1
|
Gao Y, Li Y, Zhou JS, Xie ZX, Wu PQ, Mu Q, Zhou B, Yue JM. Eleutherlenes A-D, Diverse Types of Naphthalene Derivatives with Anti-inflammatory Activity from Eleutherine bulbosa. Org Lett 2025; 27:1066-1071. [PMID: 39829017 DOI: 10.1021/acs.orglett.4c04798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2025]
Abstract
Eleutherlene A (1), an unprecedented carbon skeleton featuring an aryl-fused 6-methyl-2,7-dioxabicyclo[3.2.1]octane unit, and eleutherlene B (2), a naphthoquinone derivative with interesting ring fusion of an α,β-unsaturated γ-lactam and a tetrahydropyran moiety, along with two novel naphthoquinone alkaloids, eleutherlenes C (3) and D (4), were isolated from Eleutherine bulbosa and identified. Their structures were elucidated by spectroscopic analyses along with computer-assisted structure elucidation, including ACD/Structure Elucidator and computational calculations and X-ray crystal diffraction. A plausible biosynthetic route for 1 and 2 was proposed. Compound 1 showed significant anti-inflammatory activity with respect to the inhibition of pro-inflammatory mediators NO, IL-1β, iNOS, and COX-2. Mechanistically, compound 1 inhibited the inflammatory response by suppressing NF-κB/MAPK and activating the Nrf2/Keap1 signaling pathway in LPS-induced RAW 264.7 cells.
Collapse
Affiliation(s)
- Yuan Gao
- School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Ying Li
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, People's Republic of China
| | - Jun-Su Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Zhi-Xiang Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Pei-Qian Wu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
| | - Qing Mu
- School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
| | - Bin Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, People's Republic of China
| | - Jian-Min Yue
- School of Pharmacy, Fudan University, Shanghai 201203, People's Republic of China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zuchongzhi Road, Shanghai 201203, People's Republic of China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, 198 East Binhai Road, Yantai, Shandong 264117, People's Republic of China
| |
Collapse
|
2
|
Froment A, Delomez J, Da Nascimento S, Dassonville-Klimpt A, Andréjak C, Peltier F, Joseph C, Sonnet P, Lanoix JP. Efficacy of mefloquine and its enantiomers in a murine model of Mycobacterium avium infection. PLoS One 2024; 19:e0311167. [PMID: 39348373 PMCID: PMC11441642 DOI: 10.1371/journal.pone.0311167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 09/13/2024] [Indexed: 10/02/2024] Open
Abstract
The treatment of Mycobacterium avium infections is still long, complex, and often poorly tolerated, besides emergence of resistances. New active molecules that are more effective and better tolerated are deeply needed. Mefloquine and its enantiomers ((+) Erythro-mefloquine ((+)-EMQ) and (-)-Erythro-mefloquine ((-)-EMQ)) have shown efficacy in both in vitro and in vivo, in a mouse model of M. avium intraveinous infection. However, no study reports aerosol model of infection or combination with gold standard treatment. That was the aim of our study. In an aerosol model of M. avium infection in BALB/c mice, we used five treatment groups as followed: Clarithromycin-Ethambutol-Rifampicin (CLR-EMB-RIF, standard of care, n = 15), CLR-EMB-MFQ (n = 15), CLR-EMB-(+)-EMQ (n = 15), CLR-EMB-(-)-EMQ (n = 15) and an untreated group (n = 25). To evaluate drug efficacy, we sacrificed each month over 3 months, 5 mice from each group. Lung homogenates were diluted and plated for colony forming unit count (CFU) expressed in Log10. At each time point, we found a significant difference between the untreated group and each of the treatment groups (p<0.005). The (+)-EMQ-CLR-EMB group was the group with the lowest CFU count at each time point but never reached statistical significance. The results of each group 3 months after treatment are: (+)-EMQ-CLR-EMB (4.43 ± 0.26), RIF-CLR-EMB (4.83 ± 0.37), (-)-EMQ-CLR-EMB (4.82 ± 0.18), MFQ-CLR-EMB (4.70 ± 0.21). In conclusion, MFQ and its enantiomers appear to be as effective as rifampicin in combination therapy. Further studies are needed to evaluate the ability of these drugs to prevent selection of clarithromycin resistant strains and potential for lung sterilization.
Collapse
Affiliation(s)
- Antoine Froment
- AGIR UR-4294, Université de Picardie Jules Verne, Amiens, France
- Infectious Disease Department, Amiens-Picardie University Hospital, Amiens, France
| | - Julia Delomez
- AGIR UR-4294, Université de Picardie Jules Verne, Amiens, France
- Pneumology Department, Amiens-Picardie University Hospital, Amiens, France
| | | | | | - Claire Andréjak
- AGIR UR-4294, Université de Picardie Jules Verne, Amiens, France
- Pneumology Department, Amiens-Picardie University Hospital, Amiens, France
| | - François Peltier
- AGIR UR-4294, Université de Picardie Jules Verne, Amiens, France
| | - Cédric Joseph
- Infectious Disease Department, Amiens-Picardie University Hospital, Amiens, France
| | - Pascal Sonnet
- AGIR UR-4294, Université de Picardie Jules Verne, Amiens, France
| | - Jean-Philippe Lanoix
- AGIR UR-4294, Université de Picardie Jules Verne, Amiens, France
- Infectious Disease Department, Amiens-Picardie University Hospital, Amiens, France
| |
Collapse
|
3
|
Generation of Aurachin Derivatives by Whole-Cell Biotransformation and Evaluation of Their Antiprotozoal Properties. Molecules 2023; 28:molecules28031066. [PMID: 36770729 PMCID: PMC9919615 DOI: 10.3390/molecules28031066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 01/21/2023] Open
Abstract
The natural product aurachin D is a farnesylated quinolone alkaloid, which is known to possess activity against the causative agent of malaria, Plasmodium spp. In this study, we show that aurachin D inhibits other parasitic protozoa as well. While aurachin D had only a modest effect on Trypanosoma brucei rhodesiense, two other trypanosomatids, T. cruzi and Leishmania donovani, were killed at low micromolar and nanomolar concentrations, respectively, in an in vitro assay. The determined IC50 values of aurachin D were even lower than those of the reference drugs benznidazole and miltefosine. Due to these promising results, we set out to explore the impact of structural modifications on the bioactivity of this natural product. In order to generate aurachin D derivatives with varying substituents at the C-2, C-6 and C-7 position of the quinolone ring system, we resorted to whole-cell biotransformation using a recombinant Escherichia coli strain capable of aurachin-type prenylations. Quinolone precursor molecules featuring methyl, methoxy and halogen groups were fed to this E. coli strain, which converted the substrates into the desired analogs. None of the generated derivatives exhibited improved antiprotozoal properties in comparison to aurachin D. Obviously, the naturally occurring aurachin D features already a privileged structure, especially for the inhibition of the causative agent of visceral leishmaniasis.
Collapse
|
4
|
Abdelrahman MA, Almahli H, Al-Warhi T, Majrashi TA, Abdel-Aziz MM, Eldehna WM, Said MA. Development of Novel Isatin-Tethered Quinolines as Anti-Tubercular Agents against Multi and Extensively Drug-Resistant Mycobacterium tuberculosis. Molecules 2022; 27:molecules27248807. [PMID: 36557937 PMCID: PMC9781264 DOI: 10.3390/molecules27248807] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/07/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
We describe the design and synthesis of two isatin-tethered quinolines series (Q6a-h and Q8a-h), in connection with our research interest in developing novel isatin-bearing anti-tubercular candidates. In a previous study, a series of small molecules bearing a quinoline-3-carbohydrazone moiety was developed as anti-tubercular agents, and compound IV disclosed the highest potency with MIC value equal to 6.24 µg/mL. In the current work, we adopted the bioisosteric replacement approach to replace the 3,4,5-trimethoxy-benzylidene moiety in the lead compound IV with the isatin motif, a privileged scaffold in the TB drug discovery, to furnish the first series of target molecules Q6a-h. Thereafter, the isatin motif was N-substituted with either a methyl or benzyl group to furnish the second series Q8a-h. All of the designed quinoilne-isatin conjugates Q6a-h and Q8a-h were synthesized and then biologically assessed for anti-tubercular actions towards drug-susceptible, MDR, and XDR strains. Superiorly, the N-benzyl-bearing compound Q8b possessed the best activities against the examined M. tuberculosis strains with MICs equal 0.06, 0.24, and 1.95 µg/mL, respectively.
Collapse
Affiliation(s)
- Mohamed A. Abdelrahman
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
- Correspondence: (M.A.A.); (W.M.E.)
| | - Hadia Almahli
- Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, UK
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Taghreed A. Majrashi
- Department of Pharmacognosy, College of Pharmacy, King Khalid University, Abha 61441, Saudi Arabia
| | - Marwa M. Abdel-Aziz
- The Regional Center for Mycology and Biotechnology, Al-Azhar University, Cairo 11651, Egypt
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
- School of Biotechnology, Badr University in Cairo, Cairo 11829, Egypt
- Correspondence: (M.A.A.); (W.M.E.)
| | - Mohamed A. Said
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Egyptian Russian University, Badr City 11829, Egypt
| |
Collapse
|
5
|
Rao CJ, Sudheer M, Battula VR. Triflic‐Acid‐Catalyzed Tandem Epoxide Rearrangement and Annulation with Alkynes: An Efficient Approach for Regioselective Synthesis of Naphthalenes. ChemistrySelect 2022. [DOI: 10.1002/slct.202200427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
| | - Mokhamatam Sudheer
- Department of Engineering Chemistry AUCE (A) Andhra University Visakhapatnam INDIA – 530003
| | | |
Collapse
|
6
|
Zaman NR, Chowdhury UF, Reza RN, Chowdhury FT, Sarker M, Hossain MM, Akbor MA, Amin A, Islam MR, Khan H. Plant growth promoting endophyte Burkholderia contaminans NZ antagonizes phytopathogen Macrophomina phaseolina through melanin synthesis and pyrrolnitrin inhibition. PLoS One 2021; 16:e0257863. [PMID: 34591915 PMCID: PMC8483353 DOI: 10.1371/journal.pone.0257863] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Accepted: 09/14/2021] [Indexed: 11/23/2022] Open
Abstract
The endophytic bacterium Burkholderia contaminans NZ was isolated from jute, which is an important fiber-producing plant. This bacterium exhibits significant growth promotion activity in in vivo pot experiments, and like other plant growth-promoting (PGP) bacteria fixes nitrogen, produces indole acetic acid (IAA), siderophore, and 1-aminocyclopropane-1-carboxylate (ACC) deaminase activity. B. contaminans NZ is considered to exert a promising growth inhibitory effect on Macrophomina phaseolina, a phytopathogen responsible for infecting hundreds of crops worldwide. This study aimed to identify the possibility of B. contaminans NZ as a safe biocontrol agent and assess its effectiveness in suppressing phytopathogenic fungi, especially M. phaseolina. Co-culture of M. phaseolina with B. contaminans NZ on both solid and liquid media revealed appreciable growth suppression of M. phaseolina and its chromogenic aberration in liquid culture. Genome mining of B. contaminans NZ using NaPDoS and antiSMASH revealed gene clusters that displayed 100% similarity for cytotoxic and antifungal substances, such as pyrrolnitrin. GC-MS analysis of B. contaminans NZ culture extracts revealed various bioactive compounds, including catechol; 9,10-dihydro-12'-hydroxy-2'-methyl-5'-(phenylmethyl)- ergotaman 3',6',18-trione; 2,3-dihydro-3,5- dihydroxy-6-methyl-4H-pyran-4-one; 1-(1,6-Dioxooctadecyl)- pyrrolidine; 9-Octadecenamide; and 2- methoxy- phenol. These compounds reportedly exhibit tyrosinase inhibitory, antifungal, and antibiotic activities. Using a more targeted approach, an RP-HPLC purified fraction was analyzed by LC-MS, confirming the existence of pyrrolnitrin in the B. contaminans NZ extract. Secondary metabolites, such as catechol and ergotaman, have been predicted to inhibit melanin synthesis in M. phaseolina. Thus, B. contaminans NZ appears to inhibit phytopathogens by apparently impairing melanin synthesis and other potential biochemical pathways, exhibiting considerable fungistatic activity.
Collapse
Affiliation(s)
- Nazia R. Zaman
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Umar F. Chowdhury
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Rifath N. Reza
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Farhana T. Chowdhury
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Mrinmoy Sarker
- NSU Genome Research Institute (NGRI), Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Muhammad M. Hossain
- NSU Genome Research Institute (NGRI), Department of Biochemistry and Microbiology, North South University, Dhaka, Bangladesh
| | - Md. Ahedul Akbor
- Institute of National Analytical Research and Service (INARS), Bangladesh Council of Scientific and Industrial Research (BCSIR), Dhaka, Bangladesh
| | - Al Amin
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Mohammad Riazul Islam
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| | - Haseena Khan
- Molecular Biology Laboratory, Department of Biochemistry and Molecular Biology, Faculty Biological Sciences, University of Dhaka, Dhaka, Bangladesh
| |
Collapse
|
7
|
Roy D, Ali K, Panda G. Unveiling p-quinone methide (QM) chemistry to synthesize bedaquiline (TMC 207) like architectures. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130493] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
8
|
Triflic acid catalysed regioselective synthesis of substituted naphthalenes by benzannulation of carbonyls with alkynes. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132214] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
9
|
Inhibitors of F 1F 0-ATP synthase enzymes for the treatment of tuberculosis and cancer. Future Med Chem 2021; 13:911-926. [PMID: 33845594 DOI: 10.4155/fmc-2021-0010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The spectacular success of the mycobacterial F1F0-ATP synthase inhibitor bedaquiline for the treatment of drug-resistant tuberculosis has generated wide interest in the development of other inhibitors of this enzyme. Work in this realm has included close analogues of bedaquiline with better safety profiles and 'bedaquiline-like' compounds, some of which show potent antibacterial activity in vitro although none have yet progressed to clinical trials. The search has lately extended to a range of new scaffolds as potential inhibitors, including squaramides, diaminoquinazolines, chloroquinolines, dihydropyrazolo[1,5-a]pyrazin-4-ones, thiazolidinediones, diaminopyrimidines and tetrahydroquinolines. Because of the ubiquitous expression of ATP synthase enzymes, there has also been interest in inhibitors of other bacterial ATP synthases, as well as inhibitors of human mitochondrial ATP synthase for cancer therapy. The latter encompass both complex natural products and simpler small molecules. The review seeks to demonstrate the breadth of the structural types of molecules able to effectively inhibit the function of variants of this intriguing enzyme.
Collapse
|
10
|
Jones CCV, Patel JJ, Jansen-van Vuuren RD, Ross GM, Keller BO, Sauriol F, Schatte G, Johnson ER, Snieckus V. Directed Ortho and Remote Metalation of Naphthalene 1,8-Diamide: Complementing S EAr Reactivity for the Synthesis of Substituted Naphthalenes. Org Lett 2021; 23:1966-1973. [PMID: 33667110 DOI: 10.1021/acs.orglett.1c00521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Mono- and dianion species of 1,8-naphthalene diamide 2 were generated under sec-BuLi/TMEDA conditions and trapped with a variety of electrophiles to give 2- and 2,7- substituted products 3 and 4. Using Suzuki-Miyaura cross-coupling, mono- and di-iodinated products were converted into the corresponding 2-aryl (5) and 2,7-diaryl (6) products, respectively. The amide-amide rotation barrier of 2 was established by VT NMR, and the structure of fluorenone structure 9, obtained by remote metalation, was secured.
Collapse
Affiliation(s)
| | - Jignesh J Patel
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | | | - Gregory M Ross
- Northern Ontario School of Medicine, Laurentian University, Sudbury, ON P3E 2C6, Canada
| | | | - Francoise Sauriol
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Gabriele Schatte
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| | - Erin R Johnson
- Department of Chemistry, Dalhousie University, Halifax, NS B3H 4R2, Canada
| | - Victor Snieckus
- Department of Chemistry, Queen's University, Kingston, ON K7L 3N6, Canada
| |
Collapse
|
11
|
Motamen S, Quinn RJ. Analysis of Approaches to Anti-tuberculosis Compounds. ACS OMEGA 2020; 5:28529-28540. [PMID: 33195903 PMCID: PMC7658936 DOI: 10.1021/acsomega.0c03177] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Accepted: 10/15/2020] [Indexed: 05/04/2023]
Abstract
Mycobacterium tuberculosis (Mtb) remains a deadly pathogen two decades after the announcement of tuberculosis (TB) as a global health emergency by the World Health Organization. Medicinal chemistry efforts to synthesize potential drugs to shorten TB treatments have not always been successful. Here, we analyze physiochemical properties of 39 TB drugs and 1271 synthetic compounds reported in 40 publications from 2006 to early 2020. We also propose a new TB space of physiochemical properties that may provide more appropriate guidelines for design of anti-TB drugs.
Collapse
Affiliation(s)
- Sara Motamen
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Ronald J Quinn
- Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
12
|
Appetecchia F, Consalvi S, Scarpecci C, Biava M, Poce G. SAR Analysis of Small Molecules Interfering with Energy-Metabolism in Mycobacterium tuberculosis. Pharmaceuticals (Basel) 2020; 13:E227. [PMID: 32878317 PMCID: PMC7557483 DOI: 10.3390/ph13090227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/28/2020] [Accepted: 08/28/2020] [Indexed: 12/13/2022] Open
Abstract
Tuberculosis remains the world's top infectious killer: it caused a total of 1.5 million deaths and 10 million people fell ill with TB in 2018. Thanks to TB diagnosis and treatment, mortality has been falling in recent years, with an estimated 58 million saved lives between 2000 and 2018. However, the emergence of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb strains is a major concern that might reverse this progress. Therefore, the development of new drugs acting upon novel mechanisms of action is a high priority in the global health agenda. With the approval of bedaquiline, which targets mycobacterial energy production, and delamanid, which targets cell wall synthesis and energy production, the energy-metabolism in Mtb has received much attention in the last decade as a potential target to investigate and develop new antimycobacterial drugs. In this review, we describe potent anti-mycobacterial agents targeting the energy-metabolism at different steps with a special focus on structure-activity relationship (SAR) studies of the most advanced compound classes.
Collapse
Affiliation(s)
| | | | | | | | - Giovanna Poce
- Department of Chemistry and Technologies of Drug, Sapienza University of Rome, piazzale A. Moro 5, 00185 Rome, Italy; (F.A.); (S.C.); (C.S.); (M.B.)
| |
Collapse
|
13
|
Villamizar-Mogotocoro AF, Vargas-Méndez LY, Kouznetsov VV. Pyridine and quinoline molecules as crucial protagonists in the never-stopping discovery of new agents against tuberculosis. Eur J Pharm Sci 2020; 151:105374. [DOI: 10.1016/j.ejps.2020.105374] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/21/2020] [Accepted: 05/08/2020] [Indexed: 12/13/2022]
|
14
|
Liu P, Fan S, Wang B, Cao R, Wang X, Li S, Lu Y, Zhong W. Design, synthesis and biological evaluation of novel triaryldimethylaminobutan-2-ol derivatives against Mycobacterium tuberculosis. Bioorg Chem 2020; 102:104054. [PMID: 32663665 DOI: 10.1016/j.bioorg.2020.104054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/08/2020] [Accepted: 06/26/2020] [Indexed: 10/24/2022]
Abstract
Bedaquiline (TMC207), a typical diarylquinoline anti-tuberculosis drug, has been approved by FDA to specifically treat MDR-TB. Herein we describe design, synthesis, and in vitro biological evaluation against Mycobacterium tuberculosis of a series of triaryldimethylaminobutan-2-ol derivatives obtaining from the structural modification of TMC207. Compounds 23, 25, 28, 32, 39 and 43 provided superior anti-mycobacterial activity than positive control PC01 which shows the same configuration and contains TMC207. Compounds 16, 20, 29, 34, 37, 45 and 47 exhibited the similar activity to positive control PC01. Most importantly, the series of compounds showed excellent activity against XDR-Mtb. The result of acute toxicity suggested that this class of triaryldimethylaminobutan-2-ol derivatives should be graded as low. Further SAR analysis indicates that a large steric bulk of triaryl and 7-Br, 3-OCH3 on 1-naphthyl are critical.
Collapse
Affiliation(s)
- Ping Liu
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Taiping Road 27, Beijing 100850, PR China
| | - Shiyong Fan
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Taiping Road 27, Beijing 100850, PR China
| | - Bin Wang
- Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Taiping Road 27, Beijing 100850, PR China
| | - Xiaokui Wang
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Taiping Road 27, Beijing 100850, PR China
| | - Song Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Taiping Road 27, Beijing 100850, PR China
| | - Yu Lu
- Tuberculosis and Thoracic Tumor Research Institute, Beijing Chest Hospital, Capital Medical University, Beijing, PR China.
| | - Wu Zhong
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Taiping Road 27, Beijing 100850, PR China.
| |
Collapse
|
15
|
Pospisilova S, Malik I, Curillova J, Michnova H, Cerna L, Padrtova T, Hosek J, Pecher D, Cizek A, Jampilek J. Insight into antimicrobial activity of substituted phenylcarbamoyloxypiperazinylpropanols. Bioorg Chem 2020; 102:104060. [PMID: 32663668 DOI: 10.1016/j.bioorg.2020.104060] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 05/20/2020] [Accepted: 06/26/2020] [Indexed: 12/23/2022]
Abstract
3-[4-(Substituted)phenyl-/4-(diphenylmethyl)phenylpiperazin-1-yl]-2-hydroxypropyl-1-[(substituted)phenyl]carbamates and their salts with hydrochloric acid were synthesized, characterized, and tested in vitro against Staphylococcus aureus ATCC 29213 and Enterococcus faecalis ATCC 29212 as reference and quality control strains, against three methicillin-resistant isolates of S. aureus, and three isolates of vancomycin-resistant E. faecalis. All the compounds were evaluated against Mycobacterium tuberculosis H37Ra/ATCC 25177, M. kansasii DSM 44162, and M. smegmatis ATCC 700084. All of the tested compounds demonstrated very good activity against all the tested strains/isolates comparable with or better than that of clinically used drugs (ampicillin, ciprofloxacin, vancomycin, isoniazid). 1-[{(3-Trifluoromethyl)phenyl}carbamoyloxy-2-hydroxypropyl]-4-(3,4-dichlorophenyl)piperazin-1-ium chloride demonstrated the highest potency against all the tested strains/isolates (MICs ranged from 3.78 to 30.2 µM), and 1-[{(3-trifluoromethyl)phenyl}carbamoyloxy-2-hydroxypropyl]-4-(diphenylmethyl)piperazin-1-ium chloride was the most effective against all the screened mycobacterial strains (MICs ranged from 3.64 to 14.5 µM). All the investigated derivatives had strong antibiofilm activity against S. aureus ATCC 29123 and a synergistic or additive effect with gentamicin against isolates of E. faecalis with both intrinsic and acquired resistance to gentamicin. The screening of the cytotoxicity of the compounds was performed using human monocytic leukemia THP-1 cells. The IC50 values of the most effective compounds ranged from ca. 2.8 to 7.3 µM; thus, it can be stated that the antimicrobial effect is closely connected with their cytotoxicity. These observations disqualify these compounds from further development as antimicrobial agents, but they can be considered potential multi-target drugs with a preferred anticancer effect with good water solubility and additional anti-infectious activity.
Collapse
Affiliation(s)
- Sarka Pospisilova
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Ivan Malik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovak Republic.
| | - Jana Curillova
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovak Republic
| | - Hana Michnova
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Lucie Cerna
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Tereza Padrtova
- Department of Chemical Drugs, Faculty of Pharmacy, Masaryk University, Palackeho 1946/1, 612 00 Brno, Czech Republic
| | - Jan Hosek
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic
| | - Daniel Pecher
- Department of Pharmaceutical Analysis and Nuclear Pharmacy, Faculty of Pharmacy, Comenius University in Bratislava, Odbojarov 10, 832 32 Bratislava, Slovak Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Palackeho 1946/1, 612 42 Brno, Czech Republic
| | - Josef Jampilek
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Slechtitelu 27, 783 71 Olomouc, Czech Republic.
| |
Collapse
|
16
|
Calvert MB, Furkert DP, Cooper CB, Brimble MA. Synthetic approaches towards bedaquiline and its derivatives. Bioorg Med Chem Lett 2020; 30:127172. [PMID: 32291133 DOI: 10.1016/j.bmcl.2020.127172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Revised: 04/04/2020] [Accepted: 04/04/2020] [Indexed: 01/11/2023]
Abstract
Bedaquiline is a diarylquinoline drug that demonstrates potent and selective inhibition of mycobacterial ATP synthase, and is clinically administered for the treatment of multi-drug resistant tuberculosis. Due to its excellent activity and novel mechanism of action, bedaquiline has been the focus of a number of synthetic studies. This review will discuss these synthetic approaches, as well as the synthesis and bioactivity of the numerous derivatives and molecular probes inspired by bedaquiline.
Collapse
Affiliation(s)
- Matthew B Calvert
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand
| | - Daniel P Furkert
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Symonds Street, Auckland 1010, New Zealand
| | - Christopher B Cooper
- Global Alliance for TB Drug Development, 40 Wall Street, New York, NY 10005, USA
| | - Margaret A Brimble
- School of Chemical Sciences, The University of Auckland, Symonds Street, Auckland 1010, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, The University of Auckland, Symonds Street, Auckland 1010, New Zealand.
| |
Collapse
|
17
|
Pospisilova S, Marvanova P, Treml J, Moricz AM, Ott PG, Mokry P, Odehnalova K, Sedo O, Cizek A, Jampilek J. Activity of N-Phenylpiperazine Derivatives Against Bacterial and Fungal Pathogens. Curr Protein Pept Sci 2020; 20:1119-1129. [PMID: 31518219 DOI: 10.2174/1389203720666190913114041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/01/2019] [Accepted: 04/04/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND As the bacterial resistance to antibacterial chemotherapeutics is one of the greatest problems in modern medicine, efforts are made to develop new antimicrobial drugs. Compounds with a piperazine ring have proved to be promising agents against various pathogens. OBJECTIVE The aim of the study was to prepare a series of new N-phenylpiperazines and determine their activity against various pathogens. METHOD Target compounds were prepared by multi-step synthesis starting from an appropriate substituted acid to an oxirane intermediate reacting with 1-(4-nitrophenyl)piperazine. Lipophilicity and pKa values were experimentally determined. Other molecular parameters were calculated. The inhibitory activity of the target compounds against Staphylococcus aureus, four mycobacteria strains, Bipolaris sorokiniana, and Fusarium avenaceum was tested. In vitro antiproliferative activity was determined on a THP-1 cell line, and toxicity against plant was determined using Nicotiana tabacum. RESULTS In general, most compounds demonstrated only moderate effects. 1-(2-Hydroxy-3-{[4-(propan- 2-yloxy)benzoyl]oxy}propyl)-4-(4-nitrophenyl)piperazinediium dichloride and 1-{3-[(4-butoxybenzoyl)- oxy]-2-hydroxypropyl}-4-(4-nitrophenyl)piperazinediium dichloride showed the highest inhibition activity against M. kansasii (MIC = 15.4 and 15.0 µM, respectively) and the latter also against M. marinum (MIC = 15.0 µM). 1-(2-Hydroxy-3-{[4-(2-propoxyethoxy)benzoyl]oxy}propyl)-4-(4-nitrophenyl)piperazinediium dichloride had the highest activity against F. avenaceum (MIC = 14.2 µM). All the compounds showed only insignificant toxic effects on human and plant cells. CONCLUSION Ten new 1-(4-nitrophenyl)piperazine derivatives were prepared and analyzed, and their antistaphylococcal, antimycobacterial, and antifungal activities were determined. The activity against M. kansasii was positively influenced by higher lipophilicity, the electron-donor properties of substituent R and a lower dissociation constant. The exact mechanism of action will be investigated in follow-up studies.
Collapse
Affiliation(s)
- Sarka Pospisilova
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic
| | - Pavlina Marvanova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Jakub Treml
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Agnes M Moricz
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Peter G Ott
- Plant Protection Institute, Centre for Agricultural Research, Hungarian Academy of Sciences, Budapest, Hungary
| | - Petr Mokry
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Klara Odehnalova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Ondrej Sedo
- Research Group of Proteomics, Central European Institute of Technology, Masaryk University, Brno, Czech Republic
| | - Alois Cizek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences, Brno, Czech Republic
| | - Josef Jampilek
- Regional Centre of Advanced Technologies and Materials, Faculty of Science, Palacky University, Olomouc, Czech Republic
| |
Collapse
|
18
|
Narang R, Kumar R, Kalra S, Nayak SK, Khatik GL, Kumar GN, Sudhakar K, Singh SK. Recent advancements in mechanistic studies and structure activity relationship of FoF1 ATP synthase inhibitor as antimicrobial agent. Eur J Med Chem 2019; 182:111644. [DOI: 10.1016/j.ejmech.2019.111644] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/17/2022]
|
19
|
Evren AE, Yurttas L, Yılmaz-Cankilic M. Synthesis of novel N-(naphthalen-1-yl)propanamide derivatives and evaluation their antimicrobial activity. PHOSPHORUS SULFUR 2019. [DOI: 10.1080/10426507.2019.1657428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Asaf E. Evren
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University , Eskisehir , Turkey
- Vocational School of Health Services, Bilecik Şeyh Edebali University , Bilecik , Turkey
| | - Leyla Yurttas
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University , Eskisehir , Turkey
| | - Meral Yılmaz-Cankilic
- Department of Biology, Faculty of Sciences , Eskişehir Technical University, Eskisehir, Turkey
| |
Collapse
|
20
|
Sonawane AD, Garud DR, Udagawa T, Koketsu M. Synthesis of thieno[2,3-b]quinoline and selenopheno[2,3-b]quinoline derivatives via iodocyclization reaction and a DFT mechanistic study. Org Biomol Chem 2019; 16:245-255. [PMID: 29238785 DOI: 10.1039/c7ob02523h] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
In this letter, we report the regioselective iodocyclization reaction of 3-alkynyl-2-(methylthio)quinolines and 3-alkynyl-2-(methylseleno)quinolines for the synthesis of thieno[2,3-b]quinoline and selenopheno[2,3-b]quinoline derivatives. Furthermore, by employing various palladium-catalyzed Sonogashira, Suzuki, and Heck reactions, the structural diversification of the resulting halide derivatives, which can act as the important intermediates for building other valuable compounds, was achieved. All compounds were fully characterized by the FT-IR, mass, 1H NMR, and 13C NMR spectral data. Finally, the structure of the thieno[2,3-b]quinoline derivative was confirmed by X-ray crystallography. This methodology provided a novel pathway to access quinoline fused heterocycles via iodocyclization reaction. Furthermore, the reaction process was well elucidated by density functional theory calculations.
Collapse
Affiliation(s)
- Amol D Sonawane
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Gifu 501-1193, Japan.
| | | | | | | |
Collapse
|
21
|
Bobtaina E, Gurdal EE, Durmaz I, Atalay RC, Yarim M. Synthesis and Cytotoxicity Studies on Novel Piperazinylacetamides. LETT DRUG DES DISCOV 2018. [DOI: 10.2174/1570180815666180501124009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
In this study, nine novel compounds, bearing N-[2-(4-substituted
piperazine-1-yl)acetyl]-N’-[bis-(4-fluorophenyl)methyl]piperazine structures were synthesized.
Methods:
Their cytotoxic properties were evaluated in vitro by NCI-60 Sulforhodamine B
(SRB) assay against human cancer cell lines: Huh7 (hepatocellular), MCF7 (breast) and HCT116
(colorectal).
Results and Conclusion:
According to the activity data, most of the compounds are more cytotoxic
than 5-fluorouracil against Huh7 and HCT116 cancer cell lines.
Collapse
Affiliation(s)
- Eman Bobtaina
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Benghazi University, Belooan, Benghazi, Libya
| | - Enise Ece Gurdal
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, 34755, Kayisdagi, Istanbul, Turkey
| | - Irem Durmaz
- Bioinformatics Department, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Rengul Cetin Atalay
- Bioinformatics Department, Graduate School of Informatics, Middle East Technical University, Ankara, Turkey
| | - Mine Yarim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Yeditepe University, 34755, Kayisdagi, Istanbul, Turkey
| |
Collapse
|
22
|
Makar S, Saha T, Singh SK. Naphthalene, a versatile platform in medicinal chemistry: Sky-high perspective. Eur J Med Chem 2018; 161:252-276. [PMID: 30366253 DOI: 10.1016/j.ejmech.2018.10.018] [Citation(s) in RCA: 120] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 10/06/2018] [Accepted: 10/09/2018] [Indexed: 02/01/2023]
Abstract
Naphthalene, a cytotoxic moiety, is an extensively explored aromatic conjugated system with applications in various pathophysiological conditions viz. anticancer, antimicrobial, anti-inflammatory, antiviral, antitubercular, antihypertensive, antidiabetic, anti-neurodegenerative, antipsychotic, anticonvulsant, antidepressant. Naphthalene epoxides and naphthoquinones are most reactive metabolites of naphthalene and are responsible for the covalent interaction with cysteine amino acid of cellular proteins for cytotoxic nature. Many naphthalene derived bioactive phytoconstituents are present in nature including podophyllotoxins (Etoposide, teniposide), bis-ANS 82, Rifampicin, Justiprocumin A, B, Patentiflorin A. The naphthalene-based molecules, viz. Naphyrone, tolnaftate, naftifine, nafcillin, terbinafine, propranolol, nabumetone, nafimidone, naproxen, duloxetine, lasofoxifene, bedaquiline etc. have also been approved by FDA and are being marketed as therapeutics. Thus, the naphthalene scaffold emerges as an important building block in drug discovery owing to its broad spectrum of biological activities through varying structural modifications. This review incorporates the pharmacological aspects of different types of chemically modified naphthalene-based molecules along with their activity profile. This compiled information may serve as a benchmark for the alteration of existing ligands to design novel potent molecules with lesser side effects.
Collapse
Affiliation(s)
- Subhajit Makar
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Tanmay Saha
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India
| | - Sushil K Singh
- Pharmaceutical Chemistry Research Laboratory, Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (BHU), Varanasi, 221005, India.
| |
Collapse
|
23
|
Bak A, Kozik V, Malik I, Jampilek J, Smolinski A. Probability-driven 3D pharmacophore mapping of antimycobacterial potential of hybrid molecules combining phenylcarbamoyloxy and N-arylpiperazine fragments. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2018; 29:801-821. [PMID: 30230355 DOI: 10.1080/1062936x.2018.1517278] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2018] [Accepted: 08/25/2018] [Indexed: 06/08/2023]
Abstract
The current study examines in silico characterization of the structure-inhibitory potency for a set of phenylcarbamic acid derivatives containing an N-arylpiperazine scaffold, considering the electronic, steric and lipophilic properties. The main objective of the ligand-based modelling was the systematic study of classical comparative molecular field analysis (CoMFA)/comparative molecular surface analysis (CoMSA) performance for the modelling of in vitro efficiency observed for these phenylcarbamates, revealing their inhibitory activities against a virulent Mycobacterium tuberculosis H37Rv strain. We compared the findings of efficiency modelling produced by a standard 3D methodology (CoMFA) and its neural counterparts (CoMSA) regarding multiple training/test subsets and variables used. Moreover, systematic space inspection, splitting values into the analysed training/test subsets, was performed to monitor statistical estimator performance while mapping the probability-driven pharmacophore pattern. Consequently, a 'pseudo-consensus' 3D-quantitative structure-activity relationship (3D-QSAR) approach was applied to retrieve an 'average' pharmacophore hypothesis by the investigation of the most densely populated training/test subpopulations to specify the potentially important factors contributing to the inhibitory activity of phenylcarbamic acid analogues. In addition, examination of descriptor-based similarity with a principal component analysis (PCA) procedure was employed to visualize noticeable variations in the performance of these molecules with respect to their structure and activity profiles.
Collapse
Affiliation(s)
- A Bak
- a Department of Synthesis Chemistry , Institute of Chemistry, University of Silesia , Katowice , Poland
| | - V Kozik
- a Department of Synthesis Chemistry , Institute of Chemistry, University of Silesia , Katowice , Poland
| | - I Malik
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Comenius University , Bratislava , Slovakia
| | - J Jampilek
- b Department of Pharmaceutical Chemistry, Faculty of Pharmacy , Comenius University , Bratislava , Slovakia
| | - A Smolinski
- c Department of Energy Saving and Air Protection , Central Mining Institute , Katowice , Poland
| |
Collapse
|
24
|
Handa S, Ibrahim F, Ansari TN, Gallou F. π‐Allylpalladium Species in Micelles of FI‐750‐M for Sustainable and General Suzuki‐Miyaura Couplings of Unactivated Quinoline Systems in Water. ChemCatChem 2018. [DOI: 10.1002/cctc.201800958] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Sachin Handa
- Department of ChemistryUniversity of Louisville 2320 S. Brook St. Louisville KY 40292 USA
| | - Faisal Ibrahim
- Department of ChemistryUniversity of Louisville 2320 S. Brook St. Louisville KY 40292 USA
| | - Tharique N. Ansari
- Department of ChemistryUniversity of Louisville 2320 S. Brook St. Louisville KY 40292 USA
| | | |
Collapse
|
25
|
Synthesis and Spectrum of Biological Activities of Novel N-arylcinnamamides. Int J Mol Sci 2018; 19:ijms19082318. [PMID: 30087309 PMCID: PMC6121455 DOI: 10.3390/ijms19082318] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/01/2018] [Accepted: 08/03/2018] [Indexed: 01/17/2023] Open
Abstract
A series of sixteen ring-substituted N-arylcinnamamides was prepared and characterized. Primary in vitro screening of all the synthesized compounds was performed against Staphylococcus aureus, three methicillin-resistant S. aureus strains, Mycobacterium tuberculosis H37Ra, Fusarium avenaceum, and Bipolaris sorokiniana. Several of the tested compounds showed antistaphylococcal, antitubercular, and antifungal activities comparable with or higher than those of ampicillin, isoniazid, and benomyl. (2E)-N-[3,5-bis(trifluoromethyl)phenyl]-3-phenylprop-2-enamide and (2E)-3-phenyl-N-[3-(trifluoromethyl)phenyl]prop-2-enamide showed the highest activities (MICs = 22.27 and 27.47 µM, respectively) against all four staphylococcal strains and against M. tuberculosis. These compounds showed an activity against biofilm formation of S. aureus ATCC 29213 in concentrations close to MICs and an ability to increase the activity of clinically used antibiotics with different mechanisms of action (vancomycin, ciprofloxacin, and tetracycline). In time-kill studies, a decrease of CFU/mL of >99% after 8 h from the beginning of incubation was observed. (2E)-N-(3,5-Dichlorophenyl)- and (2E)-N-(3,4-dichlorophenyl)-3-phenylprop-2-enamide had a MIC = 27.38 µM against M. tuberculosis, while a significant decrease (22.65%) of mycobacterial cell metabolism determined by the MTT assay was observed for the 3,5-dichlorophenyl derivative. (2E)-N-(3-Fluorophenyl)- and (2E)-N-(3-methylphenyl)-3-phenylprop-2-enamide exhibited MICs = 16.58 and 33.71 µM, respectively, against B. sorokiniana. The screening of the cytotoxicity of the most effective antimicrobial compounds was performed using THP-1 cells, and these chosen compounds did not shown any significant lethal effect. The compounds were also evaluated for their activity related to the inhibition of photosynthetic electron transport (PET) in spinach (Spinacia oleracea L.) chloroplasts. (2E)-N-(3,5-dichlorophenyl)-3-phenylprop-2-enamide (IC50 = 5.1 µM) was the most active PET inhibitor. Compounds with fungicide potency did not show any in vivo toxicity against Nicotiana tabacum var. Samsun. The structure–activity relationships are discussed.
Collapse
|
26
|
Mohamooda Sumaya U, KarunaKaran J, Biruntha K, MohanaKrishnan AK, Usha G. Crystal structure and Hirshfeld surface analysis and energy frameworks of 1-(2,4-di-methyl-phen-yl)-4-(4-meth-oxy-phen-yl)naphthalene. Acta Crystallogr E Crystallogr Commun 2018; 74:939-943. [PMID: 30002890 PMCID: PMC6038635 DOI: 10.1107/s2056989018008332] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2018] [Accepted: 06/06/2018] [Indexed: 12/02/2022]
Abstract
In the title compound, C25H22O, the two rings of the naphthalene system are inclined to each other by 3.06 (15)°. The mean plane of the naphthalene ring system makes a dihedral angle of 65.24 (12)° with the di-methyl-phenyl ring and 55.82 (12)° with the meth-oxy-phenyl ring. The di-methyl-phenyl ring is inclined to the meth-oxy-phenyl ring by 59.28 (14)°. In the crystal, adjacent mol-ecules are linked via C-H⋯π inter-actions, forming chains along [100]. Using Hirshfeld surface and two-dimensional fingerprint plots, the presence of short inter-molecular inter-actions in the crystal structure were analysed. The inter-molecular inter-action energies were also calculated and their distribution over the crystal structure was visualized graphically using energy frameworks.
Collapse
Affiliation(s)
- U. Mohamooda Sumaya
- Department of Physics, Bharathi Women’s College (A), Chennai-108, Tamilnadu, India
| | - J. KarunaKaran
- Department of Organic Chemistry, University of Madras, Chennai-25, Tamilnadu, India
| | - K. Biruntha
- Department of Physics, Bharathi Women’s College (A), Chennai-108, Tamilnadu, India
| | - A. K. MohanaKrishnan
- Department of Organic Chemistry, University of Madras, Chennai-25, Tamilnadu, India
| | - G. Usha
- PG and Research Department of Physics, Queen Mary’s College (A), Chennai-4, Tamilnadu, India
| |
Collapse
|
27
|
Fan YL, Jin XH, Huang ZP, Yu HF, Zeng ZG, Gao T, Feng LS. Recent advances of imidazole-containing derivatives as anti-tubercular agents. Eur J Med Chem 2018; 150:347-365. [PMID: 29544148 DOI: 10.1016/j.ejmech.2018.03.016] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 03/02/2018] [Accepted: 03/04/2018] [Indexed: 12/20/2022]
Abstract
Tuberculosis still remains one of the most common, communicable, and leading deadliest diseases known to mankind throughout the world. Drug-resistance in Mycobacterium tuberculosis which threatens to worsen the global tuberculosis epidemic has caused great concern in recent years. To overcome the resistance, the development of new drugs with novel mechanisms of actions is of great importance. Imidazole-containing derivatives endow with various biological properties, and some of them demonstrated excellent anti-tubercular activity. As the most emblematic example, 4-nitroimidazole delamanid has already received approval for treatment of multidrug-resistant tuberculosis infected patients. Thus, imidazole-containing derivatives have caused great interests in discovery of new anti-tubercular agents. Numerous of imidazole-containing derivatives were synthesized and screened for their in vitro and in vivo anti-mycobacterial activities against both drug-sensitive and drug-resistant Mycobacterium tuberculosis pathogens. This review aims to outline the recent advances of imidazole-containing derivatives as anti-tubercular agents, and summarize the structure-activity relationship of these derivatives. The enriched structure-activity relationship may pave the way for the further rational development of imidazole-containing derivatives as anti-tubercular agents.
Collapse
Affiliation(s)
- Yi-Lei Fan
- Key Laboratory of Drug Prevention and Control Technology of Zhejiang Province, Zhejiang Police College, Hangzhou, PR China
| | - Xiao-Hong Jin
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhong-Ping Huang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, PR China.
| | - Hai-Feng Yu
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhi-Gang Zeng
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Tao Gao
- School of Nuclear Technology and Chemistry & Biology, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Lian-Shun Feng
- Synthetic and Functional Biomolecules Center, Peking University, Beijing, PR China
| |
Collapse
|
28
|
Jagadeesan G, Chandramalar IM, Karunakaran J, Gopinath S, Mohanakrishnan AK. Crystal structure of dimethyl 1-oxo-2,4-di-phenyl-1,2-dihydronaphthalene-2,3-di-carboxyl-ate. ACTA CRYSTALLOGRAPHICA SECTION E-CRYSTALLOGRAPHIC COMMUNICATIONS 2018; 74:349-351. [PMID: 29765721 PMCID: PMC5947801 DOI: 10.1107/s2056989018002360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 02/09/2018] [Indexed: 11/10/2022]
Abstract
In the title compound, C26H20O5, a 1,2-di-hydro-naphthalene derivative, the cyclo-hexa-1,3-diene ring of the 1,2-di-hydro-naphthalene ring system adopts a half-chair conformation. The mean plane of the 1,2-di-hydro-napthalene ring system makes dihedral angles of 86.23 (6) and 64.80 (7)° with two phenyl rings. The carbonyl O atom attached to the di-hydro-naphthalene ring system deviates from the mean plane of the 1,2-di-hydro-naphthalene ring system by 0.618 (1) Å. In the crystal, the mol-ecules are linked into layers parallel to the bc plane via two kinds of C-H⋯O inter-actions, one of which forms a C(10) chain motif running along the c-axis direction and the other forms an R22(6) ring motif. Adjacent layers are further connected by C-H⋯π and offset π-π inter-actions [centroid-centroid distance = 3.6318 (9) Å].
Collapse
Affiliation(s)
- Gajendran Jagadeesan
- Department of Physics, Jeppiaar Engineering College, Jeppiaar Nagar, OMR, Chennai 600 119, India
| | | | | | - Solaiappan Gopinath
- Department of Physics, RKM Vivekananda College (Autonomous), Chennai 600 004, India
| | | |
Collapse
|
29
|
Liu B, Hu G, Tang X, Wang G, Xu Z. 1H
-1,2,3-Triazole-tethered Isatin-coumarin Hybrids: Design, Synthesis and In Vitro
Anti-mycobacterial Evaluation. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3093] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Bi Liu
- School of Nuclear Technology and Chemistry and Biology; Hubei University of Science and Technology; Xianning People's Republic of China
| | - Guowen Hu
- School of Nuclear Technology and Chemistry and Biology; Hubei University of Science and Technology; Xianning People's Republic of China
| | - Xiuqin Tang
- School of Nuclear Technology and Chemistry and Biology; Hubei University of Science and Technology; Xianning People's Republic of China
| | - Guangqiang Wang
- School of Nuclear Technology and Chemistry and Biology; Hubei University of Science and Technology; Xianning People's Republic of China
| | - Zhi Xu
- Key Laboratory of Hubei Province for Coal Conversion and New Carbon Materials; Wuhan University of Science and Technology; Wuhan Hubei People's Republic of China
| |
Collapse
|
30
|
Synthesis and In Vitro Antimycobacterial Activity of Novel N-Arylpiperazines Containing an Ethane-1,2-diyl Connecting Chain. Molecules 2017; 22:molecules22122100. [PMID: 29189762 PMCID: PMC6149664 DOI: 10.3390/molecules22122100] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 11/17/2022] Open
Abstract
Novel 1-(2-{3-/4-[(alkoxycarbonyl)amino]phenyl}-2-hydroxyethyl)-4-(2-fluorophenyl)-piperazin-1-ium chlorides (alkoxy = methoxy to butoxy; 8a-h) have been designed and synthesized through multistep reactions as a part of on-going research programme focused on finding new antimycobacterials. Lipophilic properties of these compounds were estimated by RP-HPLC using methanol/water mobile phases with a various volume fraction of the organic modifier. The log kw values, which were extrapolated from intercepts of a linear relationship between the logarithm of a retention factor k (log k) and volume fraction of a mobile phase modifier (ϕM), varied from 2.113 (compound 8e) to 2.930 (compound 8h) and indicated relatively high lipophilicity of these salts. Electronic properties of the molecules 8a-h were investigated by evaluation of their UV/Vis spectra. In a next phase of the research, the compounds 8a-h were in vitro screened against M. tuberculosis CNCTC My 331/88 (identical with H37Rv and ATCC 2794), M. kansasii CNCTC My 235/80 (identical with ATCC 12478), a M. kansasii 6 509/96 clinical isolate, M. avium CNCTC My 330/80 (identical with ATCC 25291) and M. avium intracellulare ATCC 13950, respectively, as well as against M. kansasii CIT11/06, M. avium subsp. paratuberculosis CIT03 and M. avium hominissuis CIT10/08 clinical isolates using isoniazid, ethambutol, ofloxacin, ciprofloxacin or pyrazinamide as reference drugs. The tested compounds 8a-h were found to be the most promising against M. tuberculosis; a MIC = 8 μM was observed for the most effective 1-(2-{4-[(butoxycarbonyl)amino]phen-ylphenyl}-2-hydroxyethyl)-4-(2-fluorophenyl)piperazin-1-ium chloride (8h). In addition, all of them showed low (insignificant) in vitro toxicity against a human monocytic leukemia THP-1 cell line, as observed LD50 values > 30 μM indicated. The structure-antimycobacterial activity relationships of the analyzed 8a-h series are also discussed.
Collapse
|
31
|
Parveen I, Ahmed N, Idrees D, Khan P, Hassan MI. Synthesis, estrogen receptor binding affinity and molecular docking of pyrimidine-piperazine-chromene and -quinoline conjugates. Bioorg Med Chem Lett 2017; 27:4493-4499. [DOI: 10.1016/j.bmcl.2017.07.077] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 07/22/2017] [Accepted: 07/28/2017] [Indexed: 10/19/2022]
|
32
|
Triazole derivatives and their anti-tubercular activity. Eur J Med Chem 2017; 138:501-513. [PMID: 28692915 DOI: 10.1016/j.ejmech.2017.06.051] [Citation(s) in RCA: 330] [Impact Index Per Article: 41.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2017] [Revised: 05/20/2017] [Accepted: 06/25/2017] [Indexed: 11/22/2022]
Abstract
Tuberculosis (TB) remains one of the most widespread and leading deadliest diseases, threats one-third of the world's population. Although numerous efforts have been undertaken to develop new anti-TB agents, only a handful of compounds have entered human trials in the past 5 decades. Triazoles including 1,2,3-triazole and 1,2,4-triazole are one of the most important classes of nitrogen containing heterocycles that exhibited various biological activities. Triazole derivatives are regarded as a new class of effective anti-TB candidates owing to their potential anti-TB potency. Thus, molecules containing triazole moiety may show promising in vitro and in vivo anti-TB activities and might be able to prevent the drug resistant to certain extent. This review outlines the advances in the application of triazole-containing hybrids as anti-TB agents, and discusses the structure-activity relationship of these derivatives.
Collapse
|
33
|
Sharma A, Gudala S, Ambati SR, Penta S, Mahapatra SP, Vedula RR, Pola S, Acharya B. Synthesis of Heterocyclic Compounds Catalyzed by Metal/Metal Oxide-Multiwall Carbon Nanotube Nanocomposites. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201600864] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Archi Sharma
- Department of Chemistry; National Institute of Technology; Raipur 492010 Chhattisgarh India
| | - Satish Gudala
- Department of Chemistry; National Institute of Technology; Raipur 492010 Chhattisgarh India
| | - Srinivasa Rao Ambati
- Department of Chemistry; National Institute of Technology; Raipur 492010 Chhattisgarh India
| | - Santhosh Penta
- Department of Chemistry; National Institute of Technology; Raipur 492010 Chhattisgarh India
| | | | - Rajeswar Rao Vedula
- Department of Chemistry; National Institute of Technology; Warangal 506004 Telangana India
| | - Someshwar Pola
- Department of Chemistry, Nizam College; Osmania University; Hyderabad 500001 India
| | - Bibhudendra Acharya
- Department of Electronics & Telecommunication Engineering; NIT; Raipur 492010 India
| |
Collapse
|
34
|
Synthesis and biological evaluation of schiff bases of 4-aminophenazone as an anti-inflammatory, analgesic and antipyretic agent. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2014.04.003] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
35
|
He C, Preiss L, Wang B, Fu L, Wen H, Zhang X, Cui H, Meier T, Yin D. Structural Simplification of Bedaquiline: the Discovery of 3-(4-(N,N-Dimethylaminomethyl)phenyl)quinoline-Derived Antitubercular Lead Compounds. ChemMedChem 2016; 12:106-119. [PMID: 27792278 PMCID: PMC5298006 DOI: 10.1002/cmdc.201600441] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Indexed: 01/03/2023]
Abstract
Bedaquiline (BDQ) is a novel and highly potent last-line antituberculosis drug that was approved by the US FDA in 2013. Owing to its stereo-structural complexity, chemical synthesis and compound optimization are rather difficult and expensive. This study describes the structural simplification of bedaquiline while preserving antitubercular activity. The compound's structure was split into fragments and reassembled in various combinations while replacing the two chiral carbon atoms with an achiral linkage instead. Four series of analogues were designed; these candidates retained their potent antitubercular activity at sub-microgram per mL concentrations against both sensitive and multidrug-resistant (MDR) Mycobacterium tuberculosis strains. Six out of the top nine MIC-ranked candidates were found to inhibit mycobacterial ATP synthesis activity with IC50 values between 20 and 40 μm, one had IC50 >66 μm, and two showed no inhibition, despite their antitubercular activity. These results provide a basis for the development of chemically less complex, lower-cost bedaquiline derivatives and describe the identification of two derivatives with antitubercular activity against non-ATP synthase related targets.
Collapse
Affiliation(s)
- Chunxian He
- State Key Laboratory of Bioactive Substances and Function ofNatural Medicine, Institute of Materia Medica, Peking Union Medical College andChinese Academy of Medical Sciences, Beijing, 100050, China.,Beijing Key Laboratory of Active Substances Discovery and DrugabilityEvaluation, Institute of Materia Medica, Peking Union Medical College andChinese Academy of Medical Sciences, Beijing, 100050, China
| | - Laura Preiss
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany
| | - Bin Wang
- Department of Pharmacology, Beijing Tuberculosis and Thoracic TumorResearch Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing, 101149, China
| | - Lei Fu
- Department of Pharmacology, Beijing Tuberculosis and Thoracic TumorResearch Institute, Beijing Chest Hospital, Capital Medical University, 97 Ma Chang Street, Beijing, 101149, China
| | - Hui Wen
- Beijing Key Laboratory of Active Substances Discovery and DrugabilityEvaluation, Institute of Materia Medica, Peking Union Medical College andChinese Academy of Medical Sciences, Beijing, 100050, China
| | - Xiang Zhang
- Beijing Key Laboratory of Active Substances Discovery and DrugabilityEvaluation, Institute of Materia Medica, Peking Union Medical College andChinese Academy of Medical Sciences, Beijing, 100050, China
| | - Huaqing Cui
- Beijing Key Laboratory of Active Substances Discovery and DrugabilityEvaluation, Institute of Materia Medica, Peking Union Medical College andChinese Academy of Medical Sciences, Beijing, 100050, China
| | - Thomas Meier
- Department of Structural Biology, Max Planck Institute of Biophysics, Max-von-Laue-Str. 3, 60438, Frankfurt am Main, Germany.,Department of Life Sciences, Imperial College London, Exhibition Road, London, SW7 2AZ, UK
| | - Dali Yin
- State Key Laboratory of Bioactive Substances and Function ofNatural Medicine, Institute of Materia Medica, Peking Union Medical College andChinese Academy of Medical Sciences, Beijing, 100050, China
| |
Collapse
|
36
|
Malík I, Csöllei J, Jampílek J, Stanzel L, Zadražilová I, Hošek J, Pospíšilová Š, Čížek A, Coffey A, O'Mahony J. The Structure-Antimicrobial Activity Relationships of a Promising Class of the Compounds Containing the N-Arylpiperazine Scaffold. Molecules 2016; 21:molecules21101274. [PMID: 27681720 PMCID: PMC6273431 DOI: 10.3390/molecules21101274] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 09/18/2016] [Accepted: 09/19/2016] [Indexed: 12/14/2022] Open
Abstract
This research was focused on in silico characterization and in vitro biological testing of the series of the compounds carrying a N-arylpiperazine moiety. The in silico investigation was based on the prediction of electronic, steric and lipohydrophilic features. The molecules were screened against Mycobacterium avium subsp. paratuberculosis CIT03, M. smegmatis ATCC 700084, M. kansasii DSM 44162, M. marinum CAMP 5644, Staphylococcus aureus ATCC 29213, methicillin-resistant S. aureus 63718, Escherichia coli ATCC 25922, Enterococcus faecalis ATCC 29212, Candida albicans CCM 8261, C. parapsilosis CCM 8260 and C. krusei CCM 8271, respectively, by standardized microdilution methods. The eventual antiproliferative (cytotoxic) impact of those compounds was examined on a human monocytic leukemia THP-1 cell line, as a part of the biological study. Promising potential against M. kansasii was found for 1-[3-(3-ethoxyphenylcarbamoyl)oxy-2-hydroxypropyl]-4-(3-trifluoromethylphenyl)piperazin-1-ium chloride (MIC = 31.75 μM), which was comparable to the activity of isoniazid (INH; MIC = 29.17 μM). Moreover, 1-{2-hydroxy-3-(3-methoxyphenylcarbamoyl)oxy)propyl}-4-(4-fluorophenyl)piperazin-1-ium chloride was even more effective (MIC = 17.62 μM) against given mycobacterium. Among the tested N-arylpiperazines, 1-{2-hydroxy-3-(4-methoxyphenylcarbamoyl)oxy)propyl}-4-(3-trifluoromethylphenyl)piperazin-1-ium chloride was the most efficient against M. marinum (MIC = 65.32 μM). One of the common features of all investigated substances was their insignificant antiproliferative (i.e., non-cytotoxic) effect. The study discussed structure–antimicrobial activity relationships considering electronic, steric and lipophilic properties.
Collapse
Affiliation(s)
- Ivan Malík
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, Bratislava SK-832 32, Slovak Republic.
| | - Jozef Csöllei
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Palackého 1946/1, Brno CZ-612 42, Czech Republic.
| | - Josef Jampílek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, Bratislava SK-832 32, Slovak Republic.
| | - Lukáš Stanzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University in Bratislava, Odbojárov 10, Bratislava SK-832 32, Slovak Republic.
| | - Iveta Zadražilová
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences in Brno, Palackého 1946/1, Brno CZ-612 42, Czech Republic.
| | - Jan Hošek
- Department of Molecular Biology and Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences in Brno, Palackého 1946/1, Brno CZ-612 42, Czech Republic.
| | - Šárka Pospíšilová
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences in Brno, Palackého 1946/1, Brno CZ-612 42, Czech Republic.
| | - Alois Čížek
- Department of Infectious Diseases and Microbiology, Faculty of Veterinary Medicine, University of Veterinary and Pharmaceutical Sciences in Brno, Palackého 1946/1, Brno CZ-612 42, Czech Republic.
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork T12 P928, Ireland.
| | - Jim O'Mahony
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork T12 P928, Ireland.
| |
Collapse
|
37
|
Geng Y, Li L, Wu C, Chi Y, Li Z, Xu W, Sun T. Design and Stereochemical Research (DFT, ECD and Crystal Structure) of Novel Bedaquiline Analogs as Potent Antituberculosis Agents. Molecules 2016; 21:molecules21070875. [PMID: 27384553 PMCID: PMC6274456 DOI: 10.3390/molecules21070875] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2016] [Revised: 06/20/2016] [Accepted: 06/29/2016] [Indexed: 12/03/2022] Open
Abstract
A series of bedaquiline analogs containing H-bond donors were designed as anti-Mycobacterium tuberculosis drugs. A pair of diastereoisomers (R/S- and S/S-isomers) was selected from these designed compounds for synthetic and stereochemical research. The title compounds were synthesized from chiral precursors for the first time and the absolute configurations (ACs) were determined by electronic circular dichroism (ECD) with quantum chemical calculations. Moreover, a single crystal of the S/S compound was obtained for X-ray diffraction analysis, and the crystal structure showed high consistency with the geometry, confirming the reliability of ACs obtained by ECD analyses and theoretical simulation. Furthermore, the effect of stereochemistry on the anti-tuberculosis activity was investigated. The MICs of the R/S- and S/S-isomers against Mycobacterium phlei 1180 are 9.6 and 32.1 μg·mL−1, respectively. Finally, molecular docking was carried out to evaluate the inhibitory nature and binding mode differences between diastereoisomers.
Collapse
Affiliation(s)
- Yiding Geng
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, China.
| | - Linwei Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, China.
| | - Chengjun Wu
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, China.
| | - Yumeng Chi
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, China.
| | - Zhen Li
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, China.
| | - Wei Xu
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Tiemin Sun
- Key Laboratory of Structure-Based Drug Design and Discovery, Shenyang Pharmaceutical University, Ministry of Education, Shenyang 110016, China.
| |
Collapse
|
38
|
Verbanac D, Malik R, Chand M, Kushwaha K, Vashist M, Matijašić M, Stepanić V, Perić M, Paljetak HČ, Saso L, Jain SC. Synthesis and evaluation of antibacterial and antioxidant activity of novel 2-phenyl-quinoline analogs derivatized at position 4 with aromatically substituted 4H-1,2,4-triazoles. J Enzyme Inhib Med Chem 2016; 31:104-110. [PMID: 27319400 DOI: 10.1080/14756366.2016.1190714] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A set of novel quinolone-triazole conjugates (12-31) were synthesized in three steps in good yields starting from 2-phenylquinoline-4-carboxylic acid. All the intermediates, as well as the final 1,2,4-triazolyl quinolines were fully characterized by their detailed spectral analysis utilizing different techniques such as IR, 1H NMR, 13C NMR, and finally mass spectrometry. All the synthesized compounds were evaluated in vitro for their potential antibacterial activity and their preliminary safety profile was assessed through cytotoxicity assay. Additionally, six selected conjugates were evaluated for their antioxidative properties on the basis of density functional theory calculations, using radical scavenging assay (DPPH) and cellular antioxidant assay. The reported results encourage further investigation of selected compounds and are shading light on their potential pharmacological use.
Collapse
Affiliation(s)
- Donatella Verbanac
- a University of Zagreb School of Medicine, Center for Translational and Clinical Research , Zagreb , Croatia
| | - Ritu Malik
- b Department of Chemistry , University of Delhi , Delhi , India
| | - Mahesh Chand
- b Department of Chemistry , University of Delhi , Delhi , India
| | | | - Monika Vashist
- b Department of Chemistry , University of Delhi , Delhi , India
| | - Mario Matijašić
- a University of Zagreb School of Medicine, Center for Translational and Clinical Research , Zagreb , Croatia
| | - Višnja Stepanić
- c Laboratory for Epigenomics , Division of Molecular Medicine, Ruđer Bošković Institute , Zagreb , Croatia , and
| | - Mihaela Perić
- a University of Zagreb School of Medicine, Center for Translational and Clinical Research , Zagreb , Croatia
| | - Hana Čipčić Paljetak
- a University of Zagreb School of Medicine, Center for Translational and Clinical Research , Zagreb , Croatia
| | - Luciano Saso
- d Department of Physiology and Pharmacology 'Vittorio Ersparmer' , Sapienza University of Rome , Rome , Italy
| | - Subhash C Jain
- b Department of Chemistry , University of Delhi , Delhi , India
| |
Collapse
|
39
|
Aly AA, Malah TE, Ishak EA, Brown AB, Elayat WM. Tetracyanoethene and 1-Amino-1,2,2-ethenetricarbonitrile in the Synthesis of Heterocycles of Prospective Antioxidant and Antibacterial. J Heterocycl Chem 2016. [DOI: 10.1002/jhet.2236] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Ashraf A Aly
- Chemistry Department, Faculty of Science; Minia University; 61519 El-Minia Egypt
| | - Tamer El Malah
- National Research Centre; El Buhouth St. Dokki Cairo Egypt
| | - Esam A. Ishak
- Chemistry Department, Faculty of Science; Al-Azhar University; Assiut Egypt
| | - Alan B. Brown
- Chemistry Department; Florida Institute of Technology; Melbourne FL 32901 USA
| | - Wael M. Elayat
- Chemistry Department, Faculty of Science; Aljouf University; Sakaka Aljouf Saudi Arabia
| |
Collapse
|
40
|
Farah SI, Abdelrahman AA, North EJ, Chauhan H. Opportunities and Challenges for Natural Products as Novel Antituberculosis Agents. Assay Drug Dev Technol 2016; 14:29-38. [DOI: 10.1089/adt.2015.673] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Shrouq I. Farah
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska
| | | | - E. Jeffrey North
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska
| | - Harsh Chauhan
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, Omaha, Nebraska
| |
Collapse
|
41
|
Zengin G, Nafea Al Kawaz AM, Zengin H, Mert A, Kucuk B. Synthesis and characterization of 3-aminoquinoline derivatives and studies of photophysicochemical behaviour and antimicrobial activities. J Mol Struct 2016. [DOI: 10.1016/j.molstruc.2015.09.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
42
|
Wang ZQ, Xu K, Zhang X, Li T, Zheng SL, Yu LT, Mao WT, Chen CZ, Wang LY. A new route to naphthyl ketones via copper-mediated intramolecular aerobic oxidative cyclization of alkynes and sulfonylcrotonates. RSC Adv 2016. [DOI: 10.1039/c6ra23244b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
A copper-mediated intramolecular aerobic oxidative cyclization of alkynes and sulfonylcrotonates to a variety of highly functionalized naphthyl ketones was developed.
Collapse
Affiliation(s)
- Zhi-Qiang Wang
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- P. R. China
| | - Kun Xu
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- P. R. China
| | - Xu Zhang
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- P. R. China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- P. R. China
| | - Shao-Long Zheng
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- P. R. China
| | - Lin-Tao Yu
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- P. R. China
| | - Wu-Tao Mao
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- P. R. China
| | - Chang-Zhong Chen
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- P. R. China
| | - Li-Ya Wang
- College of Chemistry and Pharmaceutical Engineering
- Nanyang Normal University
- Nanyang
- P. R. China
| |
Collapse
|
43
|
Qiao CJ, Wang XK, Xie F, Zhong W, Li S. Asymmetric Synthesis and Absolute Configuration Assignment of a New Type of Bedaquiline Analogue. Molecules 2015; 20:22272-85. [PMID: 26690407 PMCID: PMC6331863 DOI: 10.3390/molecules201219846] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Revised: 12/04/2015] [Accepted: 12/07/2015] [Indexed: 12/02/2022] Open
Abstract
Bedaquiline is the first FDA-approved new chemical entity to fight multidrug-resistant tuberculosis in the last forty years. Our group replaced the quinoline ring with a naphthalene ring, leading to a new type of triarylbutanol skeleton. An asymmetric synthetic route was established for our bedaquiline analogues, and the goal of assigning their absolute configurations was achieved by comparison of experimental and calculated electronic circular dichroism spectra, and was confirmed by the combined use of circular dichroism and NMR spectroscopy.
Collapse
Affiliation(s)
- Chang-Jiang Qiao
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
- Laboratory of Computer-Aided Drug Design & Discovery, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| | - Xiao-Kui Wang
- Laboratory of Computer-Aided Drug Design & Discovery, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| | - Fei Xie
- Laboratory of Computer-Aided Drug Design & Discovery, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| | - Wu Zhong
- Laboratory of Computer-Aided Drug Design & Discovery, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| | - Song Li
- School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenyang 110016, China.
- Laboratory of Computer-Aided Drug Design & Discovery, Beijing Institute of Pharmacology and Toxicology, 27 Taiping Road, Beijing 100850, China.
| |
Collapse
|
44
|
One-pot access to a privileged library of six membered nitrogenous heterocycles through multi-component cascade approach. RESEARCH ON CHEMICAL INTERMEDIATES 2015. [DOI: 10.1007/s11164-015-2354-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
45
|
Goncalves RS, de Souza MV, Wardell SM, Wardell JL. Further study of oxazolidines derived from mefloquine and arenealdehydes: diastereoisomers and polymorphs. Z KRIST-CRYST MATER 2015. [DOI: 10.1515/zkri-2015-1858] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
The reaction between racemic erythro [(R*,S*)-2,8-bis(trifluoromethyl)quinolin-4-yl]-(2-piperidyl)methanol] and 2-formyl-5-nitrothiene in toluene generates a reaction mixture containing two diastereoisomers of 4-[3-(5-nitrothien-2-yl)-hexahydro[1,3]oxazolo[3,4-a]pyridin-1-yl]-2,8-bis(trifluoromethyl)quinoline, 6, – namely (2S*,3R*,4S*5R*)-6 (6a) and (2R*,3S*,4S*,5R*)-6 (6b) in a ratio of 5:1 as indicated by 1H NMR spectroscopy (using the 1,3-oxazolidine ring numbering scheme for the chiral centres). Isolation of each product from the mefloquine/2-formyl-5-nitrothiene reaction mixture was achieved by fractional crystallisation of an ethanol solution, but not by column chromatography on silica, which led to the destruction of the minor product, 6b. A second polymorphic form, [monoclinic, P21/c] of (2S*,3R*,4S*,5R*)-4-[3-(2-hydroxyphenyl-hexahydro[1,3]oxazolo[3,4-a]pyridin-1-yl]-2,8-bis(trifluoromethyl)quinoline (monoclinic-7) has been isolated from MeOH solution: the previously reported orthorhombic form, space group Fdd2, had been isolated from an ethanolic solution.
Collapse
Affiliation(s)
- Raoni S.B. Goncalves
- FioCruz-Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far-Manguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil
| | - Marcus V.N. de Souza
- FioCruz-Fundação Oswaldo Cruz, Instituto de Tecnologia em Fármacos-Far-Manguinhos, Rua Sizenando Nabuco, 100, Manguinhos, 21041-250 Rio de Janeiro, RJ, Brazil
| | | | | |
Collapse
|
46
|
Yassine H, Khouili M, El Ammari L, Saadi M, Ketatni EM. Crystal structure of 2-meth-oxy-1-nitro-naphthalene. Acta Crystallogr E Crystallogr Commun 2015; 71:o701-2. [PMID: 26594431 PMCID: PMC4647346 DOI: 10.1107/s2056989015016114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Accepted: 08/28/2015] [Indexed: 11/30/2022]
Abstract
The asymmetric unit of the title compound, C11H9NO3, contains two mol-ecules, A and B. In mol-ecule A, the dihedral angle between the planes of the naphthalene ring system (r.m.s. deviation = 0.003 Å) and the nitro group is 89.9 (2)°, and the C atom of the meth-oxy group deviates from the naphthyl plane by 0.022 (2) Å. Equivalent data for mol-ecule B are 0.008 Å, 65.9 (2)° and -0.198 (2) Å, respectively. In the crystal, mol-ecules are linked by weak C-H⋯O inter-actions, forming [100] chains of alternating A and B mol-ecules. Weak aromatic π-π stacking contacts, with a range of centroid-centroid distances from 3.5863 (9) to 3.8048 (9) Å, are also observed.
Collapse
Affiliation(s)
- Hasna Yassine
- Laboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Béni-Mellal, Morocco
| | - Mostafa Khouili
- Laboratoire de Chimie Organique et Analytique, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Béni-Mellal, Morocco
| | - Lahcen El Ammari
- Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
| | - Mohamed Saadi
- Laboratoire de Chimie du Solide Appliquée, Faculté des Sciences, Université Mohammed V, Avenue Ibn Battouta, BP 1014, Rabat, Morocco
| | - El Mostafa Ketatni
- Laboratoire de Spectrochimie Applique et Environnement, Université Sultan Moulay Slimane, Faculté des Sciences et Techniques, BP 523, 23000 Béni-Mellal, Morocco
| |
Collapse
|
47
|
Raja R, Jayanthi M, Rajakumar P, SubbiahPandi A. Crystal structure of 2,2'-bis-[(2-chloro-benz-yl)-oxy]-1,1'-bi-naphthalene. Acta Crystallogr E Crystallogr Commun 2015; 71:o637-8. [PMID: 26396878 PMCID: PMC4555433 DOI: 10.1107/s2056989015014322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Accepted: 07/29/2015] [Indexed: 11/23/2022]
Abstract
In the title binaphthyl compound, C34H24Cl2O2, the dihedral angle between the two naphthyl ring systems (r.m.s. deviations = 0.016 and 0.035 Å) is 76.33 (8)°. The chloro-phenyl rings make dihedral angles of 58.15 (12) and 76.21 (13)° with the naphthyl ring to which they are linked. The dihedral angle between the planes of the two chloro-phenyl rings is 27.66 (16)°. In the crystal, C-H⋯O hydrogen bonds link mol-ecules into chains propagating along [1-10]. The chains are linked by C-H⋯π inter-actions, forming a three-dimensional framework.
Collapse
Affiliation(s)
- Rajamani Raja
- Department of Physics, Presidency College (Autonomous), Chennai 600 005, India
| | - Mani Jayanthi
- Department of Organic Chemistry, University of Madras, Guindy, Chennai-25, India
| | - Perumal Rajakumar
- Department of Organic Chemistry, University of Madras, Guindy, Chennai-25, India
| | - A. SubbiahPandi
- Department of Physics, Presidency College (Autonomous), Chennai 600 005, India
| |
Collapse
|
48
|
Piperazine scaffold: A remarkable tool in generation of diverse pharmacological agents. Eur J Med Chem 2015; 102:487-529. [PMID: 26310894 DOI: 10.1016/j.ejmech.2015.07.026] [Citation(s) in RCA: 155] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2015] [Revised: 07/13/2015] [Accepted: 07/15/2015] [Indexed: 12/21/2022]
Abstract
Piperazine is one of the most sought heterocyclics for the development of new drug candidates. This ring can be traced in a number of well established, commercially available drugs. Wide array of pharmacological activities exhibited by piperazine derivatives have made them indispensable anchors for the development of novel therapeutic agents. The review herein highlights the therapeutic significance of piperazine derivatives. Various therapeutically active piperazine derivatives developed by several chemists are reported here.
Collapse
|
49
|
Kos J, Zadrazilova I, Nevin E, Soral M, Gonec T, Kollar P, Oravec M, Coffey A, O'Mahony J, Liptaj T, Kralova K, Jampilek J. Ring-substituted 8-hydroxyquinoline-2-carboxanilides as potential antimycobacterial agents. Bioorg Med Chem 2015; 23:4188-4196. [PMID: 26183541 DOI: 10.1016/j.bmc.2015.06.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/13/2015] [Accepted: 06/18/2015] [Indexed: 01/14/2023]
Abstract
In this study, a series of twenty-two ring-substituted 8-hydroxyquinoline-2-carboxanilides was prepared and characterized. Primary in vitro screening of the synthesized compounds was performed against Mycobacterium tuberculosis H37Ra, Mycobacterium avium complex and M. avium subsp. paratuberculosis. Some of the tested compounds showed the antimycobacterial activity against M. avium subsp. paratuberculosis comparable with or higher than that of rifampicin. 8-Hydroxy-N-[3-(trifluoromethyl)phenyl]- and 8-hydroxy-N-[4-(trifluoromethyl)phenyl]quinoline-2-carboxamide showed MIC=24 μM against all tested mycobacterial strains. 3-Methoxyphenyl- and 3-methylphenyl derivatives expressed MIC=27 or 29 μM also against all the tested strains. Their activity against M. avium subsp. paratuberculosis was 4-fold higher than that of rifampicin. 2-Bromophenyl- and 2-(trifluoromethyl)phenyl derivatives had MIC=23 or 24 μM against M. tuberculosis. A significant decrease of mycobacterial cell metabolism (viability of M. tuberculosis H37Ra) was observed using MTT assay. Screening of cytotoxicity of the compounds was performed using the THP-1 cells, and no significant lethal effect was observed up to tested concentration 30 μM. The structure-activity relationships are discussed.
Collapse
Affiliation(s)
- Jiri Kos
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Iveta Zadrazilova
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Eoghan Nevin
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Michal Soral
- Department of NMR Spectroscopy and Mass Spectrometry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia
| | - Tomas Gonec
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Peter Kollar
- Department of Human Pharmacology and Toxicology, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic
| | - Michal Oravec
- Global Change Research Centre AS CR, Belidla 986/4a, 603 00 Brno, Czech Republic
| | - Aidan Coffey
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Jim O'Mahony
- Department of Biological Sciences, Cork Institute of Technology, Bishopstown, Cork, Ireland
| | - Tibor Liptaj
- Department of NMR Spectroscopy and Mass Spectrometry, Faculty of Chemical and Food Technology, Slovak University of Technology in Bratislava, Radlinskeho 9, 812 37 Bratislava, Slovakia
| | - Katarina Kralova
- Institute of Chemistry, Faculty of Natural Sciences, Comenius University, Mlynska dolina Ch-2, 842 15 Bratislava, Slovakia
| | - Josef Jampilek
- Department of Chemical Drugs, Faculty of Pharmacy, University of Veterinary and Pharmaceutical Sciences, Palackeho 1/3, 612 42 Brno, Czech Republic.
| |
Collapse
|
50
|
Raja R, Kandhasamy S, Perumal PT, SubbiahPandi A. Crystal structure of 2-{[1-(4-bromo-benz-yl)-1H-1,2,3-triazol-4-yl]meth-oxy}naph-thalene-1,4-dione. Acta Crystallogr E Crystallogr Commun 2015; 71:o231-2. [PMID: 26029429 PMCID: PMC4438838 DOI: 10.1107/s2056989015004429] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 03/03/2015] [Indexed: 11/22/2022]
Abstract
In the title compound, C20H14BrN3O3, the benzene ring makes dihedral angles of 71.30 (11) and 68.95 (14)° with the naphthalene ring system and the triazole ring, respectively. The latter two ring systems are coplanar, with a dihedral angle of 2.92 (12)°. The O atoms deviate from the naphthalene ring system by 0.029 (2) and -0.051 (2) Å. In the crystal, mol-ecules are linked by C-H⋯O and C-H⋯N hydrogen bonds, forming ribbons parallel to (10-1). The ribbons are linked via C-H⋯O and π-π stacking inter-actions [centroid-centroid distance = 3.4451 (14) Å], forming slabs parallel to the bc plane.
Collapse
Affiliation(s)
- Rajamani Raja
- Department of Physics, Presidency College (Autonomous), Chennai 600 005, India
| | - Subramani Kandhasamy
- Organic Chemistry Division, CSIR Central Leather Research Institute, Chennai 600 020, India
| | - Paramasivam T. Perumal
- Organic Chemistry Division, CSIR Central Leather Research Institute, Chennai 600 020, India
| | - A. SubbiahPandi
- Department of Physics, Presidency College (Autonomous), Chennai 600 005, India
| |
Collapse
|