1
|
Dimopoulou A, Manta S, Parmenopoulou V, Gkizis P, Coutouli-Argyropoulou E, Schols D, Komiotis D. Synthesis of novel thiopurine pyranonucleosides: evaluation of their bioactivity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:289-308. [PMID: 25774721 DOI: 10.1080/15257770.2014.992532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We report the synthesis of novel thiopurine pyranonucleosides. Direct coupling of silylated 6-mercaptopurine and 6-thioguanine with the appropriate pyranoses 1a-e via Vorbrüggen nucleosidation, gave the N-9 linked mercaptopurine 2a-e and thioguanine 4a-e nucleosides, while their N-7 substituted congeners 10a-e and 7a-e, were obtained through condensation of the same acetates with 6-chloro and 2-amino-6-chloropurines, followed by subsequent thionation. Nucleosides 3a-e, 5a-e, 8a-e, and 11a-e were evaluated for their cytostatic activity in three different tumor cell proliferative assays.
Collapse
Affiliation(s)
- Athina Dimopoulou
- a Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry , University of Thessaly , Larissa , Greece
| | | | | | | | | | | | | |
Collapse
|
2
|
Branched-chain sugar nucleosides: stereocontrolled synthesis and bioevaluation of novel 3'-C-trifluoromethyl and 3'-C-methyl pyranonucleosides. Carbohydr Res 2015; 407:170-8. [PMID: 25812993 DOI: 10.1016/j.carres.2015.01.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Revised: 01/27/2015] [Accepted: 01/28/2015] [Indexed: 11/21/2022]
Abstract
A new series of 3'-C-trifluoromethyl- and 3'-C-methyl-β-d-allopyranonucleosides of 5-fluorouracil and their deoxy derivatives has been designed and synthesized. Treatment of ketosugar 1 with trifluoromethyltrimethylsilane under catalytic fluoride activation and methyl magnesium bromide, gave 1,2:5,6-di-O-isopropylidene-3-C-trifluoromethyl (2a) and 3-C-methyl (2b)-α-D-allofuranose, respectively, in a virtually quantitative yield and with complete stereoselectivity. Hydrolysis followed by acetylation led to the 1,2,4,6-tetra-O-acetyl-3-C-trifluoromethyl (3a) and 3-C-methyl (3b)-β-D-allopyranose. Compounds 3a,b were then condensed with silylated 5-fluorouracil and deacetylated to afford the target nucleosides 5a,b. Deoxygenation of the peracylated allopyranoses 3a,b followed by condensation with silylated 5-fluorouracil and subsequent deacetylation yielded the target 3'-deoxy-3'-C-trifluoromethyl and 3'-deoxy-3'-C-methyl-β-d-glucopyranonucleosides 14a,b. The newly synthesized compounds were evaluated for their potential antiviral and cytostatic activities. The 3'-deoxy-3'-C-methyl- ribonucleoside 11b showed significant cytotoxic activity (∼7 μM) almost equally active against a variety of tumor cell lines.
Collapse
|
3
|
Pałasz A, Cież D. In search of uracil derivatives as bioactive agents. Uracils and fused uracils: Synthesis, biological activity and applications. Eur J Med Chem 2014; 97:582-611. [PMID: 25306174 DOI: 10.1016/j.ejmech.2014.10.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/19/2014] [Accepted: 10/03/2014] [Indexed: 12/01/2022]
Abstract
This review article is an effort to summarize recent developments in researches providing uracil derivatives with promising biological potential. This article also aims to discuss potential future directions on the development of more potent and specific uracil analogues for various biological targets. Uracils are considered as privileged structures in drug discovery with a wide array of biological activities and synthetic accessibility. Antiviral and anti-tumour are the two most widely reported activities of uracil analogues however they also possess herbicidal, insecticidal and bactericidal activities. Their antiviral potential is based on the inhibition of key step in viral replication pathway resulting in potent activities against HIV, hepatitis B and C, the herpes viruses etc. Uracil derivatives such as 5-fluorouracil or 5-chlorouracil were the first pharmacological active derivatives to be generated. Poor selectivity limits its therapeutic application, resulting in high incidences of gastrointestinal tract or central nervous toxicity. Numerous modifications of uracil structure have been performed to tackle these problems resulting in the development of derivatives exhibiting better pharmacological and pharmacokinetic properties including increased bioactivity, selectivity, metabolic stability, absorption and lower toxicity. Researches of new uracils and fused uracil derivatives as bioactive agents are related with modifications of substituents at N(1), N(3), C(5) and C(6) positions of pyrimidine ring. This review is an endeavour to highlight the progress in the chemistry and biological activity of the uracils, predominately after the year 2000. In particular are presented synthetic methods and biological study for such analogues as: 5-fluorouracil or 5-chlorouracil derivatives, tegafur analogues, arabinopyranonucleosides of uracil, glucopyranonucleosides of uracil, liposidomycins, caprazamycins or tunicamycins, tritylated uridine analogues, nitro or cyano derivatives of uracil, uracil-quinazolinone, uracil-indole or uracil-isatin-conjugates, pyrimidinophanes containing one or two uracil units and nitrogen atoms in bridging polymethylene chains etc. In this review is also discussed synthesis and biological activity of fused uracils having uracil ring annulated with other heterocyclic ring.
Collapse
Affiliation(s)
- Aleksandra Pałasz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3 St, 30-060 Kraków, Poland.
| | - Dariusz Cież
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3 St, 30-060 Kraków, Poland
| |
Collapse
|
4
|
Manta S, Parmenopoulou V, Kiritsis C, Dimopoulou A, Kollatos N, Papasotiriou I, Balzarini J, Komiotis D. Stereocontrolled facile synthesis and biological evaluation of (3'S) and (3'R)-3'-amino (and Azido)-3'-deoxy pyranonucleosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:522-35. [PMID: 22849646 DOI: 10.1080/15257770.2012.696759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article describes the synthesis of (3 'S) and (3 'R)-3 '-amino-3 '-deoxy pyranonucleosides and their precursors (3 'S) and (3 'R)-3 '-azido-3 '-deoxy pyranonucleosides. Azidation of 1,2:5,6-di-O-isopropylidene-3-O-toluenesulfonyl-α-D-allofuranose followed by hydrolysis and subsequent acetylation afforded 3-azido-3-deoxy-1,2,4,6-tetra-O-acetyl-D-glucopyranose, which upon coupling with the proper silylated bases, deacetylation, and catalytic hydrogenation, obtained the target 3 '-amino-3 '-deoxy-β-D-glucopyranonucleosides. The desired 1-(3 '-amino-3 '-deoxy-β-D-allopyranosyl)5-fluorouracil was readily prepared from the suitable imidazylate sugar after azidation followed by a protection/deprotection sequence and reduction of the unprotected azido precursor. No antiviral activity was observed for the novel nucleosides. Moderate cytostatic activity was recorded for the 5-fluorouracil derivatives.
Collapse
Affiliation(s)
- Stella Manta
- Laboratory of Bio-Organic Chemistry Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | | | | | | | | | | | | | | |
Collapse
|
5
|
Kiritsis C, Manta S, Parmenopoulou V, Dimopoulou A, Kollatos N, Papasotiriou I, Balzarini J, Komiotis D. Stereocontrolled synthesis of 4′-C-cyano and 4′-C-cyano-4′-deoxy pyrimidine pyranonucleosides as potential chemotherapeutic agents. Carbohydr Res 2012; 364:8-14. [DOI: 10.1016/j.carres.2012.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 12/12/2022]
|
6
|
Balatsos N, Vlachakis D, Chatzigeorgiou V, Manta S, Komiotis D, Vlassi M, Stathopoulos C. Kinetic and in silico analysis of the slow-binding inhibition of human poly(A)-specific ribonuclease (PARN) by novel nucleoside analogues. Biochimie 2012; 94:214-21. [DOI: 10.1016/j.biochi.2011.10.011] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Accepted: 10/17/2011] [Indexed: 11/16/2022]
|
7
|
Synthesis and biological evaluation of unsaturated keto and exomethylene d-arabinopyranonucleoside analogs: Novel 5-fluorouracil analogs that target thymidylate synthase. Eur J Med Chem 2011; 46:993-1005. [DOI: 10.1016/j.ejmech.2011.01.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 10/06/2010] [Accepted: 01/06/2011] [Indexed: 11/18/2022]
|
8
|
Tylosema esculentum (Marama) Tuber and Bean Extracts Are Strong Antiviral Agents against Rotavirus Infection. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:284795. [PMID: 21423688 PMCID: PMC3057194 DOI: 10.1155/2011/284795] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/16/2010] [Revised: 12/01/2010] [Accepted: 01/09/2011] [Indexed: 12/24/2022]
Abstract
Tylosema esculentum (marama) beans and tubers are used as food, and traditional medicine against diarrhoea in Southern Africa. Rotaviruses (RVs) are a major cause of diarrhoea among infants, young children, immunocompromised people, and domesticated animals. Our work is first to determine anti-RV activity of marama bean and tuber ethanol and water extracts; in this case on intestinal enterocyte cells of human infant (H4), adult pig (CLAB) and adult bovine (CIEB) origin. Marama cotyledon ethanolic extract (MCE) and cotyledon water extract (MCW) without RV were not cytotoxic to all cells tested, while seed coat and tuber extracts showed variable levels of cytotoxicity. Marama cotyledon ethanolic and water extracts (MCE and MCW, resp.) (≥0.1 mg/mL), seed coat extract (MSCE) and seed coat water extract (MSCW) (0.01 to 0.001 mg/mL), especially ethanolic, significantly increased cell survival and enhanced survival to cytopathic effects of RV by at least 100% after in vitro co- and pre-incubation treatments. All marama extracts used significantly enhanced nitric oxide release from H4 cells and enhanced TER (Ω/cm2) of enterocyte barriers after coincubation with RV. Marama cotyledon and seed coat extracts inhibited virion infectivity possibly through interference with replication due to accumulation of nitric oxide. Marama extracts are therefore promising microbicides against RV.
Collapse
|
9
|
Efficient synthesis of exomethylene- and keto-exomethylene-d-glucopyranosyl nucleoside analogs as potential cytotoxic agents. Carbohydr Res 2011; 346:328-33. [DOI: 10.1016/j.carres.2010.10.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2010] [Accepted: 10/26/2010] [Indexed: 01/12/2023]
|
10
|
Tsoukala E, Tzioumaki N, Manta S, Riga A, Balzarini J, Komiotis D. Synthesis of 3-fluoro-6-S-(2-S-pyridyl) nucleosides as potential lead cytostatic agents. Bioorg Chem 2010; 38:285-93. [PMID: 20817215 PMCID: PMC7112006 DOI: 10.1016/j.bioorg.2010.08.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Revised: 08/09/2010] [Accepted: 08/12/2010] [Indexed: 11/27/2022]
Abstract
The 3-deoxy-3-fluoro-6-S-(2-S-pyridyl)-6-thio-β-d-glucopyranosyl nucleoside analogs 7 were prepared via two facile synthetic routes. Their precursors, 3-fluoro-6-thio-glucopyranosyl nucleosides 5a-e, were obtained by the sequence of deacetylation of 3-deoxy-3-fluoro-β-d-glucopyranosyl nucleosides 2a-e, selective tosylation of the primary OH of 3 and finally treatment with potassium thioacetate. The desired thiolpyridine protected analogs 7a-c,f,g were obtained by the sequence of deacetylation of 5a-c followed by thiopyridinylation and/or condensation of the corresponding heterocyclic bases with the newly synthesized peracetylated 6-S-(2-S-pyridyl) sugar precursor 13, which was obtained via a novel synthetic route from glycosyl donor 12. None of the compounds 6 and 7 showed antiviral activity, but the 5-fluorouracil derivative 7c and particularly the uracil derivative 7b were endowed with an interesting and selective cytostatic action against a variety of murine and human tumor cell cultures.
Collapse
Affiliation(s)
- Evangelia Tsoukala
- Department of Biochemistry and Biotechnology, University of Thessaly, Greece
| | | | | | | | | | | |
Collapse
|
11
|
Synthesis of 4,6-dideoxy-3-fluoro-2-keto-β-d-glucopyranosyl analogues of 5-fluorouracil, N6-benzoyl adenine, uracil, thymine, N4-benzoyl cytosine and evaluation of their antitumor activities. Bioorg Chem 2010; 38:48-55. [DOI: 10.1016/j.bioorg.2009.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Revised: 11/09/2009] [Accepted: 11/11/2009] [Indexed: 11/23/2022]
|
12
|
Manta S, Tsoukala E, Tzioumaki N, Goropevšek A, Pamulapati RT, Cencič A, Balzarini J, Komiotis D. Dideoxy fluoro-ketopyranosyl nucleosides as potent antiviral agents: synthesis and biological evaluation of 2,3- and 3,4-dideoxy-3-fluoro-4- and -2-keto-beta-d-glucopyranosyl derivatives of N(4)-benzoyl cytosine. Eur J Med Chem 2009; 44:2696-704. [PMID: 19246130 PMCID: PMC7126854 DOI: 10.1016/j.ejmech.2009.01.020] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2008] [Revised: 01/16/2009] [Accepted: 01/20/2009] [Indexed: 12/15/2022]
Abstract
The synthesis of the dideoxy fluoro ketopyranonucleoside analogues, 1-(2,3-dideoxy-3-fluoro-6-O-trityl-beta-d-glycero-hexopyranosyl-4-ulose)-N(4)-benzoyl cytosine (7a), 1-(3,4-dideoxy-3-fluoro-6-O-trityl-beta-d-glycero-hexopyranosyl-2-ulose)-N(4)-benzoyl cytosine (13a) and their detritylated analogues 8a and 14a, respectively, is described. Condensation of peracetylated 3-deoxy-3-fluoro-D-glucopyranose (1) with silylated N(4)-benzoyl cytosine, followed by selective deprotection and isopropylidenation afforded compound 2. Routine deoxygenation at position 2', followed by a deprotection-selective reprotection sequence afforded the partially tritylated dideoxy nucleoside of cytosine 6, which upon oxidation of the free hydroxyl group at the 4'-position, furnished the desired tritylated 2,3-dideoxy-3-fluoro ketonucleoside 7a in equilibrium with its hydrated form 7b. Compound 2 was the starting material for the synthesis of the dideoxy fluoro ketopyranonucleoside 13a. Similarly, several subsequent protection and deprotection steps as well as routine deoxygenation at position 4', followed by oxidation of the free hydroxyl group at the 2'-position of the partially tritylated dideoxy nucleoside 12, yielded the desired carbonyl compound 13a in equilibrium with its hydrated form 13b. Finally, trityl removal from 7a/b and 13a/b provided the unprotected 2,3-dideoxy-3-fluoro-4-keto and 3,4-dideoxy-3-fluoro-2-ketopyranonucleoside analogues 8a and 14a, in equilibrium with their gem-diol forms 8b and 14b. None of the compounds showed inhibitory activity against a wide variety of DNA and RNA viruses at subtoxic concentrations, except 7a/b that was highly efficient against rotavirus infection. Nucleoside 7a/b also exhibited cytostatic activity against cells of various cancers. BrdU-cell cycle analysis revealed that the mechanism of cytostatic activity may be related to a delay in G1/S phase and initiation of programmed cell death.
Collapse
Affiliation(s)
- Stella Manta
- Department of Biochemistry and Biotechnology, Laboratory of Organic Chemistry, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Evangelia Tsoukala
- Department of Biochemistry and Biotechnology, Laboratory of Organic Chemistry, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Niki Tzioumaki
- Department of Biochemistry and Biotechnology, Laboratory of Organic Chemistry, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| | - Aleš Goropevšek
- Department of Biochemistry, Medical Faculty, University of Maribor, Slovenia
| | - Ravi Teja Pamulapati
- Department of Microbiology, Biochemistry and Biotechnology, Faculty of Agriculture, University of Maribor, Vrbanska c.30, 2000 Maribor, Slovenia
| | - Avrelija Cencič
- Department of Microbiology, Biochemistry and Biotechnology, Faculty of Agriculture, University of Maribor, Vrbanska c.30, 2000 Maribor, Slovenia
- Department of Biochemistry, Medical Faculty, University of Maribor, Slovenia
| | - Jan Balzarini
- Rega Institute for Medical Research, Katholieke Universtiteit Leuven, 3000 Leuven, Belgium
| | - Dimitri Komiotis
- Department of Biochemistry and Biotechnology, Laboratory of Organic Chemistry, University of Thessaly, 26 Ploutonos Str., 41221 Larissa, Greece
| |
Collapse
|
13
|
Tzioumaki N, Tsoukala E, Manta S, Agelis G, Balzarini J, Komiotis D. Synthesis, Antiviral and Cytostatic Evaluation of Unsaturated Exomethylene and Keto D‐Lyxopyranonucleoside Analogues. Arch Pharm (Weinheim) 2009; 342:353-60. [DOI: 10.1002/ardp.200900004] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|