1
|
Miura T, Sato T, Yano T, Takaguri A, Miki T, Tohse N, Nishizawa K. Role of Erythropoiesis-Stimulating Agents in Cardiovascular Protection in CKD Patients: Reappraisal of Their Impact and Mechanisms. Cardiovasc Drugs Ther 2023; 37:1175-1192. [PMID: 35150385 DOI: 10.1007/s10557-022-07321-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/28/2022] [Indexed: 11/28/2022]
Abstract
Erythropoiesis-stimulating agents (ESAs) have markedly reduced the need for blood transfusion for renal anemia and are included in standard therapies for patients with chronic kidney disease (CKD). Various protective effects of ESAs on the cardiovascular system have been discovered through basic research, and the effects have received much attention because the rates of cardiovascular events and mortality are high in CKD patients. However, randomized clinical trials did not provide strong evidence that ESAs exert cardioprotection in humans, including CKD patients. It is difficult to assess the cardioprotective effects of ESAs in CKD patients through the clinical data that has been reported to date because the relationship between hemoglobin level rather than ESA dose and cardiovascular event rates was examined in most studies. Interestingly, recent studies using a rat model of CKD showed that the infarct size-limiting effect of an ESA was lost when its dose was increased to a level that normalized blood hemoglobin levels, suggesting that the optimal dose of an ESA for myocardial protection is less than the dose required to normalize hemoglobin levels. Furthermore, animal models of traditional coronary risk factors or comorbidities were resistant to the cardioprotective effects of ESAs because of interruptions in signal-mediated mechanisms downstream of erythropoietin receptors. In this review, we briefly discuss basic and clinical data on the impact of anemia on coronary and systemic circulation, the effects of CKD on the cardiovascular system, and the multiple pharmacological actions of ESAs to examine whether the ESAs that are prescribed for renal anemia exert any cardioprotection in patients with CKD.
Collapse
Affiliation(s)
- Tetsuji Miura
- Department of Clinical Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, 15-4-1, Maeda-7, Teine-ku, Sapporo, Japan.
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | - Tatsuya Sato
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Toshiyuki Yano
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Akira Takaguri
- Department of Pharmacology, Faculty of Pharmaceutical Sciences, Hokkaido University of Science, Sapporo, Japan
| | - Takayuki Miki
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Cardiology and Diabetes, Oji General Hospital, Tomakomai, Japan
| | - Noritsugu Tohse
- Department of Cellular Physiology and Signal Transduction, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Keitaro Nishizawa
- Department of Cardiovascular, Renal and Metabolic Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
- Department of Nephrology, Asahikawa Red Cross, Hospital, Asahikawa, Japan
| |
Collapse
|
2
|
Shah AM, Giacca M. Small non-coding RNA therapeutics for cardiovascular disease. Eur Heart J 2022; 43:4548-4561. [PMID: 36106499 PMCID: PMC9659475 DOI: 10.1093/eurheartj/ehac463] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 07/29/2022] [Accepted: 08/11/2022] [Indexed: 01/07/2023] Open
Abstract
Novel bio-therapeutic agents that harness the properties of small, non-coding nucleic acids hold great promise for clinical applications. These include antisense oligonucleotides that inhibit messenger RNAs, microRNAs (miRNAs), or long non-coding RNAs; positive effectors of the miRNA pathway (short interfering RNAs and miRNA mimics); or small RNAs that target proteins (i.e. aptamers). These new therapies also offer exciting opportunities for cardiovascular diseases and promise to move the field towards more precise approaches based on disease mechanisms. There have been substantial advances in developing chemical modifications to improve the in vivo pharmacological properties of antisense oligonucleotides and reduce their immunogenicity. Carrier methods (e.g. RNA conjugates, polymers, and lipoplexes) that enhance cellular uptake of RNA therapeutics and stability against degradation by intracellular nucleases are also transforming the field. A number of small non-coding RNA therapies for cardiovascular indications are now approved. Moreover, there is a large pipeline of therapies in clinical development and an even larger list of putative therapies emerging from pre-clinical studies. Progress in this area is reviewed herein along with the hurdles that need to be overcome to allow a broader clinical translation.
Collapse
Affiliation(s)
- Ajay M Shah
- King’s College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| | - Mauro Giacca
- King’s College London, British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine and Sciences, The James Black Centre, 125 Coldharbour Lane, London SE5 9NU, UK
| |
Collapse
|
3
|
Abstract
For therapeutic materials to be successfully delivered to the heart, several barriers need to be overcome, including the anatomical challenges of access, the mechanical force of the blood flow, the endothelial barrier, the cellular barrier and the immune response. Various vectors and delivery methods have been proposed to improve the cardiac-specific uptake of materials to modify gene expression. Viral and non-viral vectors are widely used to deliver genetic materials, but each has its respective advantages and shortcomings. Adeno-associated viruses have emerged as one of the best tools for heart-targeted gene delivery. In addition, extracellular vesicles, including exosomes, which are secreted by most cell types, have gained popularity for drug delivery to several organs, including the heart. Accumulating evidence suggests that extracellular vesicles can carry and transfer functional proteins and genetic materials into target cells and might be an attractive option for heart-targeted delivery. Extracellular vesicles or artificial carriers of non-viral and viral vectors can be bioengineered with immune-evasive and cardiotropic properties. In this Review, we discuss the latest strategies for targeting and delivering therapeutic materials to the heart and how the knowledge of different vectors and delivery methods could successfully translate cardiac gene therapy into the clinical setting.
Collapse
Affiliation(s)
- Susmita Sahoo
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Taro Kariya
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kiyotake Ishikawa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
4
|
Vela D, Gahremanpour A, Buja LM. Method for sectioning and sampling hearts for histologic evaluation after delivery of biological agents by transendocardial injection. Cardiovasc Pathol 2015; 24:304-9. [DOI: 10.1016/j.carpath.2015.04.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 02/20/2015] [Accepted: 04/13/2015] [Indexed: 11/26/2022] Open
|
5
|
Do we have a future with transcatheter adventitial delivery of stem cells? Int J Cardiol 2012; 165:217-21. [PMID: 23218580 DOI: 10.1016/j.ijcard.2012.11.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 11/11/2012] [Indexed: 11/20/2022]
Abstract
Critically evaluating the methodology of the adventitial delivery of stem cells, some specific options should be underlined. Adventitia as the most superficial layer, consisting of connective tissue has to be distinguished of perivascular tissues. By strict definition, an adventitia is the outermost connective tissue covering any organ, or vessel. The "adventitial" delivery of stem cells with a 1mm micro-needle means a delivery to superficial so called pericardial myocardium, perivascular fat tissues, including a risk of perforation and injury of soft tissues. In fact, the mapping of the artery with visualization of the three-layer vessel structure and perivascular tissues as well as pericardial space with the state-of-the-art imaging approaches including IVUS (intravascular ultrasound) or OCT (optical coherence tomography) allows to find an optimal site for injection, prevents any technical complications and improves efficacy. NOGA magnetic navigation system still remains the optimal tool for the stem cell delivery to myocardium with appropriate visualization of necrosis and peri-infarct tissues. Potentially, more advanced imaging provides a chance to deliver infusate to the adventitial layer, which is a gate to the vessel wall for inflammation as well as a source of stem and progenitor cells, and myofibroblasts.
Collapse
|
6
|
McCook O, Georgieff M, Scheuerle A, Möller P, Thiemermann C, Radermacher P. Erythropoietin in the critically ill: do we ask the right questions? CRITICAL CARE : THE OFFICIAL JOURNAL OF THE CRITICAL CARE FORUM 2012; 16:319. [PMID: 23016869 PMCID: PMC3682241 DOI: 10.1186/cc11430] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
There is a plethora of experimental data on the potential therapeutic benefits of recombinant human erythropoietin (rhEPO) and its synthetic derivatives in critical care medicine, in particular in ischemia/reperfusion injury. Most of the recent clinical trials have not shown clear benefits, and, in some patients, EPO-aggravated morbidity and mortality was even reported. Treatment with rhEPO has been successfully used in patients with anemia resulting from chronic kidney disease, but even a subset of this patient population does not adequately respond to rhEPO therapy. The following viewpoint uses rhEPO as an example to highlight the possible pitfalls in current practice using young healthy animals for the evaluation of therapies to treat patients of variable age and underlying chronic co-morbidity.
Collapse
|
7
|
The role of erythropoietin in the "stroke belt" phenomenon. Med Hypotheses 2012; 79:181-5. [PMID: 22626952 DOI: 10.1016/j.mehy.2012.04.029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2012] [Revised: 04/10/2012] [Accepted: 04/20/2012] [Indexed: 11/21/2022]
Abstract
Global geographic disparities in stroke mortality rates are substantial. In the US alone, higher stroke mortality rates are reported in the Southeast part particularly along the coastline while lower rates have been observed in the Mountain region. The phenomenon has been called the "stroke belt". Although many theories have attempted to explain such nonrandom distribution of stroke mortality rates, no conclusive explanations have been drawn so far. I hypothesize that this nonrandom stroke distribution is related to regional differences in individual levels of erythropoietin (EPO), a hormone, which production depends on the tissue hypoxia due to variation in altitude. If successful, future studies based on this hypothesis may open up new avenues for treatment of such an important health issue as stroke. More importantly, future studies based on this theory may shed the lights on the mechanism of stroke as well as other diseases which have nonrandom geographic distribution not only in the US but also internationally.
Collapse
|
8
|
Gyöngyösi M, Dib N. Diagnostic and prognostic value of 3D NOGA mapping in ischemic heart disease. Nat Rev Cardiol 2011; 8:393-404. [DOI: 10.1038/nrcardio.2011.64] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
9
|
Yeghiazarians Y, Khan M, Angeli FS, Zhang Y, Jahn S, Prasad M, Mirsky R, Shih H, Minasi P, Boyle A, Grossman W. Cytokine combination therapy with long-acting erythropoietin and granulocyte colony stimulating factor improves cardiac function but is not superior than monotherapy in a mouse model of acute myocardial infarction. J Card Fail 2010; 16:669-78. [PMID: 20670846 DOI: 10.1016/j.cardfail.2010.03.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2009] [Revised: 03/09/2010] [Accepted: 03/10/2010] [Indexed: 01/02/2023]
Abstract
BACKGROUND Erythropoietin (EPO) and granulocyte colony stimulating factor (GCSF) are potential novel therapies after myocardial infarction (MI). We first established the optimal and clinically applicable dosages of these drugs in mobilizing hematopoietic stem cells (HSC), and then tested the efficacy of monotherapy and combination therapy post-MI. METHODS AND RESULTS Optimal doses were established in enhanced green fluorescent protein (eGFP) + chimeric mice (n = 30). Next, mice underwent MI and randomized into 4 groups (n = 18/group): 1) GCSF; 2) EPO; 3) EPO+GCSF; and 4) control. Left ventricular (LV) function was analyzed pre-MI, at 4 hours and at 28 days post-MI. Histological assessment of infarct size, blood vessels, apoptotic cardiomyocytes, and engraftment of eGFP+ mobilized cells were analyzed at day 28. LV function in the control group continued to deteriorate, whereas all treatments showed stabilization. The treatment groups resulted in less scarring, increased numbers of mobilized cells to the infarct border zone (BZ), and a reduction in the number of apoptotic cardiomyocytes. Both EPO groups had significantly more capillaries and arterioles at the BZ. CONCLUSION We have established the optimal doses for EPO and GCSF in mobilizing HSC from the bone marrow and demonstrated that therapy with these agents, either as monotherapy or combination therapy, led to improvement of cardiac function post-MI. Combination therapy does not seem to have additive benefit over monotherapy in this model.
Collapse
Affiliation(s)
- Yerem Yeghiazarians
- Division of Cardiology, Department of Medicine, University of California, San Francisco, San Francisco, California 94143-0103, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
KRAUSE KORFF, SCHNEIDER CARSTEN, LANGE CLAUDIA, KOKTURK BULENT, BOCZOR SIGRID, GEIDEL STEPHAN, SALHI AHMED, ALASER JUSUF, ZANDER AXELR, KUCK KARLHEINZ, JAQUET KAI. Endocardial Electrogram Analysis after Intramyocardial Injection of Mesenchymal Stem Cells in the Chronic Ischemic Myocardium. PACING AND CLINICAL ELECTROPHYSIOLOGY: PACE 2009; 32:1319-28. [DOI: 10.1111/j.1540-8159.2009.02483.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
11
|
Schneider C, Jaquet K, Geidel S, Rau T, Malisius R, Boczor S, Zienkiewicz T, Kuck KH, Krause K. Transplantation of Bone Marrow-Derived Stem Cells Improves Myocardial Diastolic Function: Strain Rate Imaging in a Model of Hibernating Myocardium. J Am Soc Echocardiogr 2009; 22:1180-9. [DOI: 10.1016/j.echo.2009.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2008] [Indexed: 01/17/2023]
|
12
|
Wang T, Jiang XJ, Lin T, Ren S, Li XY, Zhang XZ, Tang QZ. The inhibition of postinfarct ventricle remodeling without polycythaemia following local sustained intramyocardial delivery of erythropoietin within a supramolecular hydrogel. Biomaterials 2009; 30:4161-7. [PMID: 19539990 DOI: 10.1016/j.biomaterials.2009.04.033] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2009] [Accepted: 04/13/2009] [Indexed: 02/01/2023]
Abstract
Erythropoietin (EPO) can protect myocardium from ischemic injury, but it also plays an important role in promoting polycythaemia, the potential for thrombo-embolic complications. Local sustained delivery of bioactive agents directly to impaired tissues using biomaterials is an approach to limit systemic toxicity and improve the efficacy of therapies. The present study was performed to investigate whether local intramyocardial injection of EPO with hydrogel could enhance cardioprotective effect without causing polycythaemia after myocardial infarction (MI). To test the hypothesis, phosphate buffered solution (PBS), alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel, recombined human erythropoietin (rhEPO) in PBS, or rhEPO in hydrogel were injected into the infarcted area immediately after MI in rats. The hydrogel allowed a sustained release of EPO, which inhibited cell apoptosis and increased neovasculature formation, and subsequently reduced infarct size and improved cardiac function compared with other groups. Notably, there was no evidence of polycythaemia from this therapy, with no differences in erythrocyte count and hematocrit compared with the animals received PBS or hydrogel blank injection. In conclusion, intramyocardial delivery of rhEPO with alpha-cyclodextrin/MPEG-PCL-MPEG hydrogel may lead to cardiac performance improvement after MI without apparent adverse effect.
Collapse
Affiliation(s)
- Tao Wang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, PR China
| | | | | | | | | | | | | |
Collapse
|
13
|
Endoventricular Electromechanical Mapping—The Diagnostic and Therapeutic Utility of the NOGA® XP Cardiac Navigation System. J Cardiovasc Transl Res 2008; 2:48-62. [DOI: 10.1007/s12265-008-9080-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2008] [Accepted: 11/04/2008] [Indexed: 01/16/2023]
|
14
|
Schneider C, Krause K, Jaquet K, Geidel S, Malisius R, Boczor S, Rau T, Zienkiewicz T, Hennig D, Kuck KH. Intramyocardial transplantation of bone marrow-derived stem cells: ultrasonic strain rate imaging in a model of hibernating myocardium. J Card Fail 2008; 14:861-72. [PMID: 19041051 DOI: 10.1016/j.cardfail.2008.08.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2008] [Revised: 06/16/2008] [Accepted: 08/12/2008] [Indexed: 11/26/2022]
Abstract
BACKGROUND The aim of this study was to evaluate potential cardioprotective effects of bone marrow-derived stem cells in chronic ischemic myocardium regarding strain rate parameters during dobutamine stress echocardiography. METHODS An ameroid constrictor was placed around the circumflex artery in 23 pigs to induce hibernating myocardium. Pigs received autologous mesenchymal stem cells (auto MSCs), allogeneic MSC (allo MSC), autologous mononuclear cells (auto MNCs), or placebo injections into the ischemic region. During dobutamine stress echocardiography, peak systolic strain rates (SR(sys)) and systolic and postsystolic strain values (epsilon(sys), epsilon(ps)) were determined. The animals were evaluated regarding myocardial fibrosis, neovascularization, apoptosis, and myocardial beta-adrenergic receptor density. RESULTS The median ejection fraction was reduced in the control group compared with the auto MSC-, allo MSC-, and auto MNC-treated pigs (36.5% vs 46.0% vs 46.0% vs 41.5%; P = .001, respectively). Histopathology revealed a decreased myocardial fibrosis in auto MSC- (16.3%), allo MSC- (11.3%), and auto MNC- (16.7%) treated pigs compared with controls (31.0%; P = .004). The fibrosis and echocardiographic deformation data correlated in the posterior walls: rest peak SR(sys)r = -0.92; epsilon(sys)r = -0.86; 10 microg dobutamine stimulation peak SR(sys)r = -0.88, epsilon(sys), r = -0.87 (P = .0001). CONCLUSION Endocardial injection of stem cells may induce cardioprotective effects in chronic ischemic myocardium and helps to keep the ischemic myocardium viable.
Collapse
|
15
|
Joyeux-Faure M. Cellular protection by erythropoietin: new therapeutic implications? J Pharmacol Exp Ther 2007; 323:759-62. [PMID: 17717190 DOI: 10.1124/jpet.107.127357] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Erythropoietin (EPO), the principal hematopoietic hormone produced by the kidney and the liver in fetuses, regulates mammalian erythropoiesis and exhibits diverse cellular effects in nonhematopoietic tissues. The introduction of recombinant human EPO (rhEPO) has marked a significant advance in the management of anemia associated with chronic renal failure. At the same time, experimental studies have unveiled its potential neuroprotective and cardioprotective properties, occurring independently of its hematopoietic action. As with other cytoprotective agents, administration of exogenous rhEPO can confer cerebral and myocardial protection against ischemia-reperfusion injury in terms of reduction in cellular apoptosis and necrosis, as well as improvement in functional recovery. Very recent studies even suggest that this drug could have beneficial applications in oncology, protecting against chemotherapy cardiotoxicity. The purpose of this letter is to review current information regarding the various conditions in which rhEPO and its derivates could confer cellular protection. We also address clinical perspectives and novel therapeutic strategies that could be developed based on these studies. Thus, EPO seems to be a very promising agent for protecting cellular survival during both acute and chronic diseases, and its future should be considered with enthusiasm.
Collapse
|
16
|
Toma C, Letts DP, Tanabe M, Gorcsan J, Counihan PJ. Positive effect of darbepoetin on peri-infarction remodeling in a porcine model of myocardial ischemia–reperfusion. J Mol Cell Cardiol 2007; 43:130-6. [PMID: 17597149 DOI: 10.1016/j.yjmcc.2007.05.014] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2007] [Revised: 04/25/2007] [Accepted: 05/14/2007] [Indexed: 12/22/2022]
Abstract
Erythropoietin (Epo) has anti-apoptotic and pro-angiogenic effects in rodent models of myocardial infarction (MI). We tested the hypothesis that a long-acting Epo derivative (darbepoetin) has a beneficial effect on infarct size and peri-infarct remodeling in a clinically relevant large animal model of ischemia-reperfusion. A human acute MI scenario was simulated in 16 domestic pigs by inflating an angioplasty balloon in the proximal left circumflex (LCx) artery for 60 min. The animals were randomized to darbepoetin 30 microg/kg i.v. or placebo (saline) at the time of reperfusion. Treatment with darbepoetin did not lead to a reduction in the infarct size at 2 weeks as assessed by histology (30.3+/-1.8% of the volume at risk for placebo vs. 33.2+/-2.5% for darbepoetin). However, significant effects were seen in the peri-infarct region. Histological evaluation revealed decreased interstitial fibrosis (6.8+/-0.7% of myocardial sections area vs. 9.6+/-0.7%, p=0.02) and increased average capillary area (106+/-3% of the non-infarcted myocardium vs. 89+/-4%, p=0.003) in the treatment arm in the absence of significant cardiac hypertrophy. This resulted in preserved regional wall motion as assessed by tissue Doppler-derived radial strain (subepicardial radial strain 90.1+/-21.2% for darbepoetin vs. 20.3+/-10.1% for placebo, p<0.05). However, this did not translate to improved wall thickening (126.5+/-6.0% of diastolic thickness for darbepoetin vs. 119.8+/-5.4% for placebo, p=NS). Beneficial effects of darbepoetin to peri-infarct remodeling were observed in a clinically relevant model of ischemia-reperfusion. Although the infarct size was not reduced, there was a limited decrease in interstitial fibrosis, increased capillary area and regional functional improvement in darbepoetin-treated animals.
Collapse
Affiliation(s)
- Catalin Toma
- Cardiovascular Institute, University of Pittsburgh Medical Center, Scaife Hall S559, 200 Lothrop Street, Pittsburgh, PA 15213, USA.
| | | | | | | | | |
Collapse
|