1
|
Deshpande S, Jaiswal S, Katti SB, Prabhakar YS. CoMFA and CoMSIA analysis of tetrahydroquinolines as potential antimalarial agents. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2011; 22:473-488. [PMID: 21598193 DOI: 10.1080/1062936x.2011.569945] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were used on a dataset of compounds, some of them having been reported to inhibit Plasmodium falciparum protein, farnesyltransferase. The co-crystal structure of the lead molecule, BMS-214662 bound to Rat-PFT was used as a template. CoMFA yielded a good model, with r²(ncv) = 0.909, r²(cv) = 0.617 and was validated using an external set r²(pred) = 0.748). It compared favourably with CoMSIA. In the CoMFA model the steric and electrostatic fields exerted an almost equal influence on activity. The contour maps indicated the necessity for sterically large electropositive groups with electronegative tail to be present in these molecules for activity, and sterically large electronegative moieties on the sulfonamide linker. By incorporating these features some new compounds have been identified for further investigation.
Collapse
Affiliation(s)
- S Deshpande
- Medicinal and Process Chemistry Division, Central Drug Research Institute, CSIR, Lucknow, India
| | | | | | | |
Collapse
|
2
|
XIE AIHUA, CLARK SHAWNAR, PRASANNA SIVAPRAKASAM, DOERKSEN ROBERTJ. Three-dimensional quantitative structure-farnesyltransferase inhibition analysis for some diaminobenzophenones. J Enzyme Inhib Med Chem 2009; 24:1220-8. [PMID: 19912055 PMCID: PMC10725738 DOI: 10.3109/14756360902781389] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
A 3D-QSAR investigation of 95 diaminobenzophenone yeast farnesyltransferase (FT) inhibitors selected from the work of Schlitzer et al. showed that steric, electrostatic, and hydrophobic properties play key roles in the bioactivity of the series. A CoMFA/CoMSIA combined model using the steric and electrostatic fields of CoMFA together with the hydrophobic field of CoMSIA showed significant improvement in prediction compared with the CoMFA steric and electrostatic fields model. The similarity of the 3D-QSAR field maps for yeast FT inhibition activity (from this work) and for antimalarial activity data (from previous work) and the correlation between those activities are discussed.
Collapse
Affiliation(s)
- AIHUA XIE
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA
| | - SHAWNA R. CLARK
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA
- Tougaloo College, Jackson, MS, 39174
| | - SIVAPRAKASAM PRASANNA
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA
| | - ROBERT J. DOERKSEN
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, University, MS, 38677-1848, USA
- Research Institute of Pharmaceutical Sciences, School of Pharmacy, University of Mississippi
| |
Collapse
|
3
|
Sousa SF, Fernandes PA, Ramos MJ. Molecular dynamics simulations on the critical states of the farnesyltransferase enzyme. Bioorg Med Chem 2009; 17:3369-78. [DOI: 10.1016/j.bmc.2009.03.055] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2008] [Revised: 03/16/2009] [Accepted: 03/20/2009] [Indexed: 10/20/2022]
|
4
|
Kohring K, Wiesner J, Altenkämper M, Sakowski J, Silber K, Hillebrecht A, Haebel P, Dahse HM, Ortmann R, Jomaa H, Klebe G, Schlitzer M. Development of Benzophenone-Based Farnesyltransferase Inhibitors as Novel Antimalarials. ChemMedChem 2008; 3:1217-31. [DOI: 10.1002/cmdc.200800043] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
5
|
Gupta MK, Prabhakar YS. QSAR study on tetrahydroquinoline analogues as plasmodium protein farnesyltransferase inhibitors: a comparison of rationales of malarial and mammalian enzyme inhibitory activities for selectivity. Eur J Med Chem 2008; 43:2751-67. [PMID: 18329140 DOI: 10.1016/j.ejmech.2008.01.025] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Revised: 01/14/2008] [Accepted: 01/14/2008] [Indexed: 11/27/2022]
Abstract
The quantitative structure-activity relationships of Plasmodium falciparum and Rat protein farnesyltransferase (PFT) inhibitory activities of 6-cyano-1-(3-methyl-3H-imidazoly-4-ylmethyl)-3-substituted-1,2,3,4-tetrahydroquinoline (THQ) analogues are investigated in order to explore the similarities/deviations between the two enzymes for these analogues. The structure space of a ligand (BMS-214662) bound to Rat-PFT (PDB code 1SA5) has been used as the conformational space of the compounds under investigation. The study has been carried out using the combinatorial protocol in multiple linear regression with several 2D- and 3D-descriptors from molecular operating environment (MOE) representing the physicochemical and electronic features of the compounds. The molecular potential energy and partially charged van der Waals surface areas have taken part in the PFT models. They suggested in favor of molecular arrangement with minimum energy and low positively/negatively charged surfaces for optimum Pf-PFT inhibitory activity. Furthermore, less hydrophobic compounds are preferred for the activity. The Rat-PFT inhibitory activity models suggested in favor of more negatively as well as more positively charged surface area descriptors for the better activity. The PLS analysis carried out on the descriptors of the Pf-PFT and Rat-PFT models suggested that among the parameters, the partially charged surface areas in the range -0.20 to -0.15 (PEOE_VSA-3) and -0.30 to -0.25 (PEOE_VSA-5), hydrophobicity (a_hyd, logP(o/w) and SlogP_VSA4), and electronic energy (PM3_Eele) of the molecules hold promise for modulating the Pf-PFT/R-PFT inhibitory activities of the compounds. This suggested the possibility of modulating the Pf-PFT/R-PFT inhibitory activities and bringing about selectivity in the THQ analogues for the malarial parasite enzyme.
Collapse
Affiliation(s)
- Manish K Gupta
- Medicinal and Process Chemistry Division, Central Drug Research Institute, Lucknow 226001, India
| | | |
Collapse
|
6
|
Puntambekar DS, Giridhar R, Yadav MR. Inhibition of farnesyltransferase: a rational approach to treat cancer? J Enzyme Inhib Med Chem 2007; 22:127-40. [PMID: 17518338 DOI: 10.1080/14756360601072841] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
Abstract
This article presents in brief the development of farnesyltransferase inhibitors (FTIs) and their preclinical and clinical status. In this review the mechanism of action of FTIs is discussed and their selectivity issue towards tumor cells is also addressed. The significant efficacy of FTIs as single or combined agents in preclinical studies stands in contrast with only moderate effects in Clinical Phase II-III studies. This suggests that there is a need to further explore and understand the complex mechanism of action of FTIs and their interaction with cytotoxic agents.
Collapse
Affiliation(s)
- Devendra S Puntambekar
- Pharmacy Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Vadodara 390 001, Gujarat, India
| | | | | |
Collapse
|
7
|
Van Voorhis WC, Rivas KL, Bendale P, Nallan L, Hornéy C, Barrett LK, Bauer KD, Smart BP, Ankala S, Hucke O, Verlinde CLMJ, Chakrabarti D, Strickland C, Yokoyama K, Buckner FS, Hamilton AD, Williams DK, Lombardo LJ, Floyd D, Gelb MH. Efficacy, pharmacokinetics, and metabolism of tetrahydroquinoline inhibitors of Plasmodium falciparum protein farnesyltransferase. Antimicrob Agents Chemother 2007; 51:3659-71. [PMID: 17606674 PMCID: PMC2043286 DOI: 10.1128/aac.00246-07] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
New antimalarials are urgently needed. We have shown that tetrahydroquinoline (THQ) protein farnesyltransferase (PFT) inhibitors (PFTIs) are effective against the Plasmodium falciparum PFT and are effective at killing P. falciparum in vitro. Previously described THQ PFTIs had limitations of poor oral bioavailability and rapid clearance from the circulation of rodents. In this paper, we validate both the Caco-2 cell permeability model for predicting THQ intestinal absorption and the in vitro liver microsome model for predicting THQ clearance in vivo. Incremental improvements in efficacy, oral absorption, and clearance rate were monitored by in vitro tests; and these tests were followed up with in vivo absorption, distribution, metabolism, and excretion studies. One compound, PB-93, achieved cure when it was given orally to P. berghei-infected rats every 8 h for a total of 72 h. However, PB-93 was rapidly cleared, and dosing every 12 h failed to cure the rats. Thus, the in vivo results corroborate the in vitro pharmacodynamics and demonstrate that 72 h of continuous high-level exposure to PFTIs is necessary to kill plasmodia. The metabolism of PB-93 was demonstrated by a novel technique that relied on double labeling with a radiolabel and heavy isotopes combined with radiometric liquid chromatography and mass spectrometry. The major liver microsome metabolite of PB-93 has the PFT Zn-binding N-methyl-imidazole removed; this metabolite is inactive in blocking PFT function. By solving the X-ray crystal structure of PB-93 bound to rat PFT, a model of PB-93 bound to malarial PFT was constructed. This model suggests areas of the THQ PFTIs that can be modified to retain efficacy and protect the Zn-binding N-methyl-imidazole from dealkylation.
Collapse
Affiliation(s)
- Wesley C Van Voorhis
- Department of Medicine, University of Washington, Room I-104-E, Health Sciences Building, Seattle, WA 98195-7185, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Sousa SF, Fernandes PA, Ramos MJ. Theoretical studies on farnesyl transferase: Evidence for thioether product coordination to the active-site zinc sphere. J Comput Chem 2007; 28:1160-8. [PMID: 17342704 DOI: 10.1002/jcc.20577] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Farnesyltransferase (FTase), an interesting zinc metaloenzyme, has been the subject of great attention in anticancer research over the last decade. However, despite the major accomplishments in the field, some very pungent questions on the farnesylation mechanism still persist. In this study, the authors have analyzed a mechanistic paradox that arises from the existence of several contradicting and inconclusive experimental evidence regarding the existence of direct coordination between the active-site zinc cation and the thioether from the farnesylated peptide product, which include UV-vis spectroscopy data on a Co(2+)-substituted FTase, two X-ray crystallographic structures of the FTase-product complex, and extended X-ray absorption fine structure results. Using high-level theoretical calculations on two models of different sizes, and QM/MM calculations on the full enzyme, the authors have shown that the farnesylated product is Zn coordinated, and that a subsequent step where this Zn bond is broken is coherent with the available kinetic results. Furthermore, an explanation for the contradicting experimental evidence is suggested.
Collapse
Affiliation(s)
- Sérgio Filipe Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, Porto, Portugal
| | | | | |
Collapse
|
9
|
Xie A, Sivaprakasam P, Doerksen RJ. 3D-QSAR analysis of antimalarial farnesyltransferase inhibitors based on a 2,5-diaminobenzophenone scaffold. Bioorg Med Chem 2006; 14:7311-23. [PMID: 16837204 DOI: 10.1016/j.bmc.2006.06.041] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2006] [Revised: 06/20/2006] [Accepted: 06/21/2006] [Indexed: 01/30/2023]
Abstract
With annual death tolls in the millions and emerging resistance to existing drugs, novel therapies are needed against malaria. Wiesner et al. recently developed a novel class of antimalarials derived from farnesyltransferase inhibitors based on a 2,5-diaminobenzophenone scaffold. The compounds displayed a wide range of activity, including submicromolar, against the multi-drug resistant Plasmodium falciparum strain Dd2. In order to investigate quantitatively the local physicochemical properties involved in the interaction between drug and biotarget, we used the 3D-QSAR methods CoMFA and CoMSIA to study some of the series, including the screened lead compound 2,5-bis-acylaminobenzophenone, 28 cinnamic acid derivatives, 29 N-(3-benzoyl-4-tolylacetylaminophenyl)-3-(5-aryl-2-furyl)acrylic acid amides, and 34 N-(4-substituted-amino-3-benzoylphenyl)-[5-(4-nitrophenyl)-2-furyl]acrylic acid amides. We found that steric, electrostatic, and hydrophobic properties of substituent groups play key roles in the bioactivity of the series of compounds, while hydrogen bonding interactions show no obvious impact. We built several highly predictive 3D-QSAR models, including a CoMSIA one composed of steric, electrostatic, and hydrophobic fields, with r(2)=0.94, q(2)=0.63, and r(pred)(2)=0.63. The results provide insight for optimization of this class of antimalarials for better activity and may prove helpful for further lead optimization.
Collapse
Affiliation(s)
- Aihua Xie
- Department of Medicinal Chemistry, School of Pharmacy, University of Mississippi, 38677-1848, USA
| | | | | |
Collapse
|
10
|
Sousa SF, Fernandes PA, Ramos MJ. Theoretical studies on farnesyltransferase: The distances paradox explained. Proteins 2006; 66:205-18. [PMID: 17068802 DOI: 10.1002/prot.21219] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In spite of the enormous interest that has been devoted to its study, the mechanism of the enzyme farnesyltransferase (FTase) remains the subject of several crucial doubts. In this article, we shed a new light in one of the most fundamental dilemmas that characterize the mechanism of this puzzling enzyme commonly referred to as the "distances paradox", which arises from the existence of a large 8-A distance between the two reactive atoms in the reaction catalyzed by this enzyme: a Zn-bound cysteine sulphur atom from a peptidic substrate and the farnesyldiphosphate (FPP) carbon 1. This distance must be overcome for the reaction to occur. In this study, the two possible alternatives were evaluated by combining molecular mechanics (AMBER) and quantum chemical calculations (B3LYP). Basically, our results have shown that an activation of the Zn-bound cysteine thiolate with subsequent displacement from the zinc coordination sphere towards the FPP carbon 1 is not a realistic hypothesis of overcoming the large distance reported in the crystallographic structures of the ternary complexes between the two reactive atoms, but that a rotation involving the FPP molecule can bring the two atoms closer with moderate energetic cost, coherent with previous experimental data. This conclusion opens the door to an understanding of the chemical step in the farnesylation reaction.
Collapse
Affiliation(s)
- Sérgio Filipe Sousa
- REQUIMTE, Departamento de Química, Faculdade de Ciências, Universidade do Porto, 4169-007 Porto, Portugal
| | | | | |
Collapse
|
11
|
Sousa SF, Fernandes PA, Ramos MJ. Effective tailor-made force field parameterization of the several Zn coordination environments in the puzzling FTase enzyme: opening the door to the full understanding of its elusive catalytic mechanism. Theor Chem Acc 2006. [DOI: 10.1007/s00214-006-0170-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
12
|
Esteva MI, Kettler K, Maidana C, Fichera L, Ruiz AM, Bontempi EJ, Andersson B, Dahse HM, Haebel P, Ortmann R, Klebe G, Schlitzer M. Benzophenone-based farnesyltransferase inhibitors with high activity against Trypanosoma cruzi. J Med Chem 2006; 48:7186-91. [PMID: 16279776 DOI: 10.1021/jm050456x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Less toxic drugs are needed to combat the human parasite Trypanosoma cruzi (Chagas's disease). One novel target for antitrypanosomal drug design is farnesyltransferase. Several farnesyltransferase inhibitors based on the benzophenone scaffold were assayed in vitro and in vivo with the parasite. The common structural feature of all inhibitors is an amino function which can be protonated. Best in vitro activity (LC50 values 1 and 10 nM, respectively) was recorded for the R-phenylalanine derivative 4a and for the N-propylpiperazinyl derivative 2f. These inhibitors showed no cytotoxicity to cells. When tested in vivo, the survival rates of infected animals receiving the inhibitors at 7 mg/kg body weight/day were 80 and 60% at day 115 postinfection, respectively.
Collapse
Affiliation(s)
- Mónica I Esteva
- Instituto Nacional de Parasitología Dr. M. Fatala Chabén, A.N.L.I.S., Dr. Carlos G. Malbrán, 1063 Buenos Aires, Argentina
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Eastman RT, Buckner FS, Yokoyama K, Gelb MH, Van Voorhis WC. Thematic review series: lipid posttranslational modifications. Fighting parasitic disease by blocking protein farnesylation. J Lipid Res 2005; 47:233-40. [PMID: 16339110 DOI: 10.1194/jlr.r500016-jlr200] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Protein farnesylation is a form of posttranslational modification that occurs in most, if not all, eukaryotic cells. Inhibitors of protein farnesyltransferase (PFTIs) have been developed as anticancer chemotherapeutic agents. Using the knowledge gained from the development of PFTIs for the treatment of cancer, researchers are currently investigating the use of PFTIs for the treatment of eukaryotic pathogens. This "piggy-back" approach not only accelerates the development of a chemotherapeutic agent for protozoan pathogens but is also a means of mitigating the costs associated with de novo drug design. PFTIs have already been shown to be efficacious in the treatment of eukaryotic pathogens in animal models, including both Trypanosoma brucei, the causative agent of African sleeping sickness, and Plasmodium falciparum, one of the causative agents of malaria. Here, current evidence and progress are summarized that support the targeting of protein farnesyltransferase for the treatment of parasitic diseases.
Collapse
Affiliation(s)
- Richard T Eastman
- Department of Pathobiology, University of Washington, Seattle, WA, USA
| | | | | | | | | |
Collapse
|