1
|
Xuan Y, Zhou Y, Yue Y, Zhang N, Sun G, Fan T, Zhao L, Zhong R. Identification of potential natural product derivatives as CK2 inhibitors based on GA-MLR QSAR modeling, synthesis and biological evaluation. Med Chem Res 2024; 33:1611-1624. [DOI: 10.1007/s00044-024-03271-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/26/2024] [Indexed: 01/12/2025]
|
2
|
Latosińska M, Latosińska JN. Serine/Threonine Protein Kinases as Attractive Targets for Anti-Cancer Drugs-An Innovative Approach to Ligand Tuning Using Combined Quantum Chemical Calculations, Molecular Docking, Molecular Dynamic Simulations, and Network-like Similarity Graphs. Molecules 2024; 29:3199. [PMID: 38999151 PMCID: PMC11243552 DOI: 10.3390/molecules29133199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2024] [Revised: 07/02/2024] [Accepted: 07/02/2024] [Indexed: 07/14/2024] Open
Abstract
Serine/threonine protein kinases (CK2, PIM-1, RIO1) are constitutively active, highly conserved, pleiotropic, and multifunctional kinases, which control several signaling pathways and regulate many cellular functions, such as cell activity, survival, proliferation, and apoptosis. Over the past decades, they have gained increasing attention as potential therapeutic targets, ranging from various cancers and neurological, inflammation, and autoimmune disorders to viral diseases, including COVID-19. Despite the accumulation of a vast amount of experimental data, there is still no "recipe" that would facilitate the search for new effective kinase inhibitors. The aim of our study was to develop an effective screening method that would be useful for this purpose. A combination of Density Functional Theory calculations and molecular docking, supplemented with newly developed quantitative methods for the comparison of the binding modes, provided deep insight into the set of desirable properties responsible for their inhibition. The mathematical metrics helped assess the distance between the binding modes, while heatmaps revealed the locations in the ligand that should be modified according to binding site requirements. The Structure-Binding Affinity Index and Structural-Binding Affinity Landscape proposed in this paper helped to measure the extent to which binding affinity is gained or lost in response to a relatively small change in the ligand's structure. The combination of the physico-chemical profile with the aforementioned factors enabled the identification of both "dead" and "promising" search directions. Tests carried out on experimental data have validated and demonstrated the high efficiency of the proposed innovative approach. Our method for quantifying differences between the ligands and their binding capabilities holds promise for guiding future research on new anti-cancer agents.
Collapse
Affiliation(s)
- Magdalena Latosińska
- Faculty of Physics, Adam Mickiewicz University, Uniwersytetu Poznańskiego 2, 61-814 Poznań, Poland
| | | |
Collapse
|
3
|
Studies on the antibacterial activities and molecular mechanism of GyrB inhibitors by 3D-QSAR, molecular docking and molecular dynamics simulation. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
4
|
Real-time monitoring the efficacy of 7-hydroxycoumarin to cells cultured on microfluidics in different extracellular pH environments by chip-mass spectrometry. Talanta 2022; 243:123331. [DOI: 10.1016/j.talanta.2022.123331] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 02/14/2022] [Accepted: 02/19/2022] [Indexed: 02/04/2023]
|
5
|
Liu Y, Bi M, Zhang X, Zhang N, Sun G, Zhou Y, Zhao L, Zhong R. Machine Learning Models for the Classification of CK2 Natural Products Inhibitors with Molecular Fingerprint Descriptors. Processes (Basel) 2021; 9:2074. [DOI: 10.3390/pr9112074] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Casein kinase 2 (CK2) is considered an important target for anti-cancer drugs. Given the structural diversity and broad spectrum of pharmaceutical activities of natural products, numerous studies have been performed to prove them as valuable sources of drugs. However, there has been little study relevant to identifying structural factors responsible for their inhibitory activity against CK2 with machine learning methods. In this study, classification studies were conducted on 115 natural products as CK2 inhibitors. Seven machine learning methods along with six molecular fingerprints were employed to develop qualitative classification models. The performances of all models were evaluated by cross-validation and test set. By taking predictive accuracy(CA), the area under receiver operating characteristic (AUC), and (MCC)as three performance indicators, the optimal models with high reliability and predictive ability were obtained, including the Extended Fingerprint-Logistic Regression model (CA = 0.859, AUC = 0.826, MCC = 0.520) for training test andPubChem fingerprint along with the artificial neural model (CA = 0.826, AUC = 0.933, MCC = 0.628) for test set. Meanwhile, the privileged substructures responsible for their inhibitory activity against CK2 were also identified through a combination of frequency analysis and information gain. The results are expected to provide useful information for the further utilization of natural products and the discovery of novel CK2 inhibitors.
Collapse
Affiliation(s)
- Yuting Liu
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Mengzhou Bi
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Xuewen Zhang
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Na Zhang
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Guohui Sun
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Yue Zhou
- Institute of Materia Medica, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing 100050, China
| | - Lijiao Zhao
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| | - Rugang Zhong
- Key Laboratory of Environmental and Viral Oncology, College of Life Science and Chemistry, Faculty of Environment and Life, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
6
|
Wang F, Yang W, Li R, Sui Z, Cheng G, Zhou B. Molecular description of pyrimidine-based inhibitors with activity against FAK combining 3D-QSAR analysis, molecular docking and molecular dynamics. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103144] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|
7
|
Small molecule modulators targeting protein kinase CK1 and CK2. Eur J Med Chem 2019; 181:111581. [DOI: 10.1016/j.ejmech.2019.111581] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 07/29/2019] [Accepted: 07/31/2019] [Indexed: 12/31/2022]
|
8
|
Li M, Huang W, Jie F, Wang M, Zhong Y, Chen Q, Lu B. Discovery of Keap1-Nrf2 small-molecule inhibitors from phytochemicals based on molecular docking. Food Chem Toxicol 2019; 133:110758. [PMID: 31412289 PMCID: PMC7116978 DOI: 10.1016/j.fct.2019.110758] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Revised: 06/27/2019] [Accepted: 08/10/2019] [Indexed: 12/19/2022]
Abstract
Various phytochemicals have been reported to protect against oxidative stress. However, the mechanism underlying has not been systematically evaluated, which limited their application in disease treatment. Nuclear factor erythroid 2−related factor 2 (Nrf2), a central transcription factor in oxidative stress response related to numerous diseases, is activated after dissociating from the cytoskeleton−anchored Kelch−like ECH−associated protein 1 (Keap1). The Keap1–Nrf2 protein–protein interaction has become an important drug target. This study was designed to clarify whether antioxidantive phytochemicals inhibit the Keap1–Nrf2 protein–protein interaction and activate the Nrf2-ARE signaling pathway efficiently. Molecular docking and 3D−QSAR were applied to evaluate the interaction effects between 178 antioxidant phytochemicals and the Nrf2 binding site in Keap1. The Nrf2 activation effect was tested on a H2O2−induced oxidative−injured cell model. Results showed that the 178 phytochemicals could be divided into high−, medium−, and low−total−score groups depending on their binding affinity with Keap1, and the high−total−score group consisted of 24 compounds with abundant oxygen or glycosides. Meanwhile, these compounds could bind with key amino acids in the structure of the Keap1−Nrf2 interface. Compounds from high−total−score group show effective activation effects on Nrf2. In conclusion, phytochemicals showed high binding affinity with Keap1 are promising new Nrf2 activators. 178 phytochemicals were collected and the Keap1-binding-affinity was estimated. 24 compounds with high Keap1-binding-affinity was obtained. Compounds with high Keap1-binding-affinity effectively activated Nrf2.
Collapse
Affiliation(s)
- Maiquan Li
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; College of Food Science and Technology, Hunan Agricultural University, Changsha, 410208, China
| | - Weisu Huang
- Zhejiang Economic & Trade Polytechnic, Department of Applied Technology, Hangzhou, 310018, China
| | - Fan Jie
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Mengmeng Wang
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Yongheng Zhong
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Qi Chen
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Baiyi Lu
- National Engineering Laboratory of Intelligent Food Technology and Equipment, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Key Laboratory for Agro-Products Nutritional Evaluation of Ministry of Agriculture, Zhejiang Key Laboratory for Agro-Food Processing, Fuli Institute of Food Science, College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
9
|
Synthesis and biological evaluation of novel 4,7-dihydroxycoumarin derivatives as anticancer agents. Bioorg Med Chem Lett 2019; 29:1819-1824. [DOI: 10.1016/j.bmcl.2019.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/03/2019] [Accepted: 05/05/2019] [Indexed: 01/21/2023]
|
10
|
Li S, Fan J, Peng C, Chang Y, Guo L, Hou J, Huang M, Wu B, Zheng J, Lin L, Xiao G, Chen W, Liao G, Guo J, Sun P. New molecular insights into the tyrosyl-tRNA synthase inhibitors: CoMFA, CoMSIA analyses and molecular docking studies. Sci Rep 2017; 7:11525. [PMID: 28912450 PMCID: PMC5599502 DOI: 10.1038/s41598-017-10618-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Accepted: 08/11/2017] [Indexed: 11/08/2022] Open
Abstract
Drug resistance caused by excessive and indiscriminate antibiotic usage has become a serious public health problem. The need of finding new antibacterial drugs is more urgent than ever before. Tyrosyl-tRNA synthase was proved to be a potent target in combating drug-resistant bacteria. In silico methodologies including molecular docking and 3D-QSAR were employed to investigate a series of newly reported tyrosyl-tRNA synthase inhibitors of furanone derivatives. Both internal and external cross-validation were conducted to obtain high predictive and satisfactory CoMFA model (q 2 = 0.611, r 2pred = 0.933, r 2m = 0.954) and CoMSIA model (q 2 = 0.546, r 2pred = 0.959, r 2m = 0.923). Docking results, which correspond with CoMFA/CoMSIA contour maps, gave the information for interactive mode exploration. Ten new molecules designed on the basis of QSAR and docking models have been predicted more potent than the most active compound 3-(4-hydroxyphenyl)-4-(2-morpholinoethoxy)furan-2(5H)-one (15) in the literatures. The results expand our understanding of furanones as inhibitors of tyrosyl-tRNA synthase and could be helpful in rationally designing of new analogs with more potent inhibitory activities.
Collapse
Affiliation(s)
- Shengrong Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Jilin Fan
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Chengkang Peng
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Yiqun Chang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Lianxia Guo
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Jinsong Hou
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Miaoqi Huang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Biyuan Wu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Junxia Zheng
- School of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, 510006, P.R. China.
| | - Longxin Lin
- College of Information Science and Technology, Jinan University, Guangzhou, 510632, P.R. China
| | - Gaokeng Xiao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Weimin Chen
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China
| | - Guochao Liao
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, 510006, P.R. China
| | - Jialiang Guo
- School of Stomatology and Medicine, Foshan University, Foshan, 528000, P.R. China.
| | - Pinghua Sun
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, 510632, P.R. China.
| |
Collapse
|
11
|
The Development of CK2 Inhibitors: From Traditional Pharmacology to in Silico Rational Drug Design. Pharmaceuticals (Basel) 2017; 10:ph10010026. [PMID: 28230762 PMCID: PMC5374430 DOI: 10.3390/ph10010026] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 02/14/2017] [Indexed: 12/20/2022] Open
Abstract
Casein kinase II (CK2) is an ubiquitous and pleiotropic serine/threonine protein kinase able to phosphorylate hundreds of substrates. Being implicated in several human diseases, from neurodegeneration to cancer, the biological roles of CK2 have been intensively studied. Upregulation of CK2 has been shown to be critical to tumor progression, making this kinase an attractive target for cancer therapy. Several CK2 inhibitors have been developed so far, the first being discovered by "trial and error testing". In the last decade, the development of in silico rational drug design has prompted the discovery, de novo design and optimization of several CK2 inhibitors, active in the low nanomolar range. The screening of big chemical libraries and the optimization of hit compounds by Structure Based Drug Design (SBDD) provide telling examples of a fruitful application of rational drug design to the development of CK2 inhibitors. Ligand Based Drug Design (LBDD) models have been also applied to CK2 drug discovery, however they were mainly focused on methodology improvements rather than being critical for de novo design and optimization. This manuscript provides detailed description of in silico methodologies whose applications to the design and development of CK2 inhibitors proved successful and promising.
Collapse
|
12
|
Li YF, Chang YQ, Deng J, Li WX, Jian J, Gao JS, Wan X, Gao H, Kurihara H, Sun PH, He RR. Prediction and evaluation of the lipase inhibitory activities of tea polyphenols with 3D-QSAR models. Sci Rep 2016; 6:34387. [PMID: 27694956 PMCID: PMC5046073 DOI: 10.1038/srep34387] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Accepted: 09/05/2016] [Indexed: 11/23/2022] Open
Abstract
The extraordinary hypolipidemic effects of polyphenolic compounds from tea have been confirmed in our previous study. To gain compounds with more potent activities, using the conformations of the most active compound revealed by molecular docking, a 3D-QSAR pancreatic lipase inhibitor model with good predictive ability was established and validated by CoMFA and CoMISA methods. With good statistical significance in CoMFA (r2cv = 0.622, r2 = 0.956, F = 261.463, SEE = 0.096) and CoMISA (r2cv = 0.631, r2 = 0.932, F = 75.408, SEE = 0.212) model, we summarized the structure-activity relationship between polyphenolic compounds and pancreatic lipase inhibitory activities and find the bulky substituents in R2, R4 and R5, hydrophilic substituents in R1 and electron withdrawing groups in R2 are the key factors to enhance the lipase inhibitory activities. Under the guidance of the 3D-QSAR results, (2R,3R,2′R,3′R)-desgalloyloolongtheanin-3,3′-O-digallate (DOTD), a potent lipase inhibitor with an IC50 of 0.08 μg/ml, was obtained from EGCG oxidative polymerization catalyzed by crude polyphenol oxidase. Furthermore, DOTD was found to inhibit lipid absorption in olive oil-loaded rats, which was related with inhibiting the activities of lipase in the intestinal mucosa and contents.
Collapse
Affiliation(s)
- Yi-Fang Li
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,Anti-stress Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Yi-Qun Chang
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jie Deng
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,Anti-stress Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Wei-Xi Li
- Anti-stress Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China.,Yunnan University of Traditional Chinese Medicine, Kunming 650500, China
| | - Jie Jian
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Jia-Suo Gao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Xin Wan
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,Anti-stress Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hao Gao
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Hiroshi Kurihara
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,Anti-stress Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Ping-Hua Sun
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Rong-Rong He
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou 510632, China.,Anti-stress Health Research Center, College of Pharmacy, Jinan University, Guangzhou 510632, China
| |
Collapse
|
13
|
Adhikari N, Halder AK, Saha A, Das Saha K, Jha T. Structural findings of phenylindoles as cytotoxic antimitotic agents in human breast cancer cell lines through multiple validated QSAR studies. Toxicol In Vitro 2015; 29:1392-404. [DOI: 10.1016/j.tiv.2015.05.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 05/19/2015] [Accepted: 05/21/2015] [Indexed: 10/23/2022]
|
14
|
Lv M, Ma S, Tian Y, Zhang X, Zhai H, Lv W. Structural insights into flavones as protein kinase CK2 inhibitors derived from a combined computational study. RSC Adv 2015. [DOI: 10.1039/c4ra10381e] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Binding conformation of flavone inhibitors to protein kinase CK2.
Collapse
Affiliation(s)
- Min Lv
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Shuying Ma
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Yueli Tian
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Xiaoyun Zhang
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Honglin Zhai
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| | - Wenjuan Lv
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou
- People's Republic of China
| |
Collapse
|
15
|
Structure-based 3D-QSAR studies on quinazoline derivatives as platelets-derived growth factor (PDGFR) inhibitors. Med Chem Res 2014. [DOI: 10.1007/s00044-014-0946-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Zhou Y, Li X, Zhang N, Zhong R. Structural Basis for Low-Affinity Binding of Non-R2 Carboxylate-Substituted Tricyclic Quinoline Analogs to CK2α: Comparative Molecular Dynamics Simulation Studies. Chem Biol Drug Des 2014; 85:189-200. [DOI: 10.1111/cbdd.12372] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2013] [Revised: 04/14/2014] [Accepted: 06/02/2014] [Indexed: 12/16/2022]
Affiliation(s)
- Yue Zhou
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| | - Xitao Li
- School of Chemical Biology and Biotechnology; Shenzhen Graduate School; Peking University; Shenzhen 518055 China
| | - Na Zhang
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| | - Rugang Zhong
- College of Life Science and Bioengineering; Beijing University of Technology; Beijing 100124 China
| |
Collapse
|
17
|
Zheng J, Kong H, Wilson JM, Guo J, Chang Y, Yang M, Xiao G, Sun P. Insight into the interactions between novel isoquinolin-1,3-dione derivatives and cyclin-dependent kinase 4 combining QSAR and molecular docking. PLoS One 2014; 9:e93704. [PMID: 24722522 PMCID: PMC3983096 DOI: 10.1371/journal.pone.0093704] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Accepted: 03/06/2014] [Indexed: 11/24/2022] Open
Abstract
Several small-molecule CDK inhibitors have been identified, but none have been approved for clinical use in the past few years. A new series of 4-[(3-hydroxybenzylamino)-methylene]-4H-isoquinoline-1,3-diones were reported as highly potent and selective CDK4 inhibitors. In order to find more potent CDK4 inhibitors, the interactions between these novel isoquinoline-1,3-diones and cyclin-dependent kinase 4 was explored via in silico methodologies such as 3D-QSAR and docking on eighty-one compounds displaying potent selective activities against cyclin-dependent kinase 4. Internal and external cross-validation techniques were investigated as well as region focusing, bootstraping and leave-group-out. A training set of 66 compounds gave the satisfactory CoMFA model (q2 = 0.695, r2 = 0.947) and CoMSIA model (q2 = 0.641, r2 = 0.933). The remaining 15 compounds as a test set also gave good external predictive abilities with r2pred values of 0.875 and 0.769 for CoMFA and CoMSIA, respectively. The 3D-QSAR models generated here predicted that all five parameters are important for activity toward CDK4. Surflex-dock results, coincident with CoMFA/CoMSIA contour maps, gave the path for binding mode exploration between the inhibitors and CDK4 protein. Based on the QSAR and docking models, twenty new potent molecules have been designed and predicted better than the most active compound 12 in the literatures. The QSAR, docking and interactions analysis expand the structure-activity relationships of constrained isoquinoline-1,3-diones and contribute towards the development of more active CDK4 subtype-selective inhibitors.
Collapse
Affiliation(s)
- Junxia Zheng
- Faculty of Chemical Engineering and Light Industry, Guangdong University of Technology, Guangzhou, P. R. China
| | - Hao Kong
- Department of Medicinal Chemistry, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - James M. Wilson
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
| | - Jialiang Guo
- Department of Medicinal Chemistry, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Yiqun Chang
- Department of Medicinal Chemistry, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Mengjia Yang
- Department of Medicinal Chemistry, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Gaokeng Xiao
- Department of Medicinal Chemistry, College of Pharmacy, Jinan University, Guangzhou, P. R. China
| | - Pinghua Sun
- Department of Medicinal Chemistry, College of Pharmacy, Jinan University, Guangzhou, P. R. China
- Department of Drug Discovery, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida, United States of America
- College of Pharmacy, University of South Florida, Tampa, Florida, United States of America
- * E-mail:
| |
Collapse
|
18
|
Latosińska JN, Latosińska M, Maurin JK, Orzeszko A, Kazimierczuk Z. Quantum-Chemical Insight into Structure–Reactivity Relationship in 4,5,6,7-Tetrahalogeno-1H-benzimidazoles: A Combined X-ray, DSC, DFT/QTAIM, Hirshfeld Surface-Based, and Molecular Docking Approach. J Phys Chem A 2014; 118:2089-106. [DOI: 10.1021/jp411547z] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Affiliation(s)
| | - Magdalena Latosińska
- Faculty of Physics, Adam Mickiewicz University, Umultowska 85, 61-614 Poznań, Poland
| | - Jan Krzysztof Maurin
- National Medicines Institute, Chełmska 30/34, 00-750 Warsaw, Poland
- National Centre for Nuclear Research, Andrzeja Sołtana 7, 05-400 Otwock-Świerk, Poland
| | - Andrzej Orzeszko
- Institute of Chemistry, Warsaw University of Life Sciences, 159C Nowoursynowska St., 02-787 Warsaw, Poland
| | - Zygmunt Kazimierczuk
- Institute of Chemistry, Warsaw University of Life Sciences, 159C Nowoursynowska St., 02-787 Warsaw, Poland
| |
Collapse
|
19
|
Structural findings of quinolone carboxylic acids in cytotoxic, antiviral, and anti-HIV-1 integrase activity through validated comparative molecular modeling studies. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0897-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Adhikari N, Halder AK, Mondal C, Jha T. Exploring structural requirements of aurone derivatives as antimalarials by validated DFT-based QSAR, HQSAR, and COMFA–COMSIA approach. Med Chem Res 2013. [DOI: 10.1007/s00044-013-0590-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Zhou Y, Zhang N, Zhong R. Exploring the crucial structural elements required for tricyclic quinoline analogs as protein kinase CK2 inhibitors by a combined computational analysis. Med Chem Res 2013. [DOI: 10.1007/s00044-012-0442-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
22
|
3D-QSAR studies on betulinic acid and betulin derivatives as anti-HIV-1 agents using CoMFA and CoMSIA. Med Chem Res 2011. [DOI: 10.1007/s00044-010-9467-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
23
|
Masand VH, Jawarkar RD, Mahajan DT, Hadda TB, Sheikh J, Patil KN. QSAR and CoMFA studies of biphenyl analogs of the anti-tuberculosis drug (6S)-2-nitro-6-{[4-(trifluoromethoxy)benzyl]oxy}-6,7-dihydro-5H-imidazo [2,1-b][1,3]oxazine (PA-824). Med Chem Res 2011. [DOI: 10.1007/s00044-011-9787-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
24
|
Huang XY, Shan ZJ, Zhai HL, Su L, Zhang XY. Study on the Anticancer Activity of Coumarin Derivatives by Molecular Modeling. Chem Biol Drug Des 2011; 78:651-8. [DOI: 10.1111/j.1747-0285.2011.01195.x] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Combined 3D-QSAR and Docking Modelling Study on Indolocarbazole Series Compounds as Tie-2 Inhibitors. Int J Mol Sci 2011; 12:5080-97. [PMID: 21954347 PMCID: PMC3179154 DOI: 10.3390/ijms12085080] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2011] [Revised: 08/01/2011] [Accepted: 08/02/2011] [Indexed: 11/17/2022] Open
Abstract
Tie-2, a kind of endothelial cell tyrosine kinase receptor, is required for embryonic blood vessel development and tumor angiogenesis. Several compounds that showed potent activity toward this attractive anticancer drug target in the assay have been reported. In order to investigate the structure-activity correlation of indolocarbazole series compounds and modify them to improve their selectivity and activity, 3D-QSAR models were built using CoMFA and CoMSIA methods and molecular docking was used to check the results. Based on the common sketch align, two good QSAR models with high predictabilities (CoMFA model: q2 = 0.823, r2 = 0.979; CoMSIA model: q2 = 0.804, r2 = 0.967) were obtained and the contour maps obtained from both models were applied to identify the influence on the biological activity. Molecular docking was then used to confirm the results. Combined with the molecular docking results, the detail binding mode between the ligands and Tie-2 was elucidated, which enabled us to interpret the structure-activity relationship. These satisf actory results not only offered help to comprehend the action mechanism of indolocarbazole series compounds, but also provide new information for the design of new potent inhibitors.
Collapse
|
26
|
Lan P, Chen WN, Chen WM. Molecular modeling studies on imidazo[4,5-b]pyridine derivatives as Aurora A kinase inhibitors using 3D-QSAR and docking approaches. Eur J Med Chem 2011; 46:77-94. [DOI: 10.1016/j.ejmech.2010.10.017] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/15/2010] [Accepted: 10/18/2010] [Indexed: 02/08/2023]
|
27
|
3D-QSAR and docking studies on pyrazolo[4,3-h]qinazoline-3-carboxamides as cyclin-dependent kinase 2 (CDK2) inhibitors. Bioorg Med Chem Lett 2010; 20:6764-72. [PMID: 20869873 DOI: 10.1016/j.bmcl.2010.08.131] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/13/2010] [Accepted: 08/27/2010] [Indexed: 02/02/2023]
|
28
|
Mathura VS, Patel N, Bachmeier C, Mullan M, Paris D. A 3D-QSAR model based screen for dihydropyridine-like compound library to identify inhibitors of amyloid beta (Aβ) production. Bioinformation 2010; 5:122-7. [PMID: 21364791 PMCID: PMC3041004 DOI: 10.6026/97320630005122] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 08/11/2010] [Indexed: 12/28/2022] Open
Abstract
Abnormal accumulation of amyloid beta peptide (Aβ) is one of the hallmarks of Alzheimer's disease progression. Practical limitations such as cost , poor hit
rates and a lack of well characterized targets are a major bottle neck in the in vitro screening of a large number of chemical libraries and profiling them to
identify Aβ inhibitors. We used a limited set of 1,4 dihydropyridine (DHP)-like compounds from our model set (MS) of 24 compounds which inhibit Aβ as a
training set and built 3D-QSAR (Three-dimensional Quantitative Structure-Activity Relationship) models using the Phase program (SchrÖdinger, USA). We
developed a 3D-QSAR model that showed the best prediction for Aβ inhibition in the test set of compounds and used this model to screen a 1,043 DHP-like
small library set of (LS) compounds. We found that our model can effectively predict potent hits at a very high rate and result in significant cost savings when
screening larger libraries. We describe here our in silico model building strategy, model selection parameters and the chemical features that are useful for
successful screening of DHP and DHP-like chemical libraries for Aβ inhibitors.
Collapse
|
29
|
3D-QSAR and molecular docking studies on fused pyrazoles as p38α mitogen-activated protein kinase inhibitors. Int J Mol Sci 2010; 11:3357-74. [PMID: 20957100 PMCID: PMC2956100 DOI: 10.3390/ijms11093357] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2010] [Accepted: 09/03/2010] [Indexed: 02/02/2023] Open
Abstract
The p38α mitogen-activated protein kinase (MAPK) has become an attractive target for the treatment of many diseases such as rheumatoid arthritis, inflammatory bowel disease and Crohn’s disease. In this paper, 3D-QSAR and molecular docking studies were performed on 59 p38α MAPK inhibitors. Comparative molecular field analysis (CoMFA) and comparative molecular similarity indices analysis (CoMSIA) were applied to determine the structural requirements for potency in inhibiting p38α MAPK. The resulting model of CoMFA and CoMSIA exhibited good r2cv values of 0.725 and 0.609, and r2 values of 0.961 and 0.905, respectively. Molecular docking was used to explore the binding mode between the inhibitors and p38α MAPK. We have accordingly designed a series of novel p38α MAPK inhibitors by utilizing the structure-activity relationship (SAR) results revealed in the present study, which were predicted with excellent potencies in the developed models. The results provided a useful guide to design new compounds for p38α MAPK inhibitors.
Collapse
|
30
|
3D-QSAR and molecular docking studies of azaindole derivatives as Aurora B kinase inhibitors. J Mol Model 2010; 17:1191-205. [PMID: 20697761 DOI: 10.1007/s00894-010-0820-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2010] [Accepted: 07/21/2010] [Indexed: 12/20/2022]
Abstract
The Aurora kinases have been regarded as attractive targets for the development of new anticancer agents. Recently a series of azaindole derivatives with Aurora B inhibitory activities were reported. To explore the relationship between the structures of substituted azaindole derivatives and their inhibition of Aurora B, 3D-QSAR and molecular docking studies were performed on a dataset of 41 compounds. 3D-QSAR, including CoMFA and CoMSIA, were applied to identify the key structures impacting their inhibitory potencies. The CoMSIA model showed better results than CoMFA, with r(2)(cv) value of 0.575 and r(2) value of 0.987. 3D contour maps generated from CoMFA and CoMSIA along with the docking binding structures provided enough information about the structural requirements for better activity. Based on the structure-activity relationship revealed by the present study, we have designed a set of novel Aurora B inhibitors that showed excellent potencies in the developed models. Thus, our results allowed us to design new derivatives with desired activities.
Collapse
|