1
|
Malay S, Madabhavi IV, Tripathi A. SARS-CoV-2 JN.1 variant: a short review. Monaldi Arch Chest Dis 2024. [PMID: 39221683 DOI: 10.4081/monaldi.2024.2981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a single-stranded, positive-sense RNA virus. The SARS-CoV-2 virus is evolving continuously, and many variants have been detected over the last few years. SARS-CoV-2, as an RNA virus, is more prone to mutating. The continuous evolution of the SARS-CoV-2 virus is due to genetic mutation and recombination during the genomic replication process. Recombination is a naturally occurring phenomenon in which two distinct viral lineages simultaneously infect the same cellular entity in an individual. The evolution rate depends on the rate of mutation. The rate of mutation is variable among the RNA viruses, with the SARS-CoV-2 virus exhibiting a lower rate of mutation than other RNA viruses. The novel 3'-to-5' exoribonuclease proofreading machinery is responsible for a lower rate of mutation. Infection due to the SARS-CoV-2, influenza, and respiratory syncytial virus has been reported from around the world during the same period of fall and winter, resulting in a "tripledemic." The JN.1 variant, which evolved from the predecessor, the omicron variant BA.2.86, is currently the most dominant globally. The impact of the JN.1 variant on transmissibility, disease severity, immune evasion, and diagnostic and therapeutic escape will be discussed.
Collapse
Affiliation(s)
- Sarkar Malay
- Department of Pulmonary Medicine, Indira Gandhi Medical College, Shimla, Himachal Pradesh.
| | - Irappa V Madabhavi
- Department of Medical and Pediatric Oncology, J N Medical College; KLE Academy of Higher Education and Research (KAHER), Belagavi; Kerudi Cancer Hospital, Bagalkot, Karnataka.
| | - Anurag Tripathi
- Department of Pulmonary and Critical Care Medicine, King George's Medical University, Lucknow.
| |
Collapse
|
2
|
Tang J, Xu Q, Zhu C, Xuan K, Li T, Li Q, Pang X, Zha Z, Li J, Qiao L, Xu H, Wu G, Tian Y, Han J, Gao C, Yi J, Qian G, Tian X, Xie L. Immunogenicity of Tetravalent Protein Vaccine SCTV01E-2 against SARS-CoV-2 EG.5 Subvaraint: A Phase 2 Trial. Vaccines (Basel) 2024; 12:175. [PMID: 38400158 PMCID: PMC10893468 DOI: 10.3390/vaccines12020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/12/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
The Omicron EG.5 lineage of SARS-CoV-2 is currently on a trajectory to become the dominant strain. This phase 2 study aims to evaluate the immunogenicity of SCTV01E-2, a tetravalent protein vaccine, with a specific emphasis on its immunogenicity against Omicron EG.5, comparing it with its progenitor vaccine, SCTV01E (NCT05933512). As of 12 September 2023, 429 participants aged ≥18 years were randomized into the groups SCTV01E (N = 215) and SCTV01E-2 (N = 214). Both vaccines showed increases in neutralizing antibody (nAb) against Omicron EG.5, with a 5.7-fold increase and a 9.0-fold increase in the SCTV01E and SCTV01E-2 groups 14 days post-vaccination, respectively. The predetermined statistical endpoints were achieved, showing that the geometric mean titer (GMT) of nAb and the seroresponse rate (SRR) against Omicron EG.5 were significantly higher in the SCTV01E-2 group than in the SCTV01E group. Additionally, SCTV01E and SCTV01E-2 induced a 5.5-fold and a 5.9-fold increase in nAb against XBB.1, respectively. Reactogenicity was generally mild and transient. No vaccine-related serious adverse events (SAEs), adverse events of special interest (AESIs), or deaths were reported. In summary, SCTV01E-2 elicited robust neutralizing responses against Omicron EG.5 and XBB.1 without raising safety concerns, highlighting its potential as a versatile COVID-19 vaccine against SARS-CoV-2 variants.
Collapse
Affiliation(s)
- Jihai Tang
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Qinghua Xu
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Chaoyin Zhu
- Funan County Center for Disease Control and Prevention, Fuyang 236399, China; (C.Z.); (L.Q.); (G.W.); (Y.T.)
| | - Kun Xuan
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Tao Li
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Qingru Li
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Xingya Pang
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Zhenqiu Zha
- Anhui Provincial Center for Disease Control and Prevention, Public Health Research Institute of Anhui Province, Hefei 230601, China; (J.T.); (Q.X.); (K.X.); (T.L.); (Q.L.); (X.P.); (Z.Z.)
| | - Jinwei Li
- Fuyang Center for Disease Control and Prevention, Fuyang 236030, China; (J.L.); (H.X.)
| | - Liyang Qiao
- Funan County Center for Disease Control and Prevention, Fuyang 236399, China; (C.Z.); (L.Q.); (G.W.); (Y.T.)
| | - Haiyang Xu
- Fuyang Center for Disease Control and Prevention, Fuyang 236030, China; (J.L.); (H.X.)
| | - Gang Wu
- Funan County Center for Disease Control and Prevention, Fuyang 236399, China; (C.Z.); (L.Q.); (G.W.); (Y.T.)
| | - Yan Tian
- Funan County Center for Disease Control and Prevention, Fuyang 236399, China; (C.Z.); (L.Q.); (G.W.); (Y.T.)
| | - Jun Han
- State Key Laboratory of Infectious, Disease Prevention and Control, National Institute for Viral Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing 102206, China;
| | - Cuige Gao
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (J.Y.); (G.Q.); (X.T.)
| | - Jiang Yi
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (J.Y.); (G.Q.); (X.T.)
| | - Gui Qian
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (J.Y.); (G.Q.); (X.T.)
| | - Xuxin Tian
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (J.Y.); (G.Q.); (X.T.)
| | - Liangzhi Xie
- Beijing Engineering Research Center of Protein and Antibody, Sinocelltech Ltd., Beijing 100176, China; (C.G.); (J.Y.); (G.Q.); (X.T.)
- Cell Culture Engineering Center, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100005, China
| |
Collapse
|
3
|
Angeli F, Zappa M, Verdecchia P. Global burden of new-onset hypertension associated with severe acute respiratory syndrome coronavirus 2 infection. Eur J Intern Med 2024; 119:31-33. [PMID: 37852842 DOI: 10.1016/j.ejim.2023.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 10/13/2023] [Indexed: 10/20/2023]
Abstract
Several reports documented a specific effect of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on blood pressure (BP), during and after the acute phase of infection. Clinical studies demonstrated that coronavirus disease 2019 (COVID-19) is associated with an increased risk of a persistent increase in BP requiring a new or intensified anti-hypertensive treatment during hospitalization. The picture is further complicated by the evidence from large databases showing an increased risk of new-onset hypertension in COVID-19 survivors on the long term. To further elucidate the epidemiological burden of this phenomenon, we performed a pooled analysis of 4 studies reporting crude incidence rates of new-onset hypertension among COVID-19 patients and contemporary controls. Overall, COVID-19 was associated with a 65% increased risk of new-onset hypertension when compared with controls (p<0.0001); furthermore, incidence of new-onset hypertension was 9% and 5% among COVID-19 patients and controls, respectively. In both the acute phase and recovery from infection, the interaction between spike proteins of SARS-CoV-2 and angiotensin converting enzyme 2 (ACE2) receptors remain the most plausible mechanism explaining the raise in BP (ranking new onset hypertension as one of the most prevalent cardiovascular sequelae of COVID-19). In this area of research, it is worth to mention that new variants of SARS-CoV-2 exhibit specific mutations in the spike protein that promotes entry into viral cells via ACE2. Thus, the enhanced spike affinity for ACE2 of new variants has the potential to increase the risk of new-onset hypertension when compared with the original Wuhan strain.
Collapse
Affiliation(s)
- Fabio Angeli
- Department of Medicine and Technological Innovation (DiMIT), University of Insubria, Varese, Italy; Department of Medicine and Cardiopulmonary Rehabilitation, Istituti Clinici Scientifici Maugeri, IRCCS Tradate, Italy.
| | - Martina Zappa
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Paolo Verdecchia
- Fondazione Umbra Cuore e Ipertensione-ONLUS and Division of Cardiology, Hospital S. Maria della Misericordia, Perugia, Italy
| |
Collapse
|