1
|
Matondo A, Dendera W, Isamura BK, Ngbolua KTN, Mambo HVS, Muzomwe M, Mudogo V. In silico Drug Repurposing of Anticancer Drug 5-FU and Analogues Against SARS-CoV-2 Main Protease: Molecular Docking, Molecular Dynamics Simulation, Pharmacokinetics and Chemical Reactivity Studies. Adv Appl Bioinform Chem 2022; 15:59-77. [PMID: 35996620 PMCID: PMC9391940 DOI: 10.2147/aabc.s366111] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Background Since the last COVID-19 outbreak, several approaches have been given a try to quickly tackle this global calamity. One of the well-established strategies is the drug repurposing, which consists in finding new therapeutic uses for approved drugs. Following the same paradigm, we report in the present study, an investigation of the potential inhibitory activity of 5-FU and nineteen of its analogues against the SARS-CoV-2 main protease (3CLpro). Material and Methods Molecular docking calculations were performed to investigate the binding affinity of the ligands within the active site of 3CLpro. The best binding candidates were further considered for molecular dynamics simulations for 100 ns to gain a time-resolved understanding of the behavior of the guest-host complexes. Furthermore, the profile of druggability of the best binding ligands was assessed based on ADMET predictions. Finally, their chemical reactivity was elucidated using different reactivity descriptors, namely the molecular electrostatic potential (MEP), Fukui functions and frontier molecular orbitals. Results and Discussion From the calculations performed, four candidates (compounds 14, 15, 16 and 18) show promising results with respect to the binding affinity to the target protease, 3CLpro, the therapeutic profile of druggability and safety. These compounds are maintained inside the active site of 3CLpro thanks to a variety of noncovalent interactions, especially hydrogen bonds, involving important amino acids such as GLU166, HIS163, GLY143, ASN142, HIS172, CYS145. Molecular dynamics simulations suggest that the four ligands are well trapped within the active site of the protein over a time gap of 100 ns, ligand 18 being the most retained. Conclusion In line with the findings reported herein, we recommend that further in-vitro and in-vivo investigations are carried out to shed light on the possible mechanism of pharmacological action of the proposed ligands.
Collapse
Affiliation(s)
- Aristote Matondo
- Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Washington Dendera
- Department of Chemistry, Rhodes University, Makhanda, Eastern Cape, South Africa
| | - Bienfait Kabuyaya Isamura
- Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo.,Department of Chemistry, Rhodes University, Makhanda, Eastern Cape, South Africa.,Research Center for Theoretical Chemistry and Physics in Central Africa, Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Koto-Te-Nyiwa Ngbolua
- Department of Biology, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Hilaire V S Mambo
- Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Mayaliwa Muzomwe
- Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| | - Virima Mudogo
- Department of Chemistry, University of Kinshasa, Kinshasa, Democratic Republic of the Congo
| |
Collapse
|
2
|
Beretta M, Rouchaud E, Nicolas L, Vors JP, Dröge T, Es-Sayed M, Beau JM, Norsikian S. N-Glycosylation with sulfoxide donors for the synthesis of peptidonucleosides. Org Biomol Chem 2021; 19:4285-4291. [PMID: 33885694 DOI: 10.1039/d1ob00493j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The synthesis of glycopyranosyl nucleosides modified in the sugar moiety has been less frequently explored, notably because of the lack of a reliable method to glycosylate pyrimidine bases. Herein we report a solution in the context of the synthesis of peptidonucleosides. They were obtained after glycosylation of different pyrimidine nucleobases with glucopyranosyl donors carrying an azide group at the C4 position. A methodological study involving different anomeric leaving groups (acetate, phenylsulfoxide and ortho-hexynylbenzoate) showed that a sulfoxide donor in combination with trimethylsilyl triflate as the promoter led to the best yields.
Collapse
Affiliation(s)
- Margaux Beretta
- Université Paris-Saclay, CNRS, Institut de Chimie des Substances Naturelles, UPR 2301, 91198, Gif-sur-Yvette, France.
| | | | | | | | | | | | | | | |
Collapse
|
3
|
Mekheimer RA, Hayallah AM, Moustafa MS, Al-Mousawi SM, Abd-Elmonem M, Mostafa SM, Abo Elsoud FA, Sadek KU. Microwave-assisted reactions: Efficient and versatile one-step synthesis of 8-substituted xanthines and substituted pyrimidopteridine-2,4,6,8-tetraones under controlled microwave heating. GREEN PROCESSING AND SYNTHESIS 2021; 10:201-207. [DOI: 10.1515/gps-2021-0014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Abstract
We report herein a simple and efficient one-step synthesis of 8-substituted xanthines and substituted pyrimidopteridine-2,4,6,8-tetraones via reaction of 1,3-dimethyl-5,6-diaminouracil 1 with activated double bond systems 2 assisted by controlled microwave irradiation. The obtained heterocycles are privileged biologically relevant scaffolds.
Collapse
Affiliation(s)
| | - Alaa M. Hayallah
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Deraya University , Minia , Egypt
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Assiut University , Assiut 71526 , Egypt
| | - Moustafa Sherief Moustafa
- Department of Chemistry, Faculty of Science, Kuwait University , P. O. Box 12613 , Safat 13060 , Kuwait
| | - Saleh Mohammed Al-Mousawi
- Department of Chemistry, Faculty of Science, Kuwait University , P. O. Box 12613 , Safat 13060 , Kuwait
| | - Mohamed Abd-Elmonem
- Chemistry Department, Faculty of Science, Minia University , Minia 61519 , Egypt
| | - Sara M. Mostafa
- Chemistry Department, Faculty of Science, Minia University , Minia 61519 , Egypt
| | - Fatma A. Abo Elsoud
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Deraya University , Minia , Egypt
| | - Kamal Usef Sadek
- Chemistry Department, Faculty of Science, Minia University , Minia 61519 , Egypt
| |
Collapse
|
4
|
Perković I, Beus M, Schols D, Persoons L, Zorc B. Itaconic acid hybrids as potential anticancer agents. Mol Divers 2020; 26:1-14. [PMID: 33043404 PMCID: PMC7548052 DOI: 10.1007/s11030-020-10147-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 09/28/2020] [Indexed: 12/19/2022]
Abstract
Abstract In this paper, we report the synthesis of novel hybrids 2–14 based on itaconic acid and fluoroaniline, pyridine, indole and quinoline scaffolds. Itaconic acid is a naturally occurring compound with a Michael acceptor moiety, a key structural feature in several anticancer and antiviral drugs, responsible for the covalent binding of a drug to the cysteine residue of a specific protein. Aromatic parts of the hybrids also come from the substances reported as anticancer or antiviral agents. The synthetic route employed to access the amido-ester hybrids 2–13 used monomethyl itaconate or monomethyl itaconyl chloride and corresponding amines as the starting materials. Dimers 14 and 15 with two aminoindole or mefloquine moieties were prepared from itaconic acid and corresponding amino derivative, using standard coupling conditions (HATU/DIEA). All hybrids exerted anticancer effects in vitro against almost all the tumour cell lines that were evaluated (MCF-7, HCT 116, H460, LN-229, Capan-1, DND-41, HL-60, K-562, Z-138). Solid tumour cells were, in general, more responsive than the haematological cancer cells. The MCF-7 breast adenocarcinoma cell line appeared the most sensitive. Amido-ester 12 with chloroquine core and mefloquine homodimer 15 showed the highest activity with GI50 values between 0.7 and 8.6 µM. In addition, compound 15 also exerted antiviral activity against Zika virus and Coxsackievirus B4 in low micromolar concentrations. Graphic abstract ![]()
Electronic supplementary material The online version of this article (10.1007/s11030-020-10147-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ivana Perković
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia
| | - Maja Beus
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia
| | - Dominique Schols
- Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Leentje Persoons
- Rega Institute for Medical Research, KU Leuven, 3000, Leuven, Belgium
| | - Branka Zorc
- Department of Medicinal Chemistry, Faculty of Pharmacy and Biochemistry, University of Zagreb, 10 000, Zagreb, Croatia.
| |
Collapse
|
5
|
Kollatos N, Mitsos C, Manta S, Tzioumaki N, Giannakas C, Alexouli T, Panagiotopoulou A, Schols D, Andrei G, Komiotis D. Design, Synthesis, and Biological Evaluation of Novel C5-Modified Pyrimidine Ribofuranonucleosides as Potential Antitumor or/and Antiviral Agents. Med Chem 2019; 16:368-384. [PMID: 30799795 DOI: 10.2174/1573406415666190225112950] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 02/07/2019] [Accepted: 02/07/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Nucleoside analogues are well-known antitumor, antiviral, and chemotherapeutic agents. Alterations on both their sugar and the heterocyclic parts may lead to significant changes in the spectrum of their biological activity and the degree of selective toxicity, as well as in their physicochemical properties. METHODS C5-arylalkynyl-β-D-ribofuranonucleosides 3-6, 3΄-deoxy 12-15, 3΄-deoxy-3΄-C-methyl- β-D-ribofurananucleosides 18-21 and 2΄-deoxy-β-D-ribofuranonucleosides 23-26 of uracil, were synthesized using a one-step Sonogashira reaction under microwave irradiation and subsequent deprotection. RESULTS All newly synthesized nucleosides were tested for their antitumor or antiviral activity. Moderate cytostatic activity against cervix carcinoma (HeLa), murine leukemia (L1210) and human lymphocyte (CEM) tumor cell lines was displayed by the protected 3΄-deoxy derivatives 12b,12c,12d, and the 3΄-deoxy-3΄-methyl 18a,18b,18c. The antiviral evaluation revealed appreciable activity against Coxsackie virus B4, Respiratory syncytial virus, Yellow Fever Virus and Human Coronavirus (229E) for the 3΄-deoxy compounds 12b,14, and the 3΄-deoxy-3΄-methyl 18a,18c,18d, accompanied by low cytotoxicity. CONCLUSION This report describes the total and facile synthesis of modified furanononucleosides of uracil, with alterations on both the sugar and the heterocyclic portions. Compounds 12b,14 and 18a,c,d showed noticeable antiviral activity against a series of RNA viruses and merit further biological and structural optimization investigations.
Collapse
Affiliation(s)
- Nikolaos Kollatos
- Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry, University of Thessaly, Larissa, Greece
| | - Christos Mitsos
- Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry, University of Thessaly, Larissa, Greece
| | - Stella Manta
- Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry, University of Thessaly, Larissa, Greece
| | - Niki Tzioumaki
- Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry, University of Thessaly, Larissa, Greece
| | - Christos Giannakas
- Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry, University of Thessaly, Larissa, Greece
| | - Tania Alexouli
- Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry, University of Thessaly, Larissa, Greece
| | - Aggeliki Panagiotopoulou
- Institute of Biosciences and Applications, National Centre for Scientific Research "Demokritos", Athens, Greece
| | - Dominique Schols
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Graciela Andrei
- Department of Microbiology and Immunology, Rega Institute for Medical Research, KU Leuven, Leuven, Belgium
| | - Dimitri Komiotis
- Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry, University of Thessaly, Larissa, Greece
| |
Collapse
|
6
|
Khairullina VR, Gimadieva AR, Gerchikov AY, Mustafin AG, Zarudii FS. Quantitative structure-activity relationship of the thymidylate synthase inhibitors of Mus musculus in the series of quinazolin-4-one and quinazolin-4-imine derivatives. J Mol Graph Model 2018; 85:198-211. [PMID: 30227365 DOI: 10.1016/j.jmgm.2018.09.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 07/19/2018] [Accepted: 09/02/2018] [Indexed: 02/03/2023]
Abstract
A quantitative structure-activity relationship analysis of the 2-methylquinazolin-4-one and quinazolin-4-imine derivatives, well-known antifolate thymidylate synthase (TYMS) inhibitors, has been performed in the range IC50 = 0.4÷380000.0 nmoL/L using the GUSAR 2013 program. Based on the MNA and QNA descriptors using the self-consistent regression, 6 statistically significant consensus models for predicting the IC50 numerical values have been constructed. These models demonstrate high and moderate prognostic accuracies for the training and external validation test sets, respectively. The molecular fragments of TYMS inhibitors regulating their antitumor activity are identified. The obtained data open opportunities for developing novel promising inhibitors of TYMS.
Collapse
Affiliation(s)
| | - Alfiya R Gimadieva
- Ufa Institute of Chemistry - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 prospect Oktyabrya, Ufa, 450054, Russian Federation
| | | | - Akhat G Mustafin
- Bashkir State University, 32 Z. Validi str., Ufa, 450076, Russian Federation; Ufa Institute of Chemistry - Subdivision of the Ufa Federal Research Centre of the Russian Academy of Sciences, 71 prospect Oktyabrya, Ufa, 450054, Russian Federation
| | - Felix S Zarudii
- Bashkir State Medical University, 3 Lenina str, Ufa, 450000, Russian Federation
| |
Collapse
|
7
|
Rajić Z, Beus M, Michnová H, Vlainić J, Persoons L, Kosalec I, Jampílek J, Schols D, Keser T, Zorc B. Asymmetric Primaquine and Halogenaniline Fumardiamides as Novel Biologically Active Michael Acceptors. Molecules 2018; 23:E1724. [PMID: 30011922 PMCID: PMC6100582 DOI: 10.3390/molecules23071724] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Revised: 07/10/2018] [Accepted: 07/11/2018] [Indexed: 11/17/2022] Open
Abstract
Novel primaquine (PQ) and halogenaniline asymmetric fumardiamides 4a⁻f, potential Michael acceptors, and their reduced analogues succindiamides 5a⁻f were prepared by simple three-step reactions: coupling reaction between PQ and mono-ethyl fumarate (1a) or mono-methyl succinate (1b), hydrolysis of PQ-dicarboxylic acid mono-ester conjugates 2a,b to corresponding acids 3a,b, and a coupling reaction with halogenanilines. 1-[bis(Dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-oxide hexafluorophosphate (HATU) was used as a coupling reagent along with Hünig's base. Compounds 4 and 5 were evaluated against a panel of bacteria, several Mycobacterium strains, fungi, a set of viruses, and nine different human tumor cell lines. p-Chlorofumardiamide 4d showed significant activity against Staphylococcus aureus,Streptococcus pneumoniae and Acinetobacter baumannii, but also against Candida albicans (minimum inhibitory concentration (MIC) 6.1⁻12.5 µg/mL). Together with p-fluoro and p-CF₃ fumardiamides 4b,f, compound 4d showed activity against Mycobacterium marinum and 4b,f against M. tuberculosis. In biofilm eradication assay, most of the bacteria, particularly S. aureus, showed susceptibility to fumardiamides. m-CF₃ and m-chloroaniline fumardiamides 4e and 4c showed significant antiviral activity against reovirus-1, sindbis virus and Punta Toro virus (EC50 = 3.1⁻5.5 µM), while 4e was active against coxsackie virus B4 (EC50 = 3.1 µM). m-Fluoro derivative 4a exerted significant cytostatic activity (IC50 = 5.7⁻31.2 μM). Acute lymphoblastic leukemia cells were highly susceptible towards m-substituted derivatives 4a,c,e (IC50 = 6.7⁻8.9 μM). Biological evaluations revealed that fumardiamides 4 were more active than succindiamides 5 indicating importance of Michael conjugated system.
Collapse
Affiliation(s)
- Zrinka Rajić
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Maja Beus
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Hana Michnová
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia.
| | - Josipa Vlainić
- Laboratory for Advanced Genomics, Division of Molecular Medicine, Rudjer Bošković Institute, Bijenička cesta 54, 10000 Zagreb, Croatia.
| | - Leentje Persoons
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Ivan Kosalec
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Josef Jampílek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Comenius University, Odbojárov 10, 83232 Bratislava, Slovakia.
| | - Dominique Schols
- Laboratory of Virology and Chemotherapy, Rega Institute for Medical Research, KU Leuven, Herestraat 49, 3000 Leuven, Belgium.
| | - Toma Keser
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| | - Branka Zorc
- Faculty of Pharmacy and Biochemistry, University of Zagreb, A. Kovačića 1, 10000 Zagreb, Croatia.
| |
Collapse
|
8
|
Novel 6-substituted benzoyl and non-benzoyl straight chain pyrrolo[2,3- d ]pyrimidines as potential antitumor agents with multitargeted inhibition of TS, GARFTase and AICARFTase. Eur J Med Chem 2017; 139:531-541. [DOI: 10.1016/j.ejmech.2017.08.032] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 03/25/2017] [Accepted: 08/11/2017] [Indexed: 11/21/2022]
|
9
|
Dimopoulou A, Manta S, Parmenopoulou V, Gkizis P, Coutouli-Argyropoulou E, Schols D, Komiotis D. Synthesis of novel thiopurine pyranonucleosides: evaluation of their bioactivity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2015; 34:289-308. [PMID: 25774721 DOI: 10.1080/15257770.2014.992532] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
We report the synthesis of novel thiopurine pyranonucleosides. Direct coupling of silylated 6-mercaptopurine and 6-thioguanine with the appropriate pyranoses 1a-e via Vorbrüggen nucleosidation, gave the N-9 linked mercaptopurine 2a-e and thioguanine 4a-e nucleosides, while their N-7 substituted congeners 10a-e and 7a-e, were obtained through condensation of the same acetates with 6-chloro and 2-amino-6-chloropurines, followed by subsequent thionation. Nucleosides 3a-e, 5a-e, 8a-e, and 11a-e were evaluated for their cytostatic activity in three different tumor cell proliferative assays.
Collapse
Affiliation(s)
- Athina Dimopoulou
- a Department of Biochemistry and Biotechnology, Laboratory of Bioorganic Chemistry , University of Thessaly , Larissa , Greece
| | | | | | | | | | | | | |
Collapse
|
10
|
Cortés-Ciriano I, Bender A. How Consistent are Publicly Reported Cytotoxicity Data? Large-Scale Statistical Analysis of the Concordance of Public Independent Cytotoxicity Measurements. ChemMedChem 2015; 11:57-71. [DOI: 10.1002/cmdc.201500424] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Indexed: 12/13/2022]
Affiliation(s)
- Isidro Cortés-Ciriano
- Institut Pasteur; Unité de Bioinformatique Structurale; CNRS UMR 3825; Département de Biologie Structurale et Chimie; 25, rue du Dr. Roux 75015 Paris France
| | - Andreas Bender
- Centre for Molecular Science Informatics; Department of Chemistry; University of Cambridge; Lensfield Road Cambridge CB2 1EW UK
| |
Collapse
|
11
|
Luzina EL, Popov AV. Synthesis and anticancer activity evaluation of 3,4-mono- and bicyclosubstituted N-(het)aryl trifluoromethyl succinimides. J Fluor Chem 2014; 168:121-127. [PMID: 25400294 DOI: 10.1016/j.jfluchem.2014.09.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Novel trifluoromethylated mono- and bicyclic succinimides derived from trifluoromethylmaleic anhydride were synthesized using cyclopentadiene or 2,3-dimethylbutadiene and (het)arylamines. The biological activity of these compounds was evaluated using prediction methods and experimental studies. This series of new trifluoromethyl succinimides (3a,b and 6a-c) were tested by the National Cancer Institute (NCI, Bethesda, USA) by Program NCI-60 DTP Human Tumor Cell Line Screen at a single high dose (10-5 M). Imides revealed activity on Leukemia cell lines (RPMI-8226 - myeloma cell line), Non-Small Cell Lung Cancer cell lines (A549/ATCC - lung carcinoma epithelial cells) and Renal cancer cell lines (A498 and SN12C).
Collapse
Affiliation(s)
- Elena L Luzina
- Institute of Physiologically Active Compounds, Severnyi pr. 1, Chernogolovka, Moscow region, 142432, Russia
| | - Anatoliy V Popov
- University of Pennsylvania, Perelman School of Medicine, Department of Radiology, 3620 Hamilton Walk, Philadelphia, PA 19104, USA
| |
Collapse
|
12
|
Pałasz A, Cież D. In search of uracil derivatives as bioactive agents. Uracils and fused uracils: Synthesis, biological activity and applications. Eur J Med Chem 2014; 97:582-611. [PMID: 25306174 DOI: 10.1016/j.ejmech.2014.10.008] [Citation(s) in RCA: 143] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Revised: 09/19/2014] [Accepted: 10/03/2014] [Indexed: 12/01/2022]
Abstract
This review article is an effort to summarize recent developments in researches providing uracil derivatives with promising biological potential. This article also aims to discuss potential future directions on the development of more potent and specific uracil analogues for various biological targets. Uracils are considered as privileged structures in drug discovery with a wide array of biological activities and synthetic accessibility. Antiviral and anti-tumour are the two most widely reported activities of uracil analogues however they also possess herbicidal, insecticidal and bactericidal activities. Their antiviral potential is based on the inhibition of key step in viral replication pathway resulting in potent activities against HIV, hepatitis B and C, the herpes viruses etc. Uracil derivatives such as 5-fluorouracil or 5-chlorouracil were the first pharmacological active derivatives to be generated. Poor selectivity limits its therapeutic application, resulting in high incidences of gastrointestinal tract or central nervous toxicity. Numerous modifications of uracil structure have been performed to tackle these problems resulting in the development of derivatives exhibiting better pharmacological and pharmacokinetic properties including increased bioactivity, selectivity, metabolic stability, absorption and lower toxicity. Researches of new uracils and fused uracil derivatives as bioactive agents are related with modifications of substituents at N(1), N(3), C(5) and C(6) positions of pyrimidine ring. This review is an endeavour to highlight the progress in the chemistry and biological activity of the uracils, predominately after the year 2000. In particular are presented synthetic methods and biological study for such analogues as: 5-fluorouracil or 5-chlorouracil derivatives, tegafur analogues, arabinopyranonucleosides of uracil, glucopyranonucleosides of uracil, liposidomycins, caprazamycins or tunicamycins, tritylated uridine analogues, nitro or cyano derivatives of uracil, uracil-quinazolinone, uracil-indole or uracil-isatin-conjugates, pyrimidinophanes containing one or two uracil units and nitrogen atoms in bridging polymethylene chains etc. In this review is also discussed synthesis and biological activity of fused uracils having uracil ring annulated with other heterocyclic ring.
Collapse
Affiliation(s)
- Aleksandra Pałasz
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3 St, 30-060 Kraków, Poland.
| | - Dariusz Cież
- Department of Organic Chemistry, Faculty of Chemistry, Jagiellonian University, Ingardena 3 St, 30-060 Kraków, Poland
| |
Collapse
|
13
|
Chioua M, Samadi A, Postel D, Balzarini J, Marco-Contelles J. Synthesis of 5-Amino-3,3-dimethyl-7-phenyl-3 H-[1,2]oxathiolo[4,3- b]pyridine-6-carbonitrile 1,1-Dioxides. J Heterocycl Chem 2014. [DOI: 10.1002/jhet.1678] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Mourad Chioua
- Laboratorio de Médica y Química Computacional (IQOG, CSIC); 3, Juan de la Cierva 28006-Madrid Spain
| | - Abdelouahid Samadi
- Laboratorio de Médica y Química Computacional (IQOG, CSIC); 3, Juan de la Cierva 28006-Madrid Spain
| | - Denis Postel
- Laboratoire des Glucides (UMR 6219); Université de Picardie Jules Verne; 33 rue Saint Leu 80039 Amiens France
| | - Jan Balzarini
- Rega Institute for Medical Research; KU Leuven; B-3000 Leuven Belgium
| | - José Marco-Contelles
- Laboratorio de Médica y Química Computacional (IQOG, CSIC); 3, Juan de la Cierva 28006-Madrid Spain
| |
Collapse
|
14
|
Musumeci D, Irace C, Santamaria R, Montesarchio D. Trifluoromethyl derivatives of canonical nucleosides: synthesis and bioactivity studies. MEDCHEMCOMM 2013. [DOI: 10.1039/c3md00159h] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
15
|
Manta S, Parmenopoulou V, Kiritsis C, Dimopoulou A, Kollatos N, Papasotiriou I, Balzarini J, Komiotis D. Stereocontrolled facile synthesis and biological evaluation of (3'S) and (3'R)-3'-amino (and Azido)-3'-deoxy pyranonucleosides. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2012; 31:522-35. [PMID: 22849646 DOI: 10.1080/15257770.2012.696759] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
This article describes the synthesis of (3 'S) and (3 'R)-3 '-amino-3 '-deoxy pyranonucleosides and their precursors (3 'S) and (3 'R)-3 '-azido-3 '-deoxy pyranonucleosides. Azidation of 1,2:5,6-di-O-isopropylidene-3-O-toluenesulfonyl-α-D-allofuranose followed by hydrolysis and subsequent acetylation afforded 3-azido-3-deoxy-1,2,4,6-tetra-O-acetyl-D-glucopyranose, which upon coupling with the proper silylated bases, deacetylation, and catalytic hydrogenation, obtained the target 3 '-amino-3 '-deoxy-β-D-glucopyranonucleosides. The desired 1-(3 '-amino-3 '-deoxy-β-D-allopyranosyl)5-fluorouracil was readily prepared from the suitable imidazylate sugar after azidation followed by a protection/deprotection sequence and reduction of the unprotected azido precursor. No antiviral activity was observed for the novel nucleosides. Moderate cytostatic activity was recorded for the 5-fluorouracil derivatives.
Collapse
Affiliation(s)
- Stella Manta
- Laboratory of Bio-Organic Chemistry Department of Biochemistry and Biotechnology, University of Thessaly, Larissa, Greece
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Kiritsis C, Manta S, Parmenopoulou V, Dimopoulou A, Kollatos N, Papasotiriou I, Balzarini J, Komiotis D. Stereocontrolled synthesis of 4′-C-cyano and 4′-C-cyano-4′-deoxy pyrimidine pyranonucleosides as potential chemotherapeutic agents. Carbohydr Res 2012; 364:8-14. [DOI: 10.1016/j.carres.2012.10.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 10/15/2012] [Accepted: 10/16/2012] [Indexed: 12/12/2022]
|
17
|
Belostotskii AM, Genizi E, Hassner A. Essential reactive intermediates in nucleoside chemistry: cyclonucleoside cations. Org Biomol Chem 2012; 10:6624-8. [PMID: 22805739 DOI: 10.1039/c2ob25868d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
DFT-based modeling as well as experimental examination of model keto nucleosides have revealed that high susceptibility of these compounds to acids is due to formation of intermediate cyclonucleoside cations of low energy. Theoretically established chemical structures of these previously overlooked intermediates explain the reaction courses for a cluster of nucleoside reactions.
Collapse
|
18
|
Perković I, Tršinar S, Žanetić J, Kralj M, Martin-Kleiner I, Balzarini J, Hadjipavlou-Litina D, Katsori AM, Zorc B. Novel 1-acyl-4-substituted semicarbazide derivatives of primaquine − synthesis, cytostatic, antiviral and antioxidative studies. J Enzyme Inhib Med Chem 2012; 28:601-10. [DOI: 10.3109/14756366.2012.663366] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Ivana Perković
- Faculty of Pharmacy and Biochemistry, University of Zagreb,
Zagreb, Croatia
| | - Sara Tršinar
- Faculty of Pharmacy and Biochemistry, University of Zagreb,
Zagreb, Croatia
| | - Jelena Žanetić
- Faculty of Pharmacy and Biochemistry, University of Zagreb,
Zagreb, Croatia
| | - Marijeta Kralj
- Division of Molecular Medicine, Rudjer Bošković Institute,
Zagreb, Croatia
| | | | - Jan Balzarini
- Rega Institute for Medical Research, Katholieke Universiteit Leuven,
Leuven, Belgium
| | - Dimitra Hadjipavlou-Litina
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki,
Thessaloniki, Greece
| | - Anna Maria Katsori
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki,
Thessaloniki, Greece
| | - Branka Zorc
- Faculty of Pharmacy and Biochemistry, University of Zagreb,
Zagreb, Croatia
| |
Collapse
|
19
|
New sorafenib derivatives: synthesis, antiproliferative activity against tumour cell lines and antimetabolic evaluation. Molecules 2012; 17:1124-37. [PMID: 22269830 PMCID: PMC6268433 DOI: 10.3390/molecules17011124] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2011] [Revised: 01/01/2012] [Accepted: 01/05/2012] [Indexed: 01/07/2023] Open
Abstract
Sorafenib is a relatively new cytostatic drug approved for the treatment of renal cell and hepatocellular carcinoma. In this report we describe the synthesis of sorafenib derivatives 4a–e which differ from sorafenib in their amide part. A 4-step synthetic pathway includes preparation of 4-chloropyridine-2-carbonyl chloride hydrochloride (1), 4-chloro-pyridine-2-carboxamides 2a–e, 4-(4-aminophenoxy)-pyridine-2-carboxamides 3a–e and the target compounds 4-[4-[[4-chloro-3-(trifluoromethyl)phenyl]carbamoylamino]-phenoxy]-pyridine-2-carboxamides 4a–e. All compounds were fully chemically characterized and evaluated for their cytostatic activity against a panel of carcinoma, lymphoma and leukemia tumour cell lines. In addition, their antimetabolic potential was investigated as well. The most prominent antiproliferative activity was obtained for compounds 4a–e (IC50 = 1-4.3 μmol·L−1). Their potency was comparable to the potency of sorafenib, or even better. The compounds inhibited DNA, RNA and protein synthesis to a similar extent and did not discriminate between tumour cell lines and primary fibroblasts in terms of their anti-proliferative activity.
Collapse
|
20
|
Tsoukala E, Manta S, Tzioumaki N, Kiritsis C, Komiotis D. Keto-fluorothiopyranosyl nucleosides: a convenient synthesis of 2- and 4-keto-3-fluoro-5-thioxylopyranosyl thymine analogs. Carbohydr Res 2011; 346:2011-5. [DOI: 10.1016/j.carres.2011.05.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Revised: 05/09/2011] [Accepted: 05/12/2011] [Indexed: 11/25/2022]
|