1
|
Akhtar M, Niu J, Zhu Y, Luo Z, Tian T, Dong Y, Wang Y, Fareed MS, Lin L. Anti-inflammatory efficacy and relevant SAR investigations of novel chiral pyrazolo isoquinoline derivatives: Design, synthesis, in-vitro, in-vivo, and computational studies targeting iNOS. Eur J Med Chem 2023; 256:115412. [PMID: 37146344 DOI: 10.1016/j.ejmech.2023.115412] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/22/2023] [Accepted: 04/22/2023] [Indexed: 05/07/2023]
Abstract
Isoquinoline alkaloids are a rich source of multimodal agents with distinctive structural specificity and various pharmacological activities. In the present report, we propose a combination of design, synthesis, computational study, primary in-vitro screening using the lipopolysaccharide (LPS)-induced RAW 264.7 cell line, and in-vivo evaluation in mice models as a novel approach to speed up anti-inflammatory drugs discovery. The nitric oxide (NO) inhibitory effect of new compounds revealed that all of them displayed the potent NO inhibitory ability in a dose-dependent manner with no obvious cytotoxicity. A series of the model compounds 7a, 7b, 7d, 7f, and 7g have been identified as the most promising, with IC50 values of 47.76 μM, 33.8 μM, 20.76 μM, 26.74 μM, and 47.8 μM respectively in LPS-induced RAW 264.7 cell line. Structure-activity relationship (SAR) studies on a range of derivatives aided in identifying key pharmacophores in the lead compound. Western blotting data of 7d identified that our synthesized compounds can down-regulate and suppress the expression of the key inflammatory enzyme, inducible nitric oxide synthase (iNOS). These results suggested that synthesized compounds may be potent anti-inflammatory agents, inhibiting the NO-release, in turn, iNOS inflammatory pathways. Furthermore, in-vivo anti-inflammatory detection via xylene-induced ear edema in mice revealed that these compounds could also inhibit swelling in mice, with model compound 7h showing an inhibition activity (64.4%) at a concentration of 10 mg/kg comparable to the reference drug celecoxib. Molecular docking results showed that shortlisted compounds (7b, 7c, 7d, 7e, and 7h) had a potential binding affinity for iNOS with low energies, with S-Score to be -7.57, -8.22, -7.35, -8.95, -9.94 kcal/mol, respectively. All results demonstrated that the newly synthesized chiral pyrazolo isoquinoline derivatives are highly potential anti-inflammatory agents.
Collapse
Affiliation(s)
- Maryam Akhtar
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Jiabin Niu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yujie Zhu
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Zhaoyi Luo
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Ting Tian
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuanliang Dong
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Yuan Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Muhammad Subaan Fareed
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China
| | - Li Lin
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Research Unit of Peptide Science, Chinese Academy of Medical Sciences, 2019RU066, Institute of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, 730000, PR China.
| |
Collapse
|
2
|
Gurav R, Nalawade R, Sawant S, Satyanarayan ND, Sankpal S, Hangirgekar S. Bio‐synthesis of ZrO
2
for ZrO
2
@Ag‐S‐CH
2
COOH as the retrievable catalyst for the one‐pot green synthesis of pyrazoline derivatives and their anticancer evaluation. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Rutikesh Gurav
- Department of Chemistry Shivaji University Kolhapur India
| | - Rohit Nalawade
- Department of Chemistry Shivaji University Kolhapur India
| | - Shivaji Sawant
- Department of Chemistry Shivaji University Kolhapur India
| | - N. D. Satyanarayan
- Department of Pharmaceutical Chemistry, Post Graduate Centre, Kadur Kuvempu University, Chikkamagaluru Karnataka M.S. India
| | | | | |
Collapse
|
3
|
Kattimani PP, Kamble RR, Nesaragi AR, Kariduraganavar MY, Joshi SD, Dodamani SS, Jalalpure SS. Novel pyrazole derivatives via ring transformations: Anti-inflammatory and antifungal activity studies. SYNTHETIC COMMUN 2021. [DOI: 10.1080/00397911.2021.1964530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Pramod P. Kattimani
- Department of Chemistry, Karnatak University, Dharwad, India
- J.S.S. Arts, Science & Commerce College, Gokak, India
| | | | | | | | - Shrinivas D. Joshi
- Department of Pharmaceutical Chemistry, S.E.T’s College of Pharmacy, Dharwad, India
| | - Suneel S. Dodamani
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research, Belagavi, India
| | - Sunil S. Jalalpure
- Dr. Prabhakar Kore Basic Science Research Centre, KLE Academy of Higher Education and Research, Belagavi, India
- Dr. Prabhakar Kore Basic Science Research Centre, KLE College of Pharmacy, KLE Academy of Higher, KLE Academy of Higher Education and Research, Belagavi, India
| |
Collapse
|
4
|
Minhas R, Bansal Y. Inhibition of iNOS by Benzimidazole Derivatives: Synthesis, Docking, and Biological Evaluations. Med Chem 2021; 18:602-615. [PMID: 34579637 DOI: 10.2174/1573406417666210927123137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/17/2021] [Accepted: 08/31/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Inducible nitric Oxide Synthase (iNOS) plays a key role in the progression of inflammatory diseases by accelerating the production of NO, which makes it an intriguing target to treat inflammation in complex diseases. Therefore, the search is on to develop molecules as selective iNOS inhibitors. OBJECTIVE The present work was aimed to design, synthesize and evaluate benzimidazole-coumarin coupled molecules as anti-iNOS agents through in silico and pharmacological studies. METHODS A critical study of literature reports on iNOS inhibitors led to the selection of a (un)substituted coumarin nucleus, 2-aminobenzimidazole, and a 4-atom linker as important structural components for iNOS inhibition. Two series of compounds (7-16 and 17-26) were designed and synthesized by coupling these components. The compounds were subjected to docking using iNOS (1QW4) and nNOS (1QW6) as targets. All compounds were evaluated for NO and iNOS inhibitory activities in vitro. The selected compound was finally evaluated for anti-inflammatory activity in vivo using the carrageenan-induced rat paw edema model. RESULTS All compounds showed moderate to good inhibition of NO and iNOS in vitro. Compound 12 was the most potent inhibitor of NO and iNOS. Hence, it was evaluated in vivo for toxicity and anti-inflammatory activity. It was found to be safe in acute toxicity studies, and effective in reducing the rat paw edema significantly. Its anti-inflammatory behaviour was similar to that of aminoguanidine, which is a selective iNOS inhibitor. CONCLUSION The newly synthesized benzimidazole-coumarin hybrids may serve as potential leads for the development of novel anti-iNOS agents.
Collapse
Affiliation(s)
- Richa Minhas
- Department of Pharmaceutical Sciences and Drug Research Punjabi University, Patiala. India
| | - Yogita Bansal
- Department of Pharmaceutical Sciences and Drug Research Punjabi University, Patiala. India
| |
Collapse
|
5
|
Praveen C. Cycloisomerization of π-Coupled Heteroatom Nucleophiles by Gold Catalysis: En Route to Regiochemically Defined Heterocycles. CHEM REC 2021; 21:1697-1737. [PMID: 34061426 DOI: 10.1002/tcr.202100105] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 11/06/2022]
Abstract
Since the dawn of millennium, catalytic gold chemistry is at the forefront to set off diverse organic reactions via unique activation of π-bonded molecules. Within this purview, cycloisomerization of heteroatom nucleophiles linked to a π-system is one of the well recognized chemistry for the construction of numerous heterocyclic cores. Though the rudimentary aspects of this transformation are reviewed by several groups in different timeline, a holistic view on regiochemistry of such reactions went largely overlooked. Hence, this account emphasizes the gold catalyzed regioselective cycloisomerization of structurally distinctive π-connected hetero-nucleophiles leading to different heterocycles documented in the last two decades. From an application perspective, this account also highlights those methodologies which find a role in the total synthesis of natural products. Wherever appropriate, mechanistic details and contributing factors for selectivity are also discussed.
Collapse
Affiliation(s)
- Chandrasekar Praveen
- Electrochemical Power Sources Division, Central Electrochemical Research Institute (CSIR Laboratory), Alagappapuram, Karaikudi, 630003, Sivagangai District, Tamil Nadu, India
| |
Collapse
|
6
|
Mohd Faudzi SM, Leong SW, Auwal FA, Abas F, Wai LK, Ahmad S, Tham CL, Shaari K, Lajis NH, Yamin BM. In silico studies, nitric oxide, and cholinesterases inhibition activities of pyrazole and pyrazoline analogs of diarylpentanoids. Arch Pharm (Weinheim) 2020; 354:e2000161. [PMID: 32886410 DOI: 10.1002/ardp.202000161] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 08/12/2020] [Accepted: 08/14/2020] [Indexed: 11/09/2022]
Abstract
A new series of pyrazole, phenylpyrazole, and pyrazoline analogs of diarylpentanoids (excluding compounds 3a, 4a, 5a, and 5b) was pan-assay interference compounds-filtered and synthesized via the reaction of diarylpentanoids with hydrazine monohydrate and phenylhydrazine. Each analog was evaluated for its anti-inflammatory ability via the suppression of nitric oxide (NO) on IFN-γ/LPS-activated RAW264.7 macrophage cells. The compounds were also investigated for their inhibitory capability toward acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), using a modification of Ellman's spectrophotometric method. The most potent NO inhibitor was found to be phenylpyrazole analog 4c, followed by 4e, when compared with curcumin. In contrast, pyrazole 3a and pyrazoline 5a were found to be the most selective and effective BChE inhibitors over AChE. The data collected from the single-crystal X-ray diffraction analysis of compound 5a were then applied in a docking simulation to determine the potential binding interactions that were responsible for the anti-BChE activity. The results obtained signify the potential of these pyrazole and pyrazoline scaffolds to be developed as therapeutic agents against inflammatory conditions and Alzheimer's disease.
Collapse
Affiliation(s)
- Siti Munirah Mohd Faudzi
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - S Wei Leong
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faruk A Auwal
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Faridah Abas
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Department of Food Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Lam K Wai
- Drug and Herbal Research Centre, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| | - Syahida Ahmad
- Department of Biochemistry, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Chau L Tham
- Department of Biomedical Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Khozirah Shaari
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, Serdang, Selangor, Malaysia.,Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Nordin H Lajis
- Laboratory of Natural Products, Institute of Bioscience, Universiti Putra Malaysia, Serdang, Selangor, Malaysia
| | - Bohari M Yamin
- School of Chemical Sciences and Food Technology, Universiti Kebangsaan Malaysia, Bangi, Selangor, Malaysia
| |
Collapse
|
7
|
Adamus-Grabicka AA, Markowicz-Piasecka M, Cieślak M, Królewska-Golińska K, Hikisz P, Kusz J, Małecka M, Budzisz E. Biological Evaluation of 3-Benzylidenechromanones and Their Spiropyrazolines-Based Analogues. Molecules 2020; 25:E1613. [PMID: 32244705 PMCID: PMC7180617 DOI: 10.3390/molecules25071613] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 03/29/2020] [Accepted: 03/30/2020] [Indexed: 11/21/2022] Open
Abstract
A series of 3-benzylidenechrmanones 1, 3, 5, 7, 9 and their spiropyrazoline analogues 2, 4, 6, 8, 10 were synthesized. X-ray analysis confirms that compounds 2 and 8 crystallize in a monoclinic system in P21/n space groups with one and three molecules in each asymmetric unit. The crystal lattice of the analyzed compounds is enhanced by hydrogen bonds. The primary aim of the study was to evaluate the anti-proliferative potential of 3-benzylidenechromanones and their spiropyrazoline analogues towards four cancer cell lines. Our results indicate that parent compounds 1 and 9 with a phenyl ring at C2 have lower cytotoxic activity against cancer cell lines than their spiropyrazolines analogues. Analysis of IC50 values showed that the compounds 3 and 7 exhibited higher cytotoxic activity against cancer cells, being more active than the reference compound (4-chromanone or quercetin). The results of this study indicate that the incorporation of a pyrazoline ring into the 3-arylideneflavanone results in an improvement of the compounds' activity and therefore it may be of use in the search of new anticancer agents. Further analysis allowed us to demonstrate the compounds to have a strong inhibitory effect on the cell cycle. For instance, compounds 2, 10 induced 60% of HL-60 cells to be arrested in G2/M phase. Using a DNA-cleavage protection assay we also demonstrated that tested compounds interact with DNA. All compounds at the concentrations corresponding to cytotoxic properties are not toxic towards red blood cells, and do not contribute to hemolysis of RBCs.
Collapse
Affiliation(s)
- Angelika A. Adamus-Grabicka
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Magdalena Markowicz-Piasecka
- Laboratory of Bioanalysis, Department of Pharmaceutical Chemistry, Drug Analysis and Radiopharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| | - Marcin Cieślak
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.C.); (K.K.-G.)
| | - Karolina Królewska-Golińska
- Centre of Molecular and Macromolecular Studies, Polish Academy of Sciences, Sienkiewicza 112, 90-363 Lodz, Poland; (M.C.); (K.K.-G.)
| | - Paweł Hikisz
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland;
| | - Joachim Kusz
- Institute of Physics, University of Silesia, Uniwersytecka 4, 40-007 Katowice, Poland;
| | - Magdalena Małecka
- Department of Physical Chemistry, Theoretical and Structural Chemistry Group, Faculty of Chemistry, University of Lodz, Pomorska 163/165, 90-236 Lodz, Poland;
| | - Elzbieta Budzisz
- Department of Cosmetic Raw Materials Chemistry, Faculty of Pharmacy, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland;
| |
Collapse
|
8
|
Minhas R, Bansal Y, Bansal G. Inducible nitric oxide synthase inhibitors: A comprehensive update. Med Res Rev 2019; 40:823-855. [PMID: 31502681 DOI: 10.1002/med.21636] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/27/2022]
Abstract
Inducible nitric oxide synthase (iNOS), which is expressed in response to bacterial/proinflammatory stimuli, generates nitric oxide (NO) that provides cytoprotection. Overexpression of iNOS increases the levels of NO, and this increased NO level is implicated in pathophysiology of complex multifactorial diseases like Parkinson's disease, Alzheimer's disease, multiple sclerosis, rheumatoid arthritis, and inflammatory bowel disease. Selective inhibition of iNOS is an effective approach in treatment of such complex diseases. l-Arginine, being a substrate for iNOS, is the natural lead to develop iNOS inhibitors. More than 200 research reports on development of nitric oxide synthase inhibitors by different research groups across the globe have appeared in literature so far. The first review on iNOS, in 2002, discussed the iNOS inhibitors under two classes that is, amino acid and non-amino acid derivatives. Other review articles discussing specific chemical classes of iNOS inhibitors also appeared during last decade. In the present review, all reports on both natural and synthetic iNOS inhibitors, published 2002 onwards, are studied, classified, and discussed to provide comprehensive information on iNOS inhibitors. The synthetic inhibitors are broadly classified into two categories that is, arginine and non-arginine analogs. The latter are further classified into amidines, five- or six-membered heterocyclics, fused cyclics, steroidal type, and chalcones analogs. Structures of the most/significantly potent compounds from each report are provided to know the functional groups important for incurring iNOS inhibitory activity and selectivity. This review is aimed to provide a comprehensive view to the medicinal chemists for rational designing of novel and potent iNOS inhibitors.
Collapse
Affiliation(s)
- Richa Minhas
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Yogita Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| | - Gulshan Bansal
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala, Punjab, India
| |
Collapse
|
9
|
Zhang Y, Duan D, Zhong Y, Guo XA, Guo J, Gou J, Gao Z, Yu B. Fe(III)-Catalyzed Aerobic Intramolecular N–N Coupling of Aliphatic Azides with Amines. Org Lett 2019; 21:4960-4965. [DOI: 10.1021/acs.orglett.9b01396] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Yue Zhang
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Dongyu Duan
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Ying Zhong
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Xin-Ai Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Jiawei Guo
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Jing Gou
- Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Normal University, Xi’an 710062, China
| | - Ziwei Gao
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
| | - Binxun Yu
- Key Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, School of Chemistry & Chemical Engineering, Shaanxi Normal University, Xi’an 710062, China
- Key Laboratory of Medicinal Resources and Natural Pharmaceutical Chemistry, Ministry of Education, College of Life Science, Shaanxi Normal University, Xi’an 710062, China
| |
Collapse
|
10
|
Dai T, Li Q, Zhang X, Yang C. Substituent-Oriented Synthesis of Substituted Pyrazoles/Chromeno[3,2-c]pyrazoles via Sequential Reactions of Chromones/3-Chlorochromones and Tosylhydrazones. J Org Chem 2019; 84:5913-5921. [DOI: 10.1021/acs.joc.9b00282] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Tianzi Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital North, Fudan University, 108 Luxiang Road, Shanghai 201907, China
| | - Xiaofei Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| | - Chunhao Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, China
- School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, China
| |
Collapse
|
11
|
Trindade NR, Lopes PR, Naves LM, Fajemiroye JO, Alves PH, Amaral NO, Lião LM, Rebelo ACS, Castro CH, Braga VA, Menegatti R, Pedrino GR. The Newly Synthesized Pyrazole Derivative 5-(1-(3 Fluorophenyl)-1 H-Pyrazol-4-yl)-2 H-Tetrazole Reduces Blood Pressure of Spontaneously Hypertensive Rats via NO/cGMO Pathway. Front Physiol 2018; 9:1073. [PMID: 30131720 PMCID: PMC6091002 DOI: 10.3389/fphys.2018.01073] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 07/17/2018] [Indexed: 01/13/2023] Open
Abstract
The search for new antihypertensive drugs has grown in recent years because of high rate of morbidity among hypertensive patients and several side effects that are associated with the first-line medications. The current study sought to investigate the antihypertensive effect of a newly synthesized pyrazole derivative known as 5-(1-(3 fluorophenyl)-1H-pyrazol-4-yl)-2H-tetrazole (LQFM-21). Spontaneously hypertensive rats (SHR) were used to evaluate the effect of LQFM-21 on mean arterial pressure (MAP), heart rate (HR), renal vascular conductance (RVC), arterial vascular conductance (AVC), baroreflex sensitivity (BRS) index, and vascular reactivity. Acute intravenous (iv) administration of LQFM-21 (0.05, 0.1, 0.2, and 0.4 mg kg-1) reduced MAP and HR, and increased RVC and AVC. Chronic oral administration of LQFM-21 (15 mg kg-1) for 15 days reduced MAP without altering BRS. The blockade of muscarinic receptors and nitric oxide synthase by intravenous infusion of atropine and L-NAME, respectively, attenuated cardiovascular effects of LQFM-21. In addition, ex vivo experiments showed that LQFM-21 induced an endothelium-dependent relaxation in isolated aortic rings from SHR. This effect was blocked by guanylyl cyclase inhibitor (ODQ) and L-NAME. These findings suggest the involvement of muscarinic receptor and NO/cGMP pathway in the antihypertensive and vasodilator effects of LQFM-21.
Collapse
Affiliation(s)
- Neidiane R Trindade
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Paulo R Lopes
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Lara M Naves
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | | | - Pedro H Alves
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Nathalia O Amaral
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Luciano M Lião
- Institute of Chemistry, Federal University of Goiás, Goiânia, Brazil
| | - Ana C S Rebelo
- Department of Morphology, Federal University of Goiás, Goiânia, Brazil
| | - Carlos H Castro
- Integrative Laboratory of Cardiovascular and Neurological Pathophysiology, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| | - Valdir A Braga
- Department of Biotechnology, Biotechnology Center, Federal University of Paraiba, João Pessoa, Brazil
| | | | - Gustavo R Pedrino
- Center for Neuroscience and Cardiovascular Research, Department of Physiological Sciences, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
12
|
Thiadiazoline- and Pyrazoline-Based Carboxamides and Carbothioamides: Synthesis and Inhibition against Nitric Oxide Synthase. J CHEM-NY 2018. [DOI: 10.1155/2018/9242616] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Two new families of pyrazoline and thiadiazoline heterocycles have been developed. Their inhibitory activities against two different isoforms of nitric oxide synthase (inducible and neuronal NOS) are reported. The novel derivatives were synthesized combining the arylthiadiazoline or arylpyrazoline skeleton and a carboxamide or carbothioamide moiety, used as starting material ethyl 2-nitrobenzoates or substituted nitrobenzaldehydes, respectively. The structure-activity relationships of final molecules are discussed in terms of the R1 radical effects in the aromatic ring, the Y atom in the heterocyclic system, the X heteroatom in the main chain, and the R2 substituent in the carboxamide or carbothioamide rest. In general, thiadiazolines (5a–e) inhibit preferentially the neuronal isoform; among them, 5a is the best nNOS inhibitor (74.11% at 1 mM, IC50 = 420 μM). In contrast, pyrazolines (6a–r) behave better as iNOS than nNOS inhibitors, 6m being the best molecule of this series (76.86% at 1 mM of iNOS inhibition, IC50 = 130 μM) and the most potent of all tested compounds.
Collapse
|
13
|
Budzisz E, Paneth P, Geromino I, Muzioł T, Rozalski M, Krajewska U, Pipiak P, Ponczek MB, Małecka M, Kupcewicz B. The cytotoxic effect of spiroflavanone derivatives, their binding ability to human serum albumin (HSA) and a DFT study on the mechanism of their synthesis. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.02.037] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
14
|
Ramírez–Prada J, Robledo SM, Vélez ID, Crespo MDP, Quiroga J, Abonia R, Montoya A, Svetaz L, Zacchino S, Insuasty B. Synthesis of novel quinoline–based 4,5–dihydro–1 H –pyrazoles as potential anticancer, antifungal, antibacterial and antiprotozoal agents. Eur J Med Chem 2017; 131:237-254. [DOI: 10.1016/j.ejmech.2017.03.016] [Citation(s) in RCA: 60] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Revised: 03/07/2017] [Accepted: 03/10/2017] [Indexed: 12/11/2022]
|
15
|
Camacho ME, Chayah M, García ME, Fernández-Sáez N, Arias F, Gallo MA, Carrión MD. Quinazolinones, Quinazolinthiones, and Quinazolinimines as Nitric Oxide Synthase Inhibitors: Synthetic Study and Biological Evaluation. Arch Pharm (Weinheim) 2016; 349:638-50. [DOI: 10.1002/ardp.201600020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 02/05/2023]
Affiliation(s)
- M. Encarnación Camacho
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - Mariem Chayah
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - M. Esther García
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - Nerea Fernández-Sáez
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - Fabio Arias
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - Miguel A. Gallo
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - M. Dora Carrión
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| |
Collapse
|
16
|
He J, Ma L, Wei Z, Zhu J, Peng F, Shao M, Lei L, He L, Tang M, He L, Wu Y, Chen L. Synthesis and biological evaluation of novel pyrazoline derivatives as potent anti-inflammatory agents. Bioorg Med Chem Lett 2015; 25:2429-33. [DOI: 10.1016/j.bmcl.2015.03.087] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2014] [Revised: 03/28/2015] [Accepted: 03/30/2015] [Indexed: 01/24/2023]
|
17
|
Synthesis, biological evaluation and molecular docking of some substituted pyrazolines and isoxazolines as potential antimicrobial agents. Eur J Med Chem 2015; 95:96-103. [DOI: 10.1016/j.ejmech.2015.03.031] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 03/02/2015] [Accepted: 03/15/2015] [Indexed: 12/16/2022]
|
18
|
Khidre RE, Abdel-Wahab BF, Farahat AA, Mohamed HA. Synthetic Routes to Pyrazole-3(5)-carboxylates. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.1504] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Rizk E. Khidre
- Chemical Industries Division; National Research Centre; Dokki 12622 Giza Egypt
- Chemistry Department, Faculty of Science; Jazan University; Jazan Saudi Arabia
| | - Bakr F. Abdel-Wahab
- Applied Organic Chemistry Department; National Research Centre; Dokki 12622 Giza Egypt
| | - Abdelbasset A. Farahat
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy; Mansoura University; Mansoura 35516 Egypt
| | - Hanan A. Mohamed
- Applied Organic Chemistry Department; National Research Centre; Dokki 12622 Giza Egypt
| |
Collapse
|
19
|
Amini SK. A systematic investigation of cooperativity between two types of hydrogen bonding in the nonlinear clusters of an aromatic molecule: Pyrazole. J Mol Struct 2014. [DOI: 10.1016/j.molstruc.2014.03.039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
20
|
Hassan GS, Abdel Rahman DE, Saleh DO, Abdel Jaleel GAR. Benzofuran–Morpholinomethyl–Pyrazoline Hybrids as a New Class of Vasorelaxant Agents: Synthesis and Quantitative Structure–Activity Relationship Study. Chem Pharm Bull (Tokyo) 2014; 62:1238-51. [DOI: 10.1248/cpb.c14-00572] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
21
|
Carrión MD, Chayah M, Entrena A, López A, Gallo MA, Acuña-Castroviejo D, Camacho ME. Synthesis and biological evaluation of 4,5-dihydro-1H-pyrazole derivatives as potential nNOS/iNOS selective inhibitors. Part 2: Influence of diverse substituents in both the phenyl moiety and the acyl group. Bioorg Med Chem 2013; 21:4132-42. [DOI: 10.1016/j.bmc.2013.05.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2013] [Revised: 04/30/2013] [Accepted: 05/08/2013] [Indexed: 10/26/2022]
|
22
|
Hassan SY. Synthesis, antibacterial and antifungal activity of some new pyrazoline and pyrazole derivatives. Molecules 2013; 18:2683-711. [PMID: 23449067 PMCID: PMC6270532 DOI: 10.3390/molecules18032683] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 01/07/2013] [Accepted: 01/09/2013] [Indexed: 11/16/2022] Open
Abstract
A series of 2-pyrazolines 5-9 have been synthesized from α,β-unsaturated ketones 2-4. New 2-pyrazoline derivatives 13-15 bearing benzenesulfonamide moieties were then synthesized by condensing the appropriate chalcones 2-4 with 4-hydrazinyl benzenesulfonamide hydrochloride. Ethyl [1,2,4] triazolo[3,4-c][1,2,4]triazino[5,6-b]-5H-indole-5-ethanoate (26) and 1-(5H-[1,2,4]triazino[5,6-b] indol-3-yl)-3-methyl-1H-pyrazol-5(4H)-one (32) were synthesized from 3-hydrazinyl-5H-[1,2,4]triazino[5,6-b]indole (24). On the other hand ethyl[1,2,4]triazolo[3,4-c][1,2,4]triazino[5,6-b]-5,10-dihydroquinoxaline- 5-ethanoate (27) and 1-(5,10-dihydro-[1,2,4]triazino[5,6-b]quinoxalin-3-yl)-3-methyl-1H-pyrazol-5(4H)-one (33) were synthesized from 3-hydrazinyl-5,10-dihydro-[1,2,4]triazino[5,6-b]quinoxaline (25) by reaction with diethyl malonate or ethyl acetoacetate, respectively. Condensation of 6,6-dimethyl-4-oxo-4,5,6,7-tetrahydro-1H-indole-2-carbaldehyde (1') with compound 24 or 25 afforded the corresponding Schiff's bases 36 and 37, respectively. Reaction of the Schiff's base 37 with benzoyl hydrazine or acetic anhydride afforded benzohydrazide derivative 39 and the cyclized compound 40, respectively. Furthermore, the pyrazole derivatives 42-44 were synthesized by cyclization of hydrazine derivative 25 with the prepared chalcones 2-4. All the newly synthesized compounds have been characterized on the basis of IR and 1H-NMR spectral data as well as physical data. Antimicrobial activity against the organisms E. coli ATCC8739 and P. aeruginosa ATCC 9027 as examples of Gram-negative bacteria, S. aureus ATCC 6583P as an example of Gram-positive bacteria and C. albicans ATCC 2091 as an example of a yeast-like fungus have been studied using the Nutrient Agar (NA) and Sabouraud Dextrose Agar (SDA) diffusion methods. The best performance was found for the compounds 16, 17, 19 and 20.
Collapse
Affiliation(s)
- Seham Y Hassan
- Department of Chemistry, Faculty of Science, University of Alexandria, PO Box 426, Ibrahimia 21321, Alexandria, Egypt.
| |
Collapse
|
23
|
Synthesis and antimicrobial evaluation of some novel bis-α,β-unsaturated ketones, nicotinonitrile, 1,2-dihydropyridine-3-carbonitrile, fused thieno[2,3-b]pyridine and pyrazolo[3,4-b]pyridine derivatives. Int J Mol Sci 2013; 14:2967-79. [PMID: 23364616 PMCID: PMC3588025 DOI: 10.3390/ijms14022967] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2012] [Revised: 01/09/2013] [Accepted: 01/10/2013] [Indexed: 11/16/2022] Open
Abstract
The title compounds were prepared by reaction of 1,1'-(5-methyl-1-phenyl-1H-pyrazole-3,4-diyl)diethanone (1) with different aromatic aldehydes 2a-c, namely Furfural (2a), 4-chlorobenzaldehyde (2b) and 4-methoxybenzaldhyde (2c) to yield the corresponding α,β-unsaturated ketones 3a-c. Compound 3 was reacted with malononitrile, 2-cyanoacetamide or 2-cyanothioacetamide yielded the corresponding bis[2-amino-6-(aryl)nicotinonitrile] 4a-c, bis[6-(2-aryl)-2-oxo-1,2-dihydropyridine-3-carbonitrile] 5a-c or bis[6-(2-aryl)-2-thioxo-1,2-dihydropyridine-3-carbonitrile] 6a,b, respectively. The reaction of compound 6a with each of 2-chloro-N-(4-bromophenyl) acetamide (7a), chloroacetamide (7b) in ethanolic sodium ethoxide solution at room temperature to give the corresponding 4,4'-(5-methyl-1-phenyl-1H-pyrazole-3,4-diyl)bis-6-(2-furyl)thieno[2,3-b]pyridine-2-carboxamide] derivatives 9a,b. While compound 6a reacted with hydrazine hydrate yielded the 4,4'-(5-methyl-1-phenyl-1H-pyrazole-3,4-diyl)bis[6-(2-furyl)-1H-pyrazolo[3,4-b]pyridin-3-amine] 11. The structures of the products were elucidated based on their spectral properties, elemental analyses and, wherever possible, by alternate synthesis. Antimicrobial evaluation of the products was carried out.
Collapse
|
24
|
Bouvet S, Moreau X, Coeffard V, Greck C. Synthesis of Enantioenriched Aza-Proline Derivatives through Gold(I)-Catalyzed Cyclization of Chiral α-Hydrazino Esters. J Org Chem 2012; 78:427-37. [DOI: 10.1021/jo302320v] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Sébastien Bouvet
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles-St-Quentin-en-Yvelines, 45 Avenue des États-Unis, 78035 Versailles cedex, France
| | - Xavier Moreau
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles-St-Quentin-en-Yvelines, 45 Avenue des États-Unis, 78035 Versailles cedex, France
| | - Vincent Coeffard
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles-St-Quentin-en-Yvelines, 45 Avenue des États-Unis, 78035 Versailles cedex, France
| | - Christine Greck
- Institut Lavoisier de Versailles, UMR CNRS 8180, Université de Versailles-St-Quentin-en-Yvelines, 45 Avenue des États-Unis, 78035 Versailles cedex, France
| |
Collapse
|
25
|
Aly MRE, Ibrahim ESI, El Shahed FA, Soliman HA, Ibrahim ZS, El-Shazly SAM. Synthesis of some quinolinyl chalcone analogues and investigation of their anticancer and synergistic anticancer effect with doxorubicin. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2012. [DOI: 10.1134/s1068162012030119] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
26
|
1,3,4-Thiadiazole derivatives as selective inhibitors of iNOS versus nNOS: Synthesis and structure-activity dependence. Eur J Med Chem 2012; 50:129-39. [DOI: 10.1016/j.ejmech.2012.01.047] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 01/20/2012] [Accepted: 01/24/2012] [Indexed: 11/18/2022]
|
27
|
Comprehensive and facile synthesis of some functionalized bis-heterocyclic compounds containing a thieno[2,3-b]thiophene motif. Int J Mol Sci 2012; 13:2263-2275. [PMID: 22408452 PMCID: PMC3292021 DOI: 10.3390/ijms13022263] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Revised: 02/09/2012] [Accepted: 02/13/2012] [Indexed: 11/17/2022] Open
Abstract
A comprehensive and facile method for the synthesis of new functionalized bis-heterocyclic compounds containing a thieno[2,3-b]thiophene motif is described. The hitherto unknown bis-pyrazolothieno[2,3-b]thiophene derivatives 2a-c, bis-pyridazin othieno[2,3-b]thiophene derivatives 4, bis-pyridinothieno[2,3-b]thiophene derivatives 6a,b, and to an analogous bis-pyridinothieno[2,3-b]thiophene nitrile derivatives 7 are obtained. Additionally, the novel bis-pyradazinonothieno[2,3-b]thiophene derivatives 9, and nicotinic acid derivatives 10, 11 are obtained via bis-dienamide 8. The structures of all newly synthesized compounds have been elucidated by (1)H, (13)C NMR, GCMS, and IR spectrometry. These compounds represent a new class of sulfur and Nitrogen containing heterocycles that should also be of interest as new materials.
Collapse
|
28
|
Abstract
INTRODUCTION Pyrazolines are well-known and important nitrogen-containing five-membered ring heterocyclic compounds. Various methods have been worked out for their synthesis. Several pyrazoline derivatives have been found to possess diverse biological properties, which has stimulated research activity in this field. AREAS COVERED The present review sheds light on the recent therapeutic patent literature (2000 - 2011) describing the applications of pyrazolines and their derivatives on selected activities. Many of the therapeutic applications of pyrazoline derivatives have been discussed, either in the patent or in the general literature areas in this review. In addition to selected biological data, a wide range of pharmaceutical applications and pharmaceutical compositions are also summarized. EXPERT OPINION Pyrazoline derivatives have numerous prominent pharmacological effects, such as antimicrobial (antibacterial, antifungal, antiamoebic, antimycobacterial), anti-inflammatory, analgesic, antidepressant and anticancer. Further pharmacological effects include cannabinoid CB1 receptor antagonists, antiepileptic, antitrypanosomal, antiviral activity, MAO-inhibitory, antinociceptive activity, insecticidal, hypotensive, nitric oxide synthase inhibitor, antioxidant, steroidal and antidiabetic. Lastly, they also effect ACAT inhibition, urotensin II and somatostatin-5 receptors, TGF-β signal transduction inhibitors and neurocytotoxicity inhibitors activities. Many new pyrazoline derivatives have been synthesized and patented, but there are still new aspects to explore and work on.
Collapse
Affiliation(s)
- Mohamed R Shaaban
- Cairo University, Faculty of Science, Department of Chemistry,
Giza 12613, Egypt
- Umm Al-Qura University, Faculty of Applied Science, Department of Chemistry,
Makkah 21955, Saudi Arabia;
| | - Abdelrahman S Mayhoub
- Al-Azhar University, Faculty of Pharmacy, Department of Organic Chemistry,
Cairo 11884, Egypt
- Purdue University, College of Pharmacy, and the Purdue Center for Cancer Research, Department of Medicinal Chemistry and Molecular Pharmacology,
West Lafayette, IN 47907, USA
| | - Ahmad M Farag
- Cairo University, Faculty of Science, Department of Chemistry,
Giza 12613, Egypt
| |
Collapse
|
29
|
Yang JF, Cao H, Liu H, Li BQ, Ma YM. Synthesis and Bioactivity of Novel Bis-heterocyclic Compounds Containing Pyrazole and Oxadiazoline. J CHIN CHEM SOC-TAIP 2011. [DOI: 10.1002/jccs.201190039] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
30
|
Insuasty B, Tigreros A, Orozco F, Quiroga J, Abonía R, Nogueras M, Sanchez A, Cobo J. Synthesis of novel pyrazolic analogues of chalcones and their 3-aryl-4-(3-aryl-4,5-dihydro-1H-pyrazol-5-yl)-1-phenyl-1H-pyrazole derivatives as potential antitumor agents. Bioorg Med Chem 2010; 18:4965-74. [DOI: 10.1016/j.bmc.2010.06.013] [Citation(s) in RCA: 141] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2010] [Revised: 05/28/2010] [Accepted: 06/04/2010] [Indexed: 10/19/2022]
|