1
|
Pharmacoinformatics-based identification of anti-bacterial catalase-peroxidase enzyme inhibitors. Comput Biol Chem 2019; 83:107136. [DOI: 10.1016/j.compbiolchem.2019.107136] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 09/28/2019] [Accepted: 09/29/2019] [Indexed: 11/17/2022]
|
2
|
Sharma M, Jha P, Verma P, Chopra M. Combined comparative molecular field analysis, comparative molecular similarity indices analysis, molecular docking and molecular dynamics studies of histone deacetylase 6 inhibitors. Chem Biol Drug Des 2019; 93:910-925. [PMID: 30667160 DOI: 10.1111/cbdd.13488] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2018] [Revised: 01/09/2019] [Accepted: 01/12/2019] [Indexed: 01/04/2023]
Abstract
Human histone deacetylase isoform 6 (HDAC6) has been shown to have an immense role in cell motility and aggresome formation and is being an attractive selective target for the treatment of multiple tumour types and neurodegenerative conditions. The discovery of selective HDAC6 inhibitors with new chemical functionalities is therefore of utmost interest to researchers. In order to examine the structural requirements for HDAC6-specific inhibitors and to derive predictive model which can be used for designing new selective HDAC6 inhibitors, a three-dimensional quantitative structure-activity relationship study was carried out on a diverse set of ligands using common feature-based pharmacophore alignment followed by employing comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) techniques. The models displayed high correlation of 0.978 and 0.991 for best CoMFA and CoMSIA models, respectively, and a good statistical significance. The model could be used for predicting activities of the test set compounds as well as for deriving useful information regarding steric, electrostatic, hydrophobic properties of the molecules used in this study. Further, the training and test set molecules were docked into the HDAC6 binding site and molecular dynamics was carried out to suggest structural requirements for design of new inhibitors.
Collapse
Affiliation(s)
- Monika Sharma
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Prakash Jha
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Priyanka Verma
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| | - Madhu Chopra
- Laboratory of Molecular Modeling and Anticancer Drug Development, Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi, India
| |
Collapse
|
3
|
Campaniço A, Moreira R, Lopes F. Drug discovery in tuberculosis. New drug targets and antimycobacterial agents. Eur J Med Chem 2018; 150:525-545. [DOI: 10.1016/j.ejmech.2018.03.020] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 03/05/2018] [Accepted: 03/06/2018] [Indexed: 01/24/2023]
|
4
|
Evaluation of heteroatom-rich derivatives as antitubercular agents with InhA inhibition properties. Med Chem Res 2018. [DOI: 10.1007/s00044-017-2064-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
5
|
Kumar V, Jhamb SS, Sobhia ME. Cell wall permeability assisted virtual screening to identify potential direct InhA inhibitors of Mycobacterium tuberculosis and their biological evaluation. J Biomol Struct Dyn 2017; 36:3274-3290. [PMID: 28974157 DOI: 10.1080/07391102.2017.1387176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
The arising cases of isoniazid-resistance have motivated research interests toward new class of molecules known as direct InhA inhibitors. Here, a combine approach of shape-based pharmacophore and descriptor-based 2D QSAR was used to identify the potential direct InhA inhibitors. The approach is duly assisted with in vitro testing and molecular dynamics simulations. A combination of empirical parameters was derived to use as a filter for cell wall permeability while 2D QSAR was used as another filter to predict the biological activity. Both filters were applied to prioritize the molecules for biological evaluation against anti-TB activity. It led to 6 potential molecules which showed > 90% inhibition of H37Rv strain of Mycobacterium tuberculosis in BACTEC assay. Further, MMGBSA binding free energy of identified molecules was compared with available highly potent molecule, 5-hexyl-2-(2-methylphenoxy) phenol (IC50 = 5nM) using molecular dynamics simulations. It showed two molecules with comparatively higher affinity toward InhA as compared to potent molecule. It indicated the candidature of identified molecules to be further considered in anti-TB drug development pipeline.
Collapse
Affiliation(s)
- Vivek Kumar
- a Department of Pharmacoinformatics , National Institute of Pharmaceutical Education and Research , Sector-67, S.A.S. Nagar, Punjab 160062 , India
| | - Sarbjit Singh Jhamb
- b Common Biological Testing Lab (CBTL), Department of Pharmaceuticals , National Institute of Pharmaceutical Education and Research (NIPER) , Sector-67, S.A.S. Nagar, Punjab 160062 , India
| | - M Elizabeth Sobhia
- a Department of Pharmacoinformatics , National Institute of Pharmaceutical Education and Research , Sector-67, S.A.S. Nagar, Punjab 160062 , India
| |
Collapse
|
6
|
Štular T, Lešnik S, Rožman K, Schink J, Zdouc M, Ghysels A, Liu F, Aldrich CC, Haupt VJ, Salentin S, Daminelli S, Schroeder M, Langer T, Gobec S, Janežič D, Konc J. Discovery of Mycobacterium tuberculosis InhA Inhibitors by Binding Sites Comparison and Ligands Prediction. J Med Chem 2016; 59:11069-11078. [PMID: 27936766 DOI: 10.1021/acs.jmedchem.6b01277] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Drug discovery is usually focused on a single protein target; in this process, existing compounds that bind to related proteins are often ignored. We describe ProBiS plugin, extension of our earlier ProBiS-ligands approach, which for a given protein structure allows prediction of its binding sites and, for each binding site, the ligands from similar binding sites in the Protein Data Bank. We developed a new database of precalculated binding site comparisons of about 290000 proteins to allow fast prediction of binding sites in existing proteins. The plugin enables advanced viewing of predicted binding sites, ligands' poses, and their interactions in three-dimensional graphics. Using the InhA query protein, an enoyl reductase enzyme in the Mycobacterium tuberculosis fatty acid biosynthesis pathway, we predicted its possible ligands and assessed their inhibitory activity experimentally. This resulted in three previously unrecognized inhibitors with novel scaffolds, demonstrating the plugin's utility in the early drug discovery process.
Collapse
Affiliation(s)
- Tanja Štular
- National Institute of Chemistry , Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Samo Lešnik
- National Institute of Chemistry , Hajdrihova 19, SI-1000 Ljubljana, Slovenia
| | - Kaja Rožman
- Faculty of Pharmacy, University of Ljubljana , Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Julia Schink
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska , Glagoljaška 8, SI-6000 Koper, Slovenia
| | - Mitja Zdouc
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska , Glagoljaška 8, SI-6000 Koper, Slovenia
| | - An Ghysels
- Center for Molecular Modeling, Ghent University , Technologiepark 903, 9052 Zwijnaarde, Belgium
| | - Feng Liu
- AAT Bioquest, Inc. , 520 Mercury Drive, Sunnyvale, California 94085, United States
| | - Courtney C Aldrich
- Department of Medicinal Chemistry, University of Minnesota , 308 Harvard Street Southeast, Minneapolis, Minnesota 55455, United States
| | - V Joachim Haupt
- Biotechnology Center (BIOTEC), Technische Universität Dresden , 01307 Dresden, Germany
| | - Sebastian Salentin
- Biotechnology Center (BIOTEC), Technische Universität Dresden , 01307 Dresden, Germany
| | - Simone Daminelli
- Biotechnology Center (BIOTEC), Technische Universität Dresden , 01307 Dresden, Germany
| | - Michael Schroeder
- Biotechnology Center (BIOTEC), Technische Universität Dresden , 01307 Dresden, Germany
| | - Thierry Langer
- Department of Pharmaceutical Chemistry, Faculty of Life Sciences, University of Vienna , Althanstrasse 14, A-1090 Vienna, Austria
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana , Aškerčeva cesta 7, SI-1000 Ljubljana, Slovenia
| | - Dušanka Janežič
- Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska , Glagoljaška 8, SI-6000 Koper, Slovenia
| | - Janez Konc
- National Institute of Chemistry , Hajdrihova 19, SI-1000 Ljubljana, Slovenia.,Faculty of Mathematics, Natural Sciences and Information Technologies, University of Primorska , Glagoljaška 8, SI-6000 Koper, Slovenia
| |
Collapse
|
7
|
The therapeutic voyage of pyrazole and its analogs: A review. Eur J Med Chem 2016; 120:170-201. [DOI: 10.1016/j.ejmech.2016.04.077] [Citation(s) in RCA: 262] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 04/25/2016] [Accepted: 04/28/2016] [Indexed: 02/05/2023]
|
8
|
Perryman AL, Yu W, Wang X, Ekins S, Forli S, Li SG, Freundlich JS, Tonge PJ, Olson AJ. A virtual screen discovers novel, fragment-sized inhibitors of Mycobacterium tuberculosis InhA. J Chem Inf Model 2015; 55:645-59. [PMID: 25636146 DOI: 10.1021/ci500672v] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Isoniazid (INH) is usually administered to treat latent Mycobacterium tuberculosis (Mtb) infections and is used in combination therapy to treat active tuberculosis (TB). Unfortunately, resistance to this drug is hampering its clinical effectiveness. INH is a prodrug that must be activated by Mtb catalase-peroxidase (KatG) before it can inhibit InhA (Mtb enoyl-acyl-carrier-protein reductase). Isoniazid-resistant cases of TB found in clinical settings usually involve mutations in or deletion of katG, which abrogate INH activation. Compounds that inhibit InhA without requiring prior activation by KatG would not be affected by this resistance mechanism and hence would display continued potency against these drug-resistant isolates of Mtb. Virtual screening experiments versus InhA in the GO Fight Against Malaria (GO FAM) project were designed to discover new scaffolds that display base-stacking interactions with the NAD cofactor. GO FAM experiments included targets from other pathogens, including Mtb, when they had structural similarity to a malaria target. Eight of the 16 soluble compounds identified by docking against InhA plus visual inspection were modest inhibitors and did not require prior activation by KatG. The best two inhibitors discovered are both fragment-sized compounds and displayed Ki values of 54 and 59 μM, respectively. Importantly, the novel inhibitors discovered have low structural similarity to known InhA inhibitors and thus help expand the number of chemotypes on which future medicinal chemistry efforts can be focused. These new fragment hits could eventually help advance the fight against INH-resistant Mtb strains, which pose a significant global health threat.
Collapse
Affiliation(s)
- Alexander L Perryman
- †Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | - Sean Ekins
- ⊥Collaborations in Chemistry, 5616 Hilltop Needmore Road, Fuquay-Varina, North Carolina 27526, United States.,#Collaborative Drug Discovery, 1633 Bayshore Highway, Suite 342, Burlingame, California 94010, United States
| | - Stefano Forli
- †Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| | | | | | | | - Arthur J Olson
- †Department of Integrative Structural and Computational Biology, The Scripps Research Institute, La Jolla, California 92037, United States
| |
Collapse
|
9
|
Elucidating the structural basis of diphenyl ether derivatives as highly potent enoyl-ACP reductase inhibitors through molecular dynamics simulations and 3D-QSAR study. J Mol Model 2014; 20:2319. [PMID: 24935113 DOI: 10.1007/s00894-014-2319-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2013] [Accepted: 05/26/2014] [Indexed: 10/25/2022]
Abstract
Diphenyl ether derivatives are good candidates for anti-tuberculosis agents that display a promising potency for inhibition of InhA, an essential enoyl-acyl carrier protein (ACP) reductase involved in fatty acid biosynthesis pathways in Mycobacterium tuberculosis. In this work, key structural features for the inhibition were identified by 3D-QSAR CoMSIA models, constructed based on available experimental binding properties of diphenyl ether inhibitors, and a set of four representative compounds was subjected to MD simulations of inhibitor-InhA complexes for the calculation of binding free energies. The results show that bulky groups are required for the R1 substituent on the phenyl A ring of the inhibitors to favor a hydrophobic pocket formed by residues Phe149, Met155, Pro156, Ala157, Tyr158, Pro193, Met199, Val203, Leu207, Ile215, and Leu218. Small substituents with a hydrophilic property are required at the R3 and R4 positions of the inhibitor phenyl B rings to form hydrogen bonds with the backbones of Gly96 and Met98, respectively. For the R2 substituent, small substituents with simultaneous hydrophilic or hydrophobic properties are required to favor the interaction with the pyrophosphate moiety of NAD(+) and the methyl side chain of Ala198, respectively. The reported data provide structural guidance for the design of new and potent diphenyl ether-based inhibitors with high inhibitory activities against M. tuberculosis InhA.
Collapse
|
10
|
Gurdal EE, Durmaz I, Cetin-Atalay R, Yarim M. Synthesis and cytotoxicity studies of novel benzhydrylpiperazine carboxamide and thioamide derivatives. J Enzyme Inhib Med Chem 2013; 29:205-14. [DOI: 10.3109/14756366.2013.765416] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Affiliation(s)
- Enise Ece Gurdal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University
Kayisdagi, IstanbulTurkey
| | - Irem Durmaz
- Department of Molecular Biology and Genetics, BilGen, Genetics and Biotechnology Research Center, Faculty of Science, Bilkent University
Bilkent, AnkaraTurkey
| | - Rengul Cetin-Atalay
- Department of Molecular Biology and Genetics, BilGen, Genetics and Biotechnology Research Center, Faculty of Science, Bilkent University
Bilkent, AnkaraTurkey
| | - Mine Yarim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University
Kayisdagi, IstanbulTurkey
| |
Collapse
|
11
|
Koseki Y, Kinjo T, Kobayashi M, Aoki S. Identification of novel antimycobacterial chemical agents through the in silico multi-conformational structure-based drug screening of a large-scale chemical library. Eur J Med Chem 2013; 60:333-9. [DOI: 10.1016/j.ejmech.2012.12.012] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2012] [Revised: 12/03/2012] [Accepted: 12/07/2012] [Indexed: 11/30/2022]
|
12
|
Lu X, Huang K, You Q. Enoyl acyl carrier protein reductase inhibitors: a patent review (2006 - 2010). Expert Opin Ther Pat 2011; 21:1007-22. [PMID: 21651455 DOI: 10.1517/13543776.2011.581227] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
INTRODUCTION Bacterial enoyl acyl carrier protein reductase (ENR) specificity reduces the double bond in enoyl thioester substrates in the final enzymatic step of the elongation cycle of the fatty acid synthase-II pathway. Its function is essential for bacterial organism survival, making it an attractive target for the development of novel antibiotics. The structural features and therapeutic potential of this enzyme have stimulated the rational design of ENR inhibitors, and important progress has been achieved to date. AREAS COVERED This review describes recent advances made in the search for ENR inhibitors, as reflected by patent applications filed from 2006 to 2010, together with an overview of the relevant literature. The first section of this paper provides a background of the biology of ENR, followed by a description of its structure and function. The main section describes the substrate specificities for ENR, and the structure-based rational design of patent inhibitors originating from different companies and academic groups. EXPERT OPINION The increase in the number of ENR inhibitors bodes well for the development of new therapeutics against multidrug-resistant bacteria. The challenge is now to improve the pharmacokinetic parameters of these inhibitors and translate them into clinical studies.
Collapse
Affiliation(s)
- Xiaoyun Lu
- Guangzhou Institutes of Biomedicine and Health, Key Laboratory of Regenerative Biology and Institute of Chemical Biology, Chinese Academy of Sciences, No. 190, Kaiyuan Avenue, Science Park, Guangzhou, 510530, China
| | | | | |
Collapse
|
13
|
Ekins S, Freundlich JS, Choi I, Sarker M, Talcott C. Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery. Trends Microbiol 2011; 19:65-74. [PMID: 21129975 PMCID: PMC3034835 DOI: 10.1016/j.tim.2010.10.005] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2010] [Revised: 10/15/2010] [Accepted: 10/29/2010] [Indexed: 01/31/2023]
Abstract
We are witnessing the growing menace of both increasing cases of drug-sensitive and drug-resistant Mycobacterium tuberculosis strains and the challenge to produce the first new tuberculosis (TB) drug in well over 40 years. The TB community, having invested in extensive high-throughput screening efforts, is faced with the question of how to optimally leverage these data to move from a hit to a lead to a clinical candidate and potentially, a new drug. Complementing this approach, yet conducted on a much smaller scale, cheminformatic techniques have been leveraged and are examined in this review. We suggest that these computational approaches should be optimally integrated within a workflow with experimental approaches to accelerate TB drug discovery.
Collapse
Affiliation(s)
- Sean Ekins
- Collaborations in Chemistry, 601 Runnymede Avenue, Jenkintown, PA 19046, USA.
| | | | | | | | | |
Collapse
|
14
|
Insight into crucial inhibitor–enzyme interaction of arylamides as novel direct inhibitors of the enoyl ACP reductase (InhA) from Mycobacterium tuberculosis: computer-aided molecular design. MONATSHEFTE FUR CHEMIE 2010. [DOI: 10.1007/s00706-010-0359-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|