fibrosis is a key healing response after myocardial infarction driven by activated fibroblasts. Gallium-68-labeled fibroblast activation protein inhibitor ([68Ga]-FAPI) is a novel positron-emitting radiotracer that binds activated fibroblasts. OBJECTIVES The aim of this study was to investigate the intensity, distribution, and time-course of fibroblast activation after acute myocardial infarction. METHODS A total of 40 patients with acute myocardial infarction underwent hybrid [68Ga]FAPI-46 positron emission tomography and cardiac magnetic resonance and were compared with matched control subjects (n = 19) and those with chronic (>2 years) myocardial infarction (n = 20). Intensity of [68Ga]FAPI-46 uptake was quantified by maximum target-to-background ratio (TBRmax). Burdens of fibroblast activation and scar were assessed by percent myocardial involvement of [68Ga]FAPI-46 uptake and late gadolinium enhancement, respectively. RESULTS Myocardial [68Ga]FAPI-46 uptake was observed in the acute infarct and peri-infarct regions that exceeded the extent of late gadolinium enhancement (burden 27.8% ± 12.4% vs 15.2% ± 10.6%; P < 0.001). One-third of patients also demonstrated right ventricular involvement. Myocardial [68Ga]FAPI-46 uptake was most intense at 1 and 2 weeks before declining at 4 and 12 weeks (TBRmax 4.0 ± 1.1, 3.7 ± 1.0, 3.1 ± 0.8, and 2.7 ± 0.7; P < 0.001). In comparison with control subjects, increased [68Ga]FAPI-46 uptake was observed in chronic (7 ± 6 years ago) infarcts at lower intensity than acute infarction (TBRmax 1.2 ± 0.1 vs 1.7 ± 0.5 vs 4.0 ± 1.1; P < 0.001). Baseline [68Ga]FAPI-46 burden correlated with lower left ventricular ejection fraction (r = -0.606), higher indexed left ventricular end-diastolic volume (r = 0.572), and higher scar burden (r = 0.871) at 1 year (P < 0.001 for all). Increased remote myocardial [68Ga]FAPI-46 uptake was associated with left ventricular dilatation and systolic dysfunction. CONCLUSIONS Myocardial fibroblast activation peaks within a week of acute myocardial infarction and extends beyond the infarct region. It declines slowly with time, persists for years, and is associated with subsequent left ventricular remodeling. (PROFILE-MI-The FAPI Fibrosis Study; NCT05356923).
Collapse
Affiliation(s)
- Anna K Barton
- British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom.
| | - Neil J Craig
- British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Krithika Loganath
- British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Shruti Joshi
- British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | | | - Menaka Mahendran
- British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Joel Lenell
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Evangelos Tzolos
- British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Trisha Singh
- British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom; Department of Cardiology, Southampton General Hospital, University Hospital Southampton NHS Foundation Trust, Southampton, Hampshire, United Kingdom
| | - Beth Whittington
- British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Jennifer Nash
- British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Michelle C Williams
- British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Edwin J R van Beek
- Edinburgh Imaging Facility, Queen's Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Mark G MacAskill
- British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Bronwyn Berkeley
- British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Stefan Vezaides
- British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Mairi Brittan
- British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Andrew H Baker
- British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Stephanie Sellers
- Department of Radiology and Centre for Heart Lung Innovation, St Paul's Hospital and University of British Columbia, Vancouver, British Columbia, Canada
| | - Alison Fletcher
- Edinburgh Imaging Facility, Queen's Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Tim Clark
- Edinburgh Imaging Facility, Queen's Medical Research Institute, Edinburgh, Scotland, United Kingdom
| | - Clint Waight
- NHS Lothian, The Royal Infirmary of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Riemer H J A Slart
- Medical Imaging Center, Department of Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Groningen, the Netherlands
| | - Daniel Berman
- Departments of Medicine, Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Damini Dey
- Departments of Medicine, Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - Piotr Slomka
- Departments of Medicine, Biomedical Sciences and Imaging, Cedars-Sinai Medical Center, Los Angeles, California, USA
| | - David E Newby
- British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom
| | - Marc R Dweck
- British Heart Foundation Centre of Research Excellence, the University of Edinburgh, Edinburgh, Scotland, United Kingdom
| |
Collapse
|
5
|
Mazarura GR, Hébert TE. Modeling the contribution of cardiac fibroblasts in dilated cardiomyopathy using induced pluripotent stem cells. Mol Pharmacol 2025; 107:100002. [PMID: 39919160 DOI: 10.1124/molpharm.124.000958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 09/18/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024] Open
Abstract
Fibrosis is implicated in nearly all forms of cardiomyopathy and significantly influences disease severity and outcomes. The primary cell responsible for fibrosis is the cardiac fibroblast, which remains understudied relative to cardiomyocytes in the context of cardiomyopathy. The development of induced pluripotent stem cell-derived cardiac fibroblasts (iPSC-CFs) allows for the modeling of patient-specific disease characteristics and provides a scalable source of fibroblasts. iPSC-CFs are invaluable for understanding molecular pathways that affect disease progression and outcomes. This review explores various aspects of cardiomyopathy, with a focus on dilated cardiomyopathy, that can be modeled using iPSC-CFs and their application in drug discovery, given the current lack of approved therapies for cardiac fibrosis. We examine how iPSC-CFs can be utilized to study heart development, fibroblast heterogeneity, and activation, with the ultimate goal of developing better therapies for patients with cardiomyopathies. SIGNIFICANCE STATEMENT: We explore how induced pluripotent stem cell-derived cardiac fibroblasts (iPSC-CFs) are used to study the fibrotic component of dilated cardiomyopathy. Most research has focused on cardiomyocytes, but iPSC-CFs serve as a valuable tool to elucidate molecular pathways leading to fibrosis and paracrine interactions with cardiomyocytes. Gaining insights into these events could aid in the development of new therapies and enable the use of patient-derived iPSC-CFs for precision medicine, ultimately improving patient outcomes.
Collapse
Affiliation(s)
- Grace R Mazarura
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada
| | - Terence E Hébert
- Department of Pharmacology and Therapeutics, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
6
|
Adekunbi DA, Huber HF, Li C, Nathanielsz PW, Cox LA, Salmon AB. Differential mitochondrial bioenergetics and cellular resilience in astrocytes, hepatocytes, and fibroblasts from aging baboons. GeroScience 2024; 46:4443-4459. [PMID: 38607532 PMCID: PMC11335705 DOI: 10.1007/s11357-024-01155-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 04/05/2024] [Indexed: 04/13/2024] Open
Abstract
Biological resilience, broadly defined as the ability to recover from an acute challenge and return to homeostasis, is of growing importance to the biology of aging. At the cellular level, there is variability across tissue types in resilience and these differences are likely to contribute to tissue aging rate disparities. However, there are challenges in addressing these cell-type differences at regional, tissue, and subject level. To address this question, we established primary cells from aged male and female baboons between 13.3 and 17.8 years spanning across different tissues, tissue regions, and cell types including (1) fibroblasts from skin and from the heart separated into the left ventricle (LV), right ventricle (RV), left atrium (LA), and right atrium (RA); (2) astrocytes from the prefrontal cortex and hippocampus; and (3) hepatocytes. Primary cells were characterized by their cell surface markers and their cellular respiration was assessed with Seahorse XFe96. Cellular resilience was assessed by modifying a live-cell imaging approach; we previously reported that monitors proliferation of dividing cells following response and recovery to oxidative (50 µM-H2O2), metabolic (1 mM-glucose), and proteostasis (0.1 µM-thapsigargin) stress. We noted significant differences even among similar cell types that are dependent on tissue source and the diversity in cellular response is stressor-specific. For example, astrocytes had a higher oxygen consumption rate and exhibited greater resilience to oxidative stress (OS) than both fibroblasts and hepatocytes. RV and RA fibroblasts were less resilient to OS compared with LV and LA, respectively. Skin fibroblasts were less impacted by proteostasis stress compared to astrocytes and cardiac fibroblasts. Future studies will test the functional relationship of these outcomes to the age and developmental status of donors as potential predictive markers.
Collapse
Affiliation(s)
- Daniel A Adekunbi
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA
| | - Hillary F Huber
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, TX, USA
| | - Cun Li
- Department of Animal Science, Texas Pregnancy and Life-Course Health Research Center, University of Wyoming, Laramie, WY, USA
| | - Peter W Nathanielsz
- Department of Animal Science, Texas Pregnancy and Life-Course Health Research Center, University of Wyoming, Laramie, WY, USA
| | - Laura A Cox
- Center for Precision Medicine, Department of Internal Medicine, Wake Forest University School of Medicine, Winston-Salem, NC, USA
| | - Adam B Salmon
- Department of Molecular Medicine and Barshop Institute for Longevity and Aging Studies, The University of Texas Health Science Center at San Antonio, 7703 Floyd Curl Dr, San Antonio, TX, 78229, USA.
- Geriatric Research Education and Clinical Center, Audie L. Murphy Hospital, Southwest Veterans Health Care System, San Antonio, TX, USA.
| |
Collapse
|
7
|
Hong X, Tian G, Dai B, Zhou X, Gao Y, Zhu L, Liu H, Zhu Q, Zhang L, Zhu Y, Ren D, Guo C, Nan J, Liu X, Wang J, Ren T. Copper-loaded Milk-Protein Derived Microgel Preserves Cardiac Metabolic Homeostasis After Myocardial Infarction. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401527. [PMID: 39007192 PMCID: PMC11425262 DOI: 10.1002/advs.202401527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/11/2024] [Indexed: 07/16/2024]
Abstract
Myocardial Infarction (MI) is a leading cause of death worldwide. Metabolic modulation is a promising therapeutic approach to prevent adverse remodeling after MI. However, whether material-derived cues can treat MI through metabolic regulation is mainly unexplored. Herein, a Cu2+ loaded casein microgel (CuCMG) aiming to rescue the pathological intramyocardial metabolism for MI amelioration is developed. Cu2+ is an important ion factor involved in metabolic pathways, and intracardiac copper drain is observed after MI. It is thus speculated that intramyocardial supplementation of Cu2+ can rescue myocardial metabolism. Casein, a milk-derived protein, is screened out as Cu2+ carrier through molecular-docking based on Cu2+ loading capacity and accessibility. CuCMGs notably attenuate MI-induced cardiac dysfunction and maladaptive remodeling, accompanied by increased angiogenesis. The results from unbiased transcriptome profiling and oxidative phosphorylation analyses support the hypothesis that CuCMG prominently rescued the metabolic homeostasis of myocardium after MI. These findings enhance the understanding of the design and application of metabolic-modulating biomaterials for ischemic cardiomyopathy therapy.
Collapse
Affiliation(s)
- Xiaoqian Hong
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Geer Tian
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Binyao Dai
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xuhao Zhou
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Ying Gao
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Lianlian Zhu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Haoran Liu
- School of Engineering, Westlake University, Hangzhou, 310023, China
| | - Qinchao Zhu
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Liwen Zhang
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Zhu
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Daxi Ren
- Institute of Dairy Science, College of Animal Sciences, Zhejiang University, Hangzhou, 310027, China
| | - Chengchen Guo
- School of Engineering, Westlake University, Hangzhou, 310023, China
| | - Jinliang Nan
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Xianbao Liu
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Jian'an Wang
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| | - Tanchen Ren
- Department of Cardiology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310009, China
- State Key Laboratory of Transvascular Implantation Devices, Heart Regeneration and Repair Key Laboratory Zhejiang Province, Hangzhou, 310009, China
| |
Collapse
|
8
|
Elias-Llumbet A, Sharmin R, Berg-Sorensen K, Schirhagl R, Mzyk A. The Interplay between Mechanoregulation and ROS in Heart Physiology, Disease, and Regeneration. Adv Healthc Mater 2024; 13:e2400952. [PMID: 38962858 DOI: 10.1002/adhm.202400952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Indexed: 07/05/2024]
Abstract
Cardiovascular diseases are currently the most common cause of death in developed countries. Due to lifestyle and environmental factors, this problem is only expected to increase in the future. Reactive oxygen species (ROS) are a key player in the onset of cardiovascular diseases but also have important functions in healthy cardiac tissue. Here, the interplay between ROS generation and cardiac mechanical forces is shown, and the state of the art and a perspective on future directions are discussed. To this end, an overview of what is currently known regarding ROS and mechanosignaling at a subcellular level is first given. There the role of ROS in mechanosignaling as well as the interplay between both factors in specific organelles is emphasized. The consequences at a larger scale across the population of heart cells are then discussed. Subsequently, the roles of ROS in embryogenesis, pathogenesis, and aging are further discussed, exemplifying some aspects of mechanoregulation. Finally, different models that are currently in use are discussed to study the topics above.
Collapse
Affiliation(s)
- Arturo Elias-Llumbet
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
- Laboratory of Genomic of Germ Cells, Biomedical Sciences Institute, Faculty of Medicine, University of Chile, Independencia, Santiago, 1027, Chile
| | - Rokshana Sharmin
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | | | - Romana Schirhagl
- Department of Biomedical Engineering, University of Groningen, University Medical Center Groningen, Antonius Deusinglaan 1, Groningen, 9713AW, The Netherlands
| | - Aldona Mzyk
- DTU Health Tech, Ørsteds Plads Bldg 345C, Kongens Lyngby, 2800, Denmark
| |
Collapse
|
9
|
Han Y, Shao Z, Zhang Y, Zhao H, Sun Z, Yang C, Tang H, Han Y, Gao C. 3D matrix stiffness modulation unveils cardiac fibroblast phenotypic switching. Sci Rep 2024; 14:17015. [PMID: 39043765 PMCID: PMC11266583 DOI: 10.1038/s41598-024-67646-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 07/15/2024] [Indexed: 07/25/2024] Open
Abstract
This study investigates how dynamic fluctuations in matrix stiffness affect the behavior of cardiac fibroblasts (CFs) within a three-dimensional (3D) hydrogel environment. Using hybrid hydrogels with tunable stiffness, we created an in vitro model to mimic the varying stiffness of the cardiac microenvironment. By manipulating hydrogel stiffness, we examined CF responses, particularly the expression of α-smooth muscle actin (α-SMA), a marker of myofibroblast differentiation. Our findings reveal that increased matrix stiffness promotes the differentiation of CFs into myofibroblasts, while matrix softening reverses this process. Additionally, we identified the role of focal adhesions and integrin β1 in mediating stiffness-induced phenotypic switching. This study provides significant insights into the mechanobiology of cardiac fibrosis and suggests that modulating matrix stiffness could be a potential therapeutic strategy for treating cardiovascular diseases.
Collapse
Affiliation(s)
- Yan Han
- Department of Structural Heart Disease, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China
| | - Zehua Shao
- Department of Surgery, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100871, China
| | - Yuanhao Zhang
- Department of Structural Heart Disease, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China
| | - Huan Zhao
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zirui Sun
- Department of Structural Heart Disease, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China
| | - Chaokuan Yang
- Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China
| | - Hao Tang
- Zhengzhou Key Laboratory of Cardiovascular Aging, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China.
- National Health Commission Key Laboratory of Cardiovascular Regenerative Medicine, Central China Branch of National Center for Cardiovascular Diseases, Zhengzhou, 451464, Henan, China.
| | - Yu Han
- Department of Structural Heart Disease, Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China.
| | - Chuanyu Gao
- Central China Fuwai Hospital of Zhengzhou University, Zhengzhou, 451464, Henan, China.
| |
Collapse
|
10
|
Zhang H, Yin Y, Chen S, Qian P, Zou G, Liu Y, Yang J, Zhang H. Downregulation of RIP3 ameliorates the left ventricular mechanics and function after myocardial infarction via modulating NF-κB/NLRP3 pathway. Open Life Sci 2024; 19:20220890. [PMID: 38911926 PMCID: PMC11193396 DOI: 10.1515/biol-2022-0890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/10/2024] [Accepted: 05/14/2024] [Indexed: 06/25/2024] Open
Abstract
Adverse cardiac mechanical remodeling is critical for the progression of heart failure following myocardial infarction (MI). We previously demonstrated the involvement of RIP3-mediated necroptosis in the loss of functional cardiomyocytes and cardiac dysfunction post-MI. Herein, we investigated the role of RIP3 in NOD-like receptor protein 3 (NLRP3)-mediated inflammation and evaluated the effects of RIP3 knockdown on myocardial mechanics and functional changes after MI. Our findings revealed that mice with MI for 4 weeks exhibited impaired left ventricular (LV) myocardial mechanics, as evidenced by a significant decrease in strain and strain rate in each segment of the LV wall during both systole and diastole. However, RIP3 knockdown ameliorated cardiac dysfunction by improving LV myocardial mechanics not only in the anterior wall but also in other remote nonischemic segments of the LV wall. Mechanistically, knockdown of RIP3 effectively inhibited the activation of the nuclear factor kappa-B (NF-κB)/NLRP3 pathway, reduced the levels of interleukin-1β (IL-1β) and interleukin-18 (IL-18) in the heart tissues, and mitigated adverse cardiac remodeling following MI. These results suggest that downregulation of RIP3 holds promise for preventing myocardial inflammation and cardiac mechanical remodeling following MI by regulating the NF-κB/NLRP3 pathway.
Collapse
Affiliation(s)
- Han Zhang
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou510080, China
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Yuan Yin
- Department of Pharmacy, Affiliated Guangxi International Zhuang Medical Hospital, Guangxi University of Traditional Chinese Medicine, Guangxi, 530021, P.R. China
| | - Shan Chen
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou510080, China
| | - Peipei Qian
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
| | - Ganglin Zou
- Nanhai Mental Health Center, People's Hospital of Nanhai District, Foshan, 528200, P.R. China
| | - Yumei Liu
- Department of Pharmacology, Jiaying University, Meizhou, 514031, P.R. China
| | - Junying Yang
- Department of Stomatology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou510080, China
| | - Haining Zhang
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State & NMPA Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, 511436, P.R. China
- Department of Pharmacology, Guangzhou Medical University, Guangzhou, 511436, China
| |
Collapse
|
11
|
Ren H, Hu W, Jiang T, Yao Q, Qi Y, Huang K. Mechanical stress induced mitochondrial dysfunction in cardiovascular diseases: Novel mechanisms and therapeutic targets. Biomed Pharmacother 2024; 174:116545. [PMID: 38603884 DOI: 10.1016/j.biopha.2024.116545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/02/2024] [Accepted: 04/04/2024] [Indexed: 04/13/2024] Open
Abstract
Cardiovascular diseases (CVDs) are the leading cause of mortality worldwide. Others and our studies have shown that mechanical stresses (forces) including shear stress and cyclic stretch, occur in various pathological conditions, play significant roles in the development and progression of CVDs. Mitochondria regulate the physiological processes of cardiac and vascular cells mainly through adenosine triphosphate (ATP) production, calcium flux and redox control while promote cell death through electron transport complex (ETC) related cellular stress response. Mounting evidence reveal that mechanical stress-induced mitochondrial dysfunction plays a vital role in the pathogenesis of many CVDs including heart failure and atherosclerosis. This review summarized mitochondrial functions in cardiovascular system under physiological mechanical stress and mitochondrial dysfunction under pathological mechanical stress in CVDs (graphical abstract). The study of mitochondrial dysfunction under mechanical stress can further our understanding of the underlying mechanisms, identify potential therapeutic targets, and aid the development of novel treatments of CVDs.
Collapse
Affiliation(s)
- He Ren
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China; Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Weiyi Hu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Tao Jiang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, School of Biological Science and Medical Engineering, Beihang University, Beijing 100083, China
| | - Qingping Yao
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Yingxin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China
| | - Kai Huang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China.
| |
Collapse
|
12
|
Du X, Xu X, Liu Y, Wang Z, Qiu H, Zhao A, Lu L. Cell Heterogeneity Analysis Revealed the Key Role of Fibroblasts in the Magnum Regression of Ducks. Animals (Basel) 2024; 14:1072. [PMID: 38612311 PMCID: PMC11011120 DOI: 10.3390/ani14071072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 03/26/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Duck egg production, like that of laying hens, follows a typical low-peak-low cycle, reflecting the dynamics of the reproductive system. Post-peak, some ducks undergo a cessation of egg laying, indicative of a regression process in the oviduct. Notably, the magnum, being the longest segment of the oviduct, plays a crucial role in protein secretion. Despite its significance, few studies have investigated the molecular mechanisms underlying oviduct regression in ducks that have ceased laying eggs. In this study, we conducted single-cell transcriptome sequencing on the magnum tissue of Shaoxing ducks at 467 days of age, utilizing the 10× Genomics platform. This approach allowed us to generate a detailed magnum transcriptome map of both egg-laying and ceased-laying ducks. We collected transcriptome data from 13,708 individual cells, which were then subjected to computational analysis, resulting in the identification of 27 distinct cell clusters. Marker genes were subsequently employed to categorize these clusters into specific cell types. Our analysis revealed notable heterogeneity in magnum cells between the egg-laying and ceased-laying ducks, primarily characterized by variations in cells involved in protein secretion and extracellular matrix (ECM)-producing fibroblasts. Specifically, cells engaged in protein secretion were predominantly observed in the egg-laying ducks, indicative of their role in functional albumen deposition within the magnum, a phenomenon not observed in the ceased-laying ducks. Moreover, the proportion of THY1+ cells within the ECM-producing fibroblasts was found to be significantly higher in the egg-laying ducks (59%) compared to the ceased-laying ducks (24%). Similarly, TIMP4+ fibroblasts constituted a greater proportion of the ECM-producing fibroblasts in the egg-laying ducks (83%) compared to the ceased-laying ducks (58%). These findings suggest a potential correlation between the expression of THY1 and TIMP4 in ECM-producing fibroblasts and oviduct activity during functional reproduction. Our study provides valuable single-cell insights that warrant further investigation into the biological implications of fibroblast subsets in the degeneration of the reproductive tract. Moreover, these insights hold promise for enhancing the production efficiency of laying ducks.
Collapse
Affiliation(s)
- Xue Du
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China; (X.D.)
| | - Xiaoqin Xu
- Institute of Ecology, China West Normal University, Nanchong 637002, China
| | - Yali Liu
- Zhejiang Provincial Animal Husbandry Technology Promotion and Breeding Livestock and Poultry Monitoring Station, Hangzhou 310020, China
| | - Zhijun Wang
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China; (X.D.)
| | - Hao Qiu
- Independent Researcher, Hangzhou 310021, China
| | - Ayong Zhao
- Key Laboratory of Applied Technology on Green-Eco-Healthy Animal Husbandry of Zhejiang Province, Zhejiang Provincial Engineering Laboratory for Animal Health Inspection & Internet Technology, Zhejiang International Science and Technology Cooperation Base for Veterinary Medicine and Health Management, China-Australia Joint Laboratory for Animal Health Big Data Analytics, College of Animal Science and Technology & College of Veterinary Medicine of Zhejiang A&F University, Hangzhou 311300, China; (X.D.)
| | - Lizhi Lu
- Key Laboratory of Livestock and Poultry Resources (Poultry) Evaluation and Utilization, Ministry of Agriculture and Rural Affairs of China, State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, Institute of Animal Science & Veterinary, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| |
Collapse
|
13
|
Hoque MM, Gbadegoye JO, Hassan FO, Raafat A, Lebeche D. Cardiac fibrogenesis: an immuno-metabolic perspective. Front Physiol 2024; 15:1336551. [PMID: 38577624 PMCID: PMC10993884 DOI: 10.3389/fphys.2024.1336551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 03/07/2024] [Indexed: 04/06/2024] Open
Abstract
Cardiac fibrosis is a major and complex pathophysiological process that ultimately culminates in cardiac dysfunction and heart failure. This phenomenon includes not only the replacement of the damaged tissue by a fibrotic scar produced by activated fibroblasts/myofibroblasts but also a spatiotemporal alteration of the structural, biochemical, and biomechanical parameters in the ventricular wall, eliciting a reactive remodeling process. Though mechanical stress, post-infarct homeostatic imbalances, and neurohormonal activation are classically attributed to cardiac fibrosis, emerging evidence that supports the roles of immune system modulation, inflammation, and metabolic dysregulation in the initiation and progression of cardiac fibrogenesis has been reported. Adaptive changes, immune cell phenoconversions, and metabolic shifts in the cardiac nonmyocyte population provide initial protection, but persistent altered metabolic demand eventually contributes to adverse remodeling of the heart. Altered energy metabolism, mitochondrial dysfunction, various immune cells, immune mediators, and cross-talks between the immune cells and cardiomyocytes play crucial roles in orchestrating the transdifferentiation of fibroblasts and ensuing fibrotic remodeling of the heart. Manipulation of the metabolic plasticity, fibroblast-myofibroblast transition, and modulation of the immune response may hold promise for favorably modulating the fibrotic response following different cardiovascular pathological processes. Although the immunologic and metabolic perspectives of fibrosis in the heart are being reported in the literature, they lack a comprehensive sketch bridging these two arenas and illustrating the synchrony between them. This review aims to provide a comprehensive overview of the intricate relationship between different cardiac immune cells and metabolic pathways as well as summarizes the current understanding of the involvement of immune-metabolic pathways in cardiac fibrosis and attempts to identify some of the previously unaddressed questions that require further investigation. Moreover, the potential therapeutic strategies and emerging pharmacological interventions, including immune and metabolic modulators, that show promise in preventing or attenuating cardiac fibrosis and restoring cardiac function will be discussed.
Collapse
Affiliation(s)
- Md Monirul Hoque
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Joy Olaoluwa Gbadegoye
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Fasilat Oluwakemi Hassan
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Amr Raafat
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
| | - Djamel Lebeche
- Departments of Physiology, The University of Tennessee Health Science Center, Memphis, TN, United States
- College of Graduate Health Sciences, The University of Tennessee Health Science Center, Memphis, TN, United States
- Medicine-Cardiology, College of Medicine, The University of Tennessee Health Science Center, Memphis, TN, United States
- Pharmaceutical Sciences, College of Pharmacy, The University of Tennessee Health Science Center, Memphis, TN, United States
| |
Collapse
|
14
|
Hong X, Tian G, Zhu Y, Ren T. Exogeneous metal ions as therapeutic agents in cardiovascular disease and their delivery strategies. Regen Biomater 2023; 11:rbad103. [PMID: 38173776 PMCID: PMC10761210 DOI: 10.1093/rb/rbad103] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/26/2023] [Accepted: 11/11/2023] [Indexed: 01/05/2024] Open
Abstract
Metal ions participate in many metabolic processes in the human body, and their homeostasis is crucial for life. In cardiovascular diseases (CVDs), the equilibriums of metal ions are frequently interrupted, which are related to a variety of disturbances of physiological processes leading to abnormal cardiac functions. Exogenous supplement of metal ions has the potential to work as therapeutic strategies for the treatment of CVDs. Compared with other therapeutic drugs, metal ions possess broad availability, good stability and safety and diverse drug delivery strategies. The delivery strategies of metal ions are important to exert their therapeutic effects and reduce the potential toxic side effects for cardiovascular applications, which are also receiving increasing attention. Controllable local delivery strategies for metal ions based on various biomaterials are constantly being designed. In this review, we comprehensively summarized the positive roles of metal ions in the treatment of CVDs from three aspects: protecting cells from oxidative stress, inducing angiogenesis, and adjusting the functions of ion channels. In addition, we introduced the transferability of metal ions in vascular reconstruction and cardiac tissue repair, as well as the currently available engineered strategies for the precise delivery of metal ions, such as integrated with nanoparticles, hydrogels and scaffolds.
Collapse
Affiliation(s)
- Xiaoqian Hong
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| | - Geer Tian
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
| | - Yang Zhu
- Binjiang Institute of Zhejiang University, Hangzhou 310053, China
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China
| | - Tanchen Ren
- Department of Cardiology of the Second Affiliated Hospital and State Key Laboratory of Transvascular Implantation Devices, Cardiovascular Key Laboratory of Zhejiang Province, Zhejiang University School of Medicine, Hangzhou 310009, China
| |
Collapse
|
15
|
Schwarz US, Vicente-Manzanares M. Editorial - Cell mechanics and mechanobiology. Eur J Cell Biol 2023; 102:151304. [PMID: 36907743 DOI: 10.1016/j.ejcb.2023.151304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/11/2023] Open
Affiliation(s)
- Ulrich S Schwarz
- Institute for Theoretical Physics, Heidelberg University, Philosophenweg 19, 69120 Heidelberg, Germany; BioQuant-Center for Quantitative Biology, Heidelberg University, Im Neuenheimer Feld 267, 69120 Heidelberg, Germany
| | - Miguel Vicente-Manzanares
- Molecular Mechanisms Program, Centro de Investigación del Cáncer and Instituto de Biología Molecular y Celular del Cáncer, Consejo Superior de Investigaciones Científicas (CSIC)-Universidad de Salamanca, 37007 Salamanca, Spain.
| |
Collapse
|