1
|
Berezin AE, Berezin AA, Lichtenauer M. Emerging Role of Adipocyte Dysfunction in Inducing Heart Failure Among Obese Patients With Prediabetes and Known Diabetes Mellitus. Front Cardiovasc Med 2020; 7:583175. [PMID: 33240938 PMCID: PMC7667132 DOI: 10.3389/fcvm.2020.583175] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 10/05/2020] [Indexed: 12/13/2022] Open
Abstract
Adipose tissue dysfunction is a predictor for cardiovascular (CV) events and heart failure (HF) in patient population with obesity, metabolic syndrome, and known type 2 diabetes mellitus. Previous preclinical and clinical studies have yielded controversial findings regarding the role of accumulation of adipose tissue various types in CV risk and HF-related clinical outcomes in obese patients. There is evidence for direct impact of infiltration of epicardial adipocytes into the underlying myocardium to induce adverse cardiac remodeling and mediate HF development and atrial fibrillation. Additionally, perivascular adipocytes accumulation is responsible for release of proinflammatory adipocytokines (adiponectin, leptin, resistin), stimulation of oxidative stress, macrophage phenotype switching, and worsening vascular reparation, which all lead to microvascular inflammation, endothelial dysfunction, atherosclerosis acceleration, and finally to increase in CV mortality. However, systemic effects of white and brown adipose tissue can be different, and adipogenesis including browning of adipose tissue and deficiency of anti-inflammatory adipocytokines (visfatin, omentin, zinc-α2-glycoprotein, glypican-4) was frequently associated with adipose triglyceride lipase augmentation, altered glucose homeostasis, resistance to insulin of skeletal muscles, increased cardiomyocyte apoptosis, lowered survival, and weak function of progenitor endothelial cells, which could significantly influence on HF development, as well as end-organ fibrosis and multiple comorbidities. The exact underlying mechanisms for these effects are not fully understood, while they are essential to help develop improved treatment strategies. The aim of the review is to summarize the evidence showing that adipocyte dysfunction may induce the onset of HF and support advance of HF through different biological mechanisms involving inflammation, pericardial, and perivascular adipose tissue accumulation, adverse and electrical cardiac remodeling, and skeletal muscle dysfunction. The unbalancing effects of natriuretic peptides, neprilysin, and components of renin-angiotensin system, as exacerbating cause of altered adipocytokine signaling on myocardium and vasculature, in obesity patients at high risk of HF are disputed. The profile of proinflammatory and anti-inflammatory adipocytokines as promising biomarker for HF risk stratification is discussed in the review.
Collapse
Affiliation(s)
- Alexander E. Berezin
- Internal Medicine Department, State Medical University, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Alexander A. Berezin
- Internal Medicine Department, Medical Academy of Post-Graduate Education, Ministry of Health of Ukraine, Zaporozhye, Ukraine
| | - Michael Lichtenauer
- Division of Cardiology, Department of Internal Medicine II, Paracelsus Medical University Salzburg, Salzburg, Austria
| |
Collapse
|
2
|
Jimenez‐Pavon D, Corral‐Perez J, Sánchez‐Infantes D, Villarroya F, Ruiz JR, Martinez‐Tellez B. Infrared Thermography for Estimating Supraclavicular Skin Temperature and BAT Activity in Humans: A Systematic Review. Obesity (Silver Spring) 2019; 27:1932-1949. [PMID: 31691547 PMCID: PMC6899990 DOI: 10.1002/oby.22635] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022]
Abstract
OBJECTIVE Brown adipose tissue (BAT) is a thermogenic tissue with potential as a therapeutic target in the treatment of obesity and related metabolic disorders. The most used technique for quantifying human BAT activity is the measurement of 18 F-fluorodeoxyglucose uptake via a positron emission tomography/computed tomography scan following exposure to cold. However, several studies have indicated the measurement of the supraclavicular skin temperature (SST) by infrared thermography (IRT) to be a less invasive alternative. This work reviews the state of the art of this latter method as a means of determining BAT activity in humans. METHODS The data sources for this review were PubMed, Web of Science, and EBSCOhost (SPORTdiscus), and eligible studies were those conducted in humans. RESULTS In most studies in which participants were first cooled, an increase in IRT-measured SST was noted. However, only 5 of 24 such studies also involved a nuclear technique that confirmed increased activity in BAT, and only 2 took into account the thickness of the fat layer when measuring SST by IRT. CONCLUSIONS More work is needed to understand the involvement of tissues other than BAT in determining IRT-measured SST; at present, IRT cannot determine whether any increase in SST is due to increased BAT activity.
Collapse
Affiliation(s)
- David Jimenez‐Pavon
- MOVE‐IT Research Group, Department of Physical Education, Faculty of Education SciencesUniversity of CádizCádizSpain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of CádizCádizSpain
| | - Juan Corral‐Perez
- MOVE‐IT Research Group, Department of Physical Education, Faculty of Education SciencesUniversity of CádizCádizSpain
- Biomedical Research and Innovation Institute of Cádiz (INiBICA) Research Unit, Puerta del Mar University Hospital, University of CádizCádizSpain
| | - David Sánchez‐Infantes
- Department of Endocrinology and NutritionGermans Trias i Pujol Research InstituteBadalonaBarcelonaSpain
- Biomedical Research Center (Fisiopatología de la Obesidad y Nutrición) (CIBEROBN), ISCIIIMadridSpain
| | - Francesc Villarroya
- Biomedical Research Center (Fisiopatología de la Obesidad y Nutrición) (CIBEROBN), ISCIIIMadridSpain
- Department of Biochemistry and Molecular BiomedicineInstitute of BiomedicineBarcelonaSpain
| | - Jonatan R. Ruiz
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesSport and Health University Research Institute (iMUDS), University of GranadaGranadaSpain
| | - Borja Martinez‐Tellez
- PROFITH (PROmoting FITness and Health through Physical Activity) Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesSport and Health University Research Institute (iMUDS), University of GranadaGranadaSpain
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CentreLeidenthe Netherlands
| |
Collapse
|
3
|
Martinez‐Tellez B, Adelantado‐Renau M, Acosta FM, Sanchez‐Delgado G, Martinez‐Nicolas A, Boon MR, Llamas‐Elvira JM, Martinez‐Vizcaino V, Ruiz JR. The Mediating Role of Brown Fat and Skeletal Muscle Measured by 18 F-Fluorodeoxyglucose in the Thermoregulatory System in Young Adults. Obesity (Silver Spring) 2019; 27:963-970. [PMID: 31006988 PMCID: PMC6594074 DOI: 10.1002/oby.22461] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2018] [Accepted: 02/19/2019] [Indexed: 11/15/2022]
Abstract
OBJECTIVE This study aimed to examine whether brown adipose tissue (BAT) or skeletal muscle activity mediates the relationship between personal level of environmental temperature (Personal-ET) and wrist skin temperature (WT). Moreover, we examined whether BAT and skeletal muscle have a mediating role between Personal-ET and WT (as a proxy of peripheral vasoconstriction/vasodilation). METHODS The levels of BAT were quantified by cold-induced 18 F-fluorodeoxyglucose-positron emission tomography/computed tomography scan and measured the Personal-ET and WT by using iButtons (Maxim Integrated, Dallas, Texas) in 75 participants (74.6% women). RESULTS The study found that BAT volume and metabolic activity played a positive and significant role (up to 25.4%) in the association between Personal-ET and WT. In addition, at the coldest temperatures, the participants with lower levels of WT (inducing higher peripheral vasoconstriction) had higher levels of BAT outcomes, whereas in warm temperatures, participants with higher levels of WT (inducing higher peripheral vasodilation) had lower levels of BAT outcomes. The study did not find any mediating role of skeletal muscle activity. CONCLUSIONS BAT volume and metabolic activity play a role in the relationship between Personal-ET and WT. Moreover, the data suggest that there are two distinct phenotypes: individuals who respond better to the cold, both through nonshivering thermogenesis and peripheral vasoconstriction, and individuals who respond better to the heat.
Collapse
Affiliation(s)
- Borja Martinez‐Tellez
- Promoting Fitness & Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesUniversity of GranadaGranadaSpain
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | | | - Francisco M. Acosta
- Promoting Fitness & Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesUniversity of GranadaGranadaSpain
| | - Guillermo Sanchez‐Delgado
- Promoting Fitness & Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesUniversity of GranadaGranadaSpain
| | - Antonio Martinez‐Nicolas
- Chronobiology Laboratory, Department of Physiology, College of BiologyMare Nostrum Campus, University of Murcia, Instituto Universitario de Investgiación e Envegecimiento (IUIE), Instituto Murciano de Investigación Biosanitaria (IMIB)‐ArrixacaSpain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento SaludableMadridSpain
| | - Mariëtte R. Boon
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular MedicineLeiden University Medical CenterLeidenthe Netherlands
| | - Jose M. Llamas‐Elvira
- Nuclear Medicine ServiceVirgen de las Nieves University HospitalGranadaSpain
- Nuclear Medicine DepartmentBiohealth Research Institute in GranadaGranadaSpain
| | - Vicente Martinez‐Vizcaino
- Health and Social Research Center, Castilla‐La Mancha UniversityCuencaSpain
- Faculty of Health SciencesAutonomous University of ChileTalcaChile
| | - Jonatan R. Ruiz
- Promoting Fitness & Health Through Physical Activity Research Group, Department of Physical Education and Sports, Faculty of Sport SciencesUniversity of GranadaGranadaSpain
| |
Collapse
|
4
|
Kaikaew K, van den Beukel JC, Neggers SJCMM, Themmen APN, Visser JA, Grefhorst A. Sex difference in cold perception and shivering onset upon gradual cold exposure. J Therm Biol 2018; 77:137-144. [PMID: 30196892 DOI: 10.1016/j.jtherbio.2018.08.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 08/21/2018] [Accepted: 08/22/2018] [Indexed: 01/22/2023]
Abstract
To maintain a thermal balance when experiencing cold, humans reduce heat loss and enhance heat production. A potent and rapid mechanism for heat generation is shivering. Research has shown that women prefer a warmer environment and feel less comfortable than men in the same thermal condition. Using the Blanketrol® III, a temperature management device commonly used to study brown adipose tissue activity, we tested whether the experimental temperature (TE) at which men and women start to shiver differs. Twenty male and 23 female volunteers underwent a cooling protocol, starting at 24 °C and gradually decreasing by 1-2 °C every 5 min until an electromyogram detected the shivering or the temperature reached 9 °C. Women started shivering at a higher TE than men (11.3 ± 1.8 °C for women vs 9.6 ± 1.8 °C for men, P = 0.003). In addition, women felt cool, scored by a visual analogue scale, at a higher TE than men (18.3 ± 3.0 °C for women vs 14.6 ± 2.6 °C for men, P < 0.001). This study demonstrates a sex difference in response to cold exposure: women require shivering as a source of heat production earlier than men. This difference could be important and sex should be considered when using cooling protocols in physiological studies.
Collapse
Affiliation(s)
- Kasiphak Kaikaew
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands; Department of Physiology, Faculty of Medicine, Chulalongkorn University, 1873, Rama IV Road, Pathumwan, Bangkok 10330, Thailand
| | - Johanna C van den Beukel
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Sebastian J C M M Neggers
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Axel P N Themmen
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| | - Jenny A Visser
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands.
| | - Aldo Grefhorst
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, PO Box 2040, 3000 CA Rotterdam, the Netherlands
| |
Collapse
|
5
|
Loh RKC, Kingwell BA, Carey AL. Human brown adipose tissue as a target for obesity management; beyond cold-induced thermogenesis. Obes Rev 2017; 18:1227-1242. [PMID: 28707455 DOI: 10.1111/obr.12584] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 06/01/2017] [Accepted: 06/01/2017] [Indexed: 02/01/2023]
Abstract
Elevating energy expenditure via adaptive thermogenesis in brown adipose tissue (BAT) is a potential strategy to reverse obesity. Much early enthusiasm for this approach, based on rodent studies, was tempered by the belief that BAT was relatively inconsequential in healthy adult humans. Interest was reinvigorated a decade ago when a series of studies re-identified BAT, primarily in upper thoracic regions, in adults. Despite the ensuing explosion of pre-clinical investigations and identification of an extensive list of potential target molecules for BAT recruitment, our understanding of human BAT physiology remains limited, particularly regarding interventions which might hold therapeutic promise. Cold-induced BAT thermogenesis (CIT) has been well studied, although is not readily translatable as an anti-obesity approach, whereas little is known regarding the role of BAT in human diet-induced thermogenesis (DIT). Furthermore, human studies dedicated to translating known pharmacological mechanisms of adipose browning from animal models are sparse. Several lines of recent evidence suggest that molecular regulation and physiology of human BAT differ to that of laboratory rodents, which form the majority of our knowledge base. This review will summarize knowledge on CIT and expand upon the current understanding and evidence gaps related to human adaptive thermogenesis via mechanisms other than cold.
Collapse
Affiliation(s)
- R K C Loh
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - B A Kingwell
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| | - A L Carey
- Metabolic and Vascular Physiology Laboratory, Baker Heart and Diabetes Institute, Melbourne, Australia
| |
Collapse
|
6
|
Nahon KJ, Boon MR, Doornink F, Jazet IM, Rensen PCN, Abreu-Vieira G. Lower critical temperature and cold-induced thermogenesis of lean and overweight humans are inversely related to body mass and basal metabolic rate. J Therm Biol 2017; 69:238-248. [PMID: 29037389 DOI: 10.1016/j.jtherbio.2017.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 08/01/2017] [Accepted: 08/09/2017] [Indexed: 11/28/2022]
Abstract
It is colloquially stated that body size plays a role in the human response to cold, but the magnitude and details of this interaction are unclear. To explore the inherent influence of body size on cold-exposed metabolism, we investigated the relation between body composition and resting metabolic rate in humans at thermoneutrality and during cooling within the nonshivering thermogenesis range. Body composition and resting energy expenditure were measured in 20 lean and 20 overweight men at thermoneutrality and during individualized cold exposure. Metabolic rates as a function of ambient temperature were investigated considering the variability in body mass and composition. We observed an inverse relationship between body size and the lower critical temperature (LCT), i.e. the threshold where thermoneutrality ends and cold activates thermogenesis. LCT was higher in lean than overweight subjects (22.1 ± 0.6 vs 19.5 ± 0.5°C, p < 0.001). Below LCT, minimum conductance was identical between lean and overweight (100 ± 4 vs 97 ± 3kcal/°C/day respectively, p = 0.45). Overweight individuals had higher basal metabolic rate (BMR) explained mostly by the higher lean mass, and lower cold-induced thermogenesis (CIT) per degree of cold exposure. Below thermoneutrality, energy expenditure did not scale to lean body mass. Overweight subjects had lower heat loss per body surface area (44.7 ± 1.3 vs 54.7 ± 2.3kcal/°C/m2/day, p < 0.001). We conclude that larger body sizes possessed reduced LCT as explained by higher BMR related to more lean mass rather than a change in whole-body conductance. Thus, larger individuals with higher lean mass need to be exposed to colder temperatures to activate CIT, not because of increased insulation, but because of a higher basal heat generation. Our study suggests that the distinct effects of body size and composition on energy expenditure should be taken in account when exploring the metabolism of humans exposed to cold.
Collapse
Affiliation(s)
- Kimberly J Nahon
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Fleur Doornink
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Ingrid M Jazet
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands
| | - Gustavo Abreu-Vieira
- Department of Medicine, Division of Endocrinology and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Albinusdreef 2, 2333 ZA Leiden, the Netherlands.
| |
Collapse
|
7
|
Bahler L, Holleman F, Verberne HJ. Reply to: Activation and quantification of human brown adipose tissue: Methodological considerations for between studies comparisons. Eur J Intern Med 2017; 41:e41-e42. [PMID: 28279565 DOI: 10.1016/j.ejim.2017.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 03/02/2017] [Indexed: 11/24/2022]
Affiliation(s)
- Lonneke Bahler
- Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands.
| | - Frits Holleman
- Internal Medicine, Academic Medical Center, Amsterdam, The Netherlands
| | - Hein J Verberne
- Nuclear Medicine, Academic Medical Center, Amsterdam, The Netherlands
| |
Collapse
|