1
|
Li J, Zhang Z, Liu H, Qu X, Yin X, Chen L, Guo N, Wang C, Zhang Z. Effects of continuous intravenous infusion with propofol on intestinal metabolites in rats. Biomed Rep 2024; 20:25. [PMID: 38169795 PMCID: PMC10758916 DOI: 10.3892/br.2023.1713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 05/18/2023] [Indexed: 01/05/2024] Open
Abstract
Microbial metabolites play an important role in regulating intestinal homeostasis and immune responses. Propofol is a common anesthetic in clinic, but it is not clear whether it affects intestinal metabolites in rats. Tail vein puncture was performed after adaptive feeding for 1 month in eight 2-month-old rats and they were given continuous intravenous infusion of propofol for 3 h. The feces of rats were divided into different groups based on time periods, with before and after anesthesia with propofol on days 1, 3 and 7 labeled as groups P, A1, A3 and A7, respectively. The effect of continuous intravenous infusion with propofol on rat fecal metabolites was determined using the non-targeted metabolomics technique gas chromatography coupled with a time-of-flight mass spectrometer analysis. The types and contents of metabolites in rat feces were changed after continuous intravenous infusion with propofol, but the changes were not statistically significant. The contents of the metabolites 3-hydroxyphenylacetic acid and palmitic acid increased from day 3 to 7, and it was shown that the two metabolites were positively correlated at a statistically significant level. Linoleic acid decreased to its lowest level on day 3, and it returned to pre-anesthesia level on day 7. At the same time, linoleic acid metabolism was a metabolic pathway that was co-enriched 7 days after infusion with propofol. Spearman correlation analysis showed that there was significant correlation between some differential metabolites and differential microorganisms. It was observed that zymosterol 1, cytosin and elaidic acid were negatively correlated with Alloprevotella in the A3 vs. P group. In the A7 vs. P group, cortexolone 3 and coprostan-3-one were positively correlated with Faecalibacterium, whilst aconitic acid was negatively correlated with it. In conclusion, the present study revealed statistically insignificant effects of continuous intravenous propofol on the intestinal metabolites in rats.
Collapse
Affiliation(s)
- Jiaying Li
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Zhongjie Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Hongyu Liu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Xutong Qu
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Xueqing Yin
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Lu Chen
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Nana Guo
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Changsong Wang
- Department of Critical Care Medicine, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| | - Zhaodi Zhang
- Department of Anesthesiology, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang 150081, P.R. China
| |
Collapse
|
2
|
Sokol MB, Sokhraneva VA, Groza NV, Mollaeva MR, Yabbarov NG, Chirkina MV, Trufanova AA, Popenko VI, Nikolskaya ED. Thymol-Modified Oleic and Linoleic Acids Encapsulated in Polymeric Nanoparticles: Enhanced Bioactivity, Stability, and Biomedical Potential. Polymers (Basel) 2023; 16:72. [PMID: 38201737 PMCID: PMC10781094 DOI: 10.3390/polym16010072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/20/2023] [Accepted: 12/22/2023] [Indexed: 01/12/2024] Open
Abstract
Unsaturated fatty acids, such as oleic acid (OA) and linoleic acid (LA), are promising antimicrobial and cytostatic agents. We modified OA and LA with thymol (TOA and TLA, respectively) to expand their bioavailability, stability, and possible applications, and encapsulated these derivatives in polymeric nanoparticles (TOA-NPs and TLA-NPs, respectively). Prior to synthesis, we performed mathematical simulations with PASS and ADMETlab 2.0 to predict the biological activity and pharmacokinetics of TOA and TLA. TOA and TLA were synthesized via esterification in the presence of catalysts. Next, we formulated nanoparticles using the single-emulsion solvent evaporation technique. We applied dynamic light scattering, Uv-vis spectroscopy, release studies under gastrointestinal (pH 1.2-6.8) and blood environment simulation conditions (pH 7.4), and in vitro biological activity testing to characterize the nanoparticles. PASS revealed that TOA and TLA have antimicrobial and anticancer therapeutic potential. ADMETlab 2.0 provided a rationale for TOA and TLA encapsulation. The nanoparticles had an average size of 212-227 nm, with a high encapsulation efficiency (71-93%), and released TOA and TLA in a gradual and prolonged mode. TLA-NPs possessed higher antibacterial activity against B. cereus and S. aureus and pronounced cytotoxic activity against MCF-7, K562, and A549 cell lines compared to TOA-NPs. Our findings expand the biomedical application of fatty acids and provide a basis for further in vivo evaluation of designed derivatives and formulations.
Collapse
Affiliation(s)
- Maria B. Sokol
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Vera A. Sokhraneva
- N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia; (V.A.S.); (N.V.G.)
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 11999 Moscow, Russia;
| | - Nataliya V. Groza
- N.A. Preobrazhensky Department of Chemistry and Technology of Biologically Active Compounds, Medicinal and Organic Chemistry, M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, 119571 Moscow, Russia; (V.A.S.); (N.V.G.)
| | - Mariia R. Mollaeva
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Nikita G. Yabbarov
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Margarita V. Chirkina
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Anna A. Trufanova
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| | - Vladimir I. Popenko
- Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 11999 Moscow, Russia;
| | - Elena D. Nikolskaya
- N.M. Emanuel Institute of Biochemical Physics of Russian Academy of Sciences, 119334 Moscow, Russia; (M.R.M.); (N.G.Y.); (M.V.C.); (A.A.T.)
| |
Collapse
|
3
|
Khan AA, Ahmad R, Alanazi AM, Alsaif N, Abdullah M, Wani TA, Bhat MA. Determination of anticancer potential of a novel pharmacologically active thiosemicarbazone derivative in colorectal cancer cell lines. Saudi Pharm J 2022; 30:815-824. [PMID: 35812146 PMCID: PMC9257852 DOI: 10.1016/j.jsps.2022.03.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 03/18/2022] [Indexed: 12/16/2022] Open
Abstract
Thiosemicarbazones have received noteworthy attention due to their numerous pharmacological activities. Various thiosemicarbazone derivatives have been reported to play a key role as potential chemotherapeutic agents for the management of cancer. Herein, we aimed to establish the anticancer efficacy of novel thiosemicarbazone derivative C4 against colon cancer in vitro. The MTT viability assay identified C4 as a promising anticancer compound in a panel of cancer cell lines with the most potent activity against colon cancer cells. Further, anticancer potential of C4 was evaluated against HT-29 and SW620 colon cancer cell lines considering the factors like cell adhesion and migration, oxidative stress, cell cycle arrest, and apoptosis. Our results showed that C4 significantly inhibited the migration and adhesion of colon cancer cells. C4 significantly increased the intracellular reactive oxygen species (ROS) and induced apoptotic cell death. Cell cycle analysis revealed that C4 interfered in the cell cycle distribution and arrested the cells at the G2/M phase of the cell cycle. Consistent with these results C4 also down-regulated the Bcl-XL and Bcl-2 and up-regulated the caspase-3 expression. These findings introduced C4 as the potential anticancer agent against colon cancer.
Collapse
Affiliation(s)
- Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
- Corresponding authors.
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
- Corresponding authors.
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
| | - Nawaf Alsaif
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
| | - Maha Abdullah
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
| | - Tanveer A. Wani
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
| | - Mashooq A. Bhat
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, P.O. Box 2457, Saudi Arabia
| |
Collapse
|
4
|
Khan AA, Alanazi AM, Alsaif N, Al-anazi M, Sayed AY, Bhat MA. Potential cytotoxicity of silver nanoparticles: Stimulation of autophagy and mitochondrial dysfunction in cardiac cells. Saudi J Biol Sci 2021; 28:2762-2771. [PMID: 34025162 PMCID: PMC8117033 DOI: 10.1016/j.sjbs.2021.03.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 03/06/2021] [Accepted: 03/07/2021] [Indexed: 12/20/2022] Open
Abstract
In the present study, we elucidated the potential cytotoxicity of AgNPs in H9c2 rat cardiomyoblasts and assessed the underlying toxicological manifestations responsible for their toxicity thereof. The results indicated that the exposure of AgNPs to H9c2 cardiac cells decreased cell viability in a dose-dependent manner and caused cell cycle arrest followed by induction of apoptosis. The AgNPs treated cardiac cells showed a generation of reactive oxygen species (ROS) and mitochondrial dysfunction where mitochondrial ATP was reduced and the expression of AMPK1α increased. AgNPs also induced ROS-mediated autophagy in H9c2 cells. There was a significant time-dependent increase in intracellular levels of Atg5, Beclin1, and LC3BII after exposure to AgNPs, signifying the autophagic response in H9c2 cells. More importantly, the addition of N-acetyl-L-cysteine (NAC) inhibited autophagy and significantly reduced the cytotoxicity of AgNPs in H9c2 cells. The study highlights the prospective toxicity of AgNPs on cardiac cells, collectively signifying a potential health risk.
Collapse
Affiliation(s)
- Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Amer M. Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Nawaf Alsaif
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad Al-anazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Ahmed Y.A. Sayed
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mashooq Ahmad Bhat
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
5
|
Dimitrov IV, Suonio EEK. Syntheses of Analogues of Propofol: A Review. SYNTHESIS-STUTTGART 2020. [DOI: 10.1055/s-0040-1707287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
AbstractPropofol (2,6-diisopropylphenol) is an intravenous sedative/hypnotic agent that is used extensively for introduction and maintenance of general anaesthesia, sedation of critically ill patients and procedural sedation (e.g., endoscopy). Propofol has a rapid onset and offset of action and shows only minimal accumulation upon prolonged use. Propofol is only sparingly soluble in water and is currently marketed in 10% soybean oil-based lipid emulsion. Propofol’s anaesthetic properties were discovered over forty years ago, and it has been in clinical use for over thirty years. The main use of propofol remains as an anaesthetic but, over the years, analogues have been developed with varying properties from anticancer, anticonvulsant and antioxidant. In addition, large synthetic efforts have been made towards improving propofol’s water-solubility, its activity, and elucidating its structure–activity relationship and exact mechanism of action have been made. This review provides an overview of the research pertaining to propofol-like molecules and covers the efforts of synthetic chemists towards propofol analogues over the last 40 years.1 Introduction2 History3 Early Work4 Improving Water Solubility5 The Importance of the Phenol6 Exploring the Structure–Activity Relationship and Attempts to Improve Activity7 Anticancer Activity8 Anticonvulsant Properties9 Antioxidant Activity10 Photoactive Labelling to Elucidate Mechanism of Action11 Photoregulation12 Conclusion
Collapse
Affiliation(s)
- Ivaylo V. Dimitrov
- Auckland Cancer Society Research Centre, School of Medical Sciences, University of Auckland
| | | |
Collapse
|
6
|
Fattahi N, Shahbazi MA, Maleki A, Hamidi M, Ramazani A, Santos HA. Emerging insights on drug delivery by fatty acid mediated synthesis of lipophilic prodrugs as novel nanomedicines. J Control Release 2020; 326:556-598. [PMID: 32726650 DOI: 10.1016/j.jconrel.2020.07.012] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 07/09/2020] [Accepted: 07/10/2020] [Indexed: 12/25/2022]
Abstract
Many drug molecules that are currently in the market suffer from short half-life, poor absorption, low specificity, rapid degradation, and resistance development. The design and development of lipophilic prodrugs can provide numerous benefits to overcome these challenges. Fatty acids (FAs), which are lipophilic biomolecules constituted of essential components of the living cells, carry out many necessary functions required for the development of efficient prodrugs. Chemical conjugation of FAs to drug molecules may change their pharmacodynamics/pharmacokinetics in vivo and even their toxicity profile. Well-designed FA-based prodrugs can also present other benefits, such as improved oral bioavailability, promoted tumor targeting efficiency, controlled drug release, and enhanced cellular penetration, leading to improved therapeutic efficacy. In this review, we discuss diverse drug molecules conjugated to various unsaturated FAs. Furthermore, various drug-FA conjugates loaded into various nanostructure delivery systems, including liposomes, solid lipid nanoparticles, emulsions, nano-assemblies, micelles, and polymeric nanoparticles, are reviewed. The present review aims to inspire readers to explore new avenues in prodrug design based on the various FAs with or without nanostructured delivery systems.
Collapse
Affiliation(s)
- Nadia Fattahi
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran
| | - Mohammad-Ali Shahbazi
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Aziz Maleki
- Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mehrdad Hamidi
- Trita Nanomedicine Research Center (TNRC), Trita Third Millennium Pharmaceuticals, 45331-55681 Zanjan, Iran; Department of Pharmaceutical Nanotechnology, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran; Zanjan Pharmaceutical Nanotechnology Research Center (ZPNRC), Zanjan University of Medical Sciences, Zanjan, Iran.
| | - Ali Ramazani
- Department of Chemistry, Faculty of Science, University of Zanjan, P.O. Box 45195-313, Zanjan, Iran; Research Institute of Modern Biological Techniques (RIMBT), University of Zanjan, P.O. Box 45195-313, Zanjan, Iran
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland; Helsinki Institute of Life Science (HiLIFE), Faculty of Pharmacy, University of Helsinki, Helsinki FI-00014, Finland.
| |
Collapse
|
7
|
Zhou D, Wang L, Cui Q, Iftikhar R, Xia Y, Xu P. Repositioning Lidocaine as an Anticancer Drug: The Role Beyond Anesthesia. Front Cell Dev Biol 2020; 8:565. [PMID: 32766241 PMCID: PMC7379838 DOI: 10.3389/fcell.2020.00565] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
While cancer treatment has improved dramatically, it has also encountered many critical challenges, such as disease recurrence, metastasis, and drug resistance, making new drugs with novel mechanisms an urgent clinical need. The term “drug repositioning,” also known as old drugs for new uses, has emerged as one practical strategy to develop new anticancer drugs. Anesthetics have been widely used in surgical procedures to reduce the excruciating pain. Lidocaine, one of the most-used local anesthetics in clinical settings, has been found to show multi-activities, including potential in cancer treatment. Growing evidence shows that lidocaine may not only work as a chemosensitizer that sensitizes other conventional chemotherapeutics to certain resistant cancer cells, but also could suppress cancer cells growth by single use at different doses or concentrations. Lidocaine could suppress cancer cell growth in vitro and in vivo via multiple mechanisms, such as regulating epigenetic changes and promoting pro-apoptosis pathways, as well as regulating ABC transporters, metastasis, and angiogenesis, etc., providing valuable information for its further application in cancer treatment and for new drug discovery. In addition, lidocaine is now under clinical trials to treat certain types of cancer. In the current review, we summarize the research and analyze the underlying mechanisms, and address key issues in this area.
Collapse
Affiliation(s)
- Daipeng Zhou
- Department of Anesthesiology, Pinghu First People's Hospital, Jiaxing, China
| | - Lei Wang
- Department of Anesthesiology, Pinghu First People's Hospital, Jiaxing, China
| | - Qingbin Cui
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Ryma Iftikhar
- College of Pharmacy and Health Sciences, St. John's University, Queens, NY, United States
| | - Yanfei Xia
- Department of Anesthesiology, Zhejiang Hospital, Hangzhou, China
| | - Peng Xu
- Department of Anesthesiology, Zhejiang Hospital, Hangzhou, China
| |
Collapse
|
8
|
Serini S, Cassano R, Trombino S, Calviello G. Nanomedicine-based formulations containing ω-3 polyunsaturated fatty acids: potential application in cardiovascular and neoplastic diseases. Int J Nanomedicine 2019; 14:2809-2828. [PMID: 31114196 PMCID: PMC6488162 DOI: 10.2147/ijn.s197499] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Omega-3 polyunsaturated fatty acids (ω-3 PUFAs) are dietary factors involved in the prevention of cardiovascular, inflammatory, and neoplastic diseases. A multidisciplinary approach – based on recent findings in nutritional science, lipid biochemistry, biotechnology, and biology of inflammation and cancer – has been recently employed to develop ω-3 PUFA-containing nanoformulations with an aim to protect these fatty acids from degradation, increase their bioavailability and delivery to target tissues, and, thus, enhance their bioactivity. In some cases, these nanoformulations were designed to administer ω-3 PUFAs in combination with other nutraceuticals or conventional/innovative drugs. The aim of this strategy was to increase the activities of the compounds contained in the nanoformulation and to reduce the adverse effects often induced by drugs. We herein analyze the results of papers evaluating the potential use of ω-3 PUFA-containing nanomaterials in fighting cardiovascular diseases and cancer. Future directions in this field of research are also provided.
Collapse
Affiliation(s)
- Simona Serini
- Institute of General Pathology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy, .,Fondazione Policlinico Universitario A, Gemelli 00168 Roma, Italy,
| | - Roberta Cassano
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, 87036 Cosenza, Italy,
| | - Sonia Trombino
- Department of Pharmacy, Health and Nutritional Sciences, Università della Calabria, 87036 Cosenza, Italy,
| | - Gabriella Calviello
- Institute of General Pathology, Università Cattolica del Sacro Cuore, 00168 Roma, Italy, .,Fondazione Policlinico Universitario A, Gemelli 00168 Roma, Italy,
| |
Collapse
|
9
|
Khojastehfard M, Dolatkhah H, Somi MH, Nazari Soltan Ahmad S, Estakhri R, Sharifi R, Naghizadeh M, Rahmati-Yamchi M. The Effect of Oral Administration of PUFAs on the Matrix Metalloproteinase Expression in Gastric Adenocarcinoma Patients Undergoing Chemotherapy. Nutr Cancer 2019; 71:444-451. [PMID: 30616380 DOI: 10.1080/01635581.2018.1506494] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Gastric cancer is the third-leading cause of cancer-related mortality and the fifth most common cancer globally. Polyunsaturated fatty acids (PUFAs) are considered as functional ingredients that improve the efficacy of chemotherapeutic drugs. The aim of this study is to investigate the effect of PUFAs administration on matrix metalloproteinases (MMPs). METHODS This study was designed as a randomized, double-blind trial. Thirty-four newly diagnosed patients with gastric cancer were randomly divided into two groups: control group (n = 17) and case group (n =17). Both groups received the same dose (75 mg/m2) of cisplatin. Control group received cisplatin plus placebo and the case group received cisplatin plus PUFAs [3600 mg/day, for three courses (each course included 3 weeks)]. The mRNA and protein expression of MMPs determined by real-time polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC), respectively. RESULTS The relative gene expression of MMP-1 and MMP-9 was significantly lower in case group than control. The protein expression of MMP-1 and MMP-9 was significantly lower in case group than control. CONCLUSION According to the results of this study, PUFAs reduced the expression of MMPs in gastric cancer cells. It seems that PUFAs may have an inhibitory effect on invasion and metastasis of gastric cancer cells.
Collapse
Affiliation(s)
- Mehran Khojastehfard
- a Department of Clinical Biochemistry, Faculty of Medicine , Tabriz university of Medical Sciences , Tabriz , Iran.,b Liver and Gastrointestinal Disease Research Center , Tabriz University of Medical Sciences , Tabriz , East-Azerbaijan , Iran
| | - Homayun Dolatkhah
- a Department of Clinical Biochemistry, Faculty of Medicine , Tabriz university of Medical Sciences , Tabriz , Iran
| | - Mohammad-Hossein Somi
- a Department of Clinical Biochemistry, Faculty of Medicine , Tabriz university of Medical Sciences , Tabriz , Iran
| | - Saeed Nazari Soltan Ahmad
- a Department of Clinical Biochemistry, Faculty of Medicine , Tabriz university of Medical Sciences , Tabriz , Iran
| | - Rasoul Estakhri
- c Department of Pathology, Faculty of Medicine , Tabriz University of Medical Sciences , Tabriz , East-Azerbaijan , Iran
| | - Rasoul Sharifi
- d Department of Molecular Biology, Faculty of Science , Islamic Azad University , Ahar Branch , Iran
| | - Mohsen Naghizadeh
- e Department of Clinical Biochemistry, School of Medicine , Tehran University of Medical Sciences , Tehran , Iran
| | - Mohammad Rahmati-Yamchi
- a Department of Clinical Biochemistry, Faculty of Medicine , Tabriz university of Medical Sciences , Tabriz , Iran.,b Liver and Gastrointestinal Disease Research Center , Tabriz University of Medical Sciences , Tabriz , East-Azerbaijan , Iran
| |
Collapse
|
10
|
Synthesis and anticancer activity of long chain substituted 1,3,4-oxadiazol-2-thione, 1,2,4-triazol-3-thione and 1,2,4-triazolo[3,4-b]-1,3,4-thiadiazine derivatives. ARAB J CHEM 2017. [DOI: 10.1016/j.arabjc.2014.01.015] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
11
|
Lu X, Ding X, Jing L. Effect of Mechanism of Action of Different ω-6/ω-3 Polyunsaturated Fatty Acids Ratio on the Growth of Endometrial Carcinoma Mice. Cell Biochem Biophys 2016; 71:1671-6. [PMID: 25534488 DOI: 10.1007/s12013-014-0389-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
To explore the effect and mechanism of action of different ω-6/ω-3 polyunsaturated fatty acids (PUFAs) ratio on the expression of AKT and mTOR in mice bearing endometrial carcinoma. Once the human endometrial carcinoma xenograft models were successfully established, 40 BALB/C mice were randomized into five groups: group A (ω-6 PUFAs), group B (10:1 ω-6/ω-3 PUFAs), group C (control group), group D (1:1 ω-6/ω-3 PUFAs), and group E (ω-3 PUFAs). Six weeks post-treatment, mice were sacrificed and the xenograft tissues were harvested for immunohistochemical SP analysis of AKT and mTOR expression. AKT and mTOR mRNA expression was determined by reverse transcription polymerase chain reaction. Group A and group B had the highest positive expression of AKT and mTOR, with increased mRNA expression. Group D and group E had the lowest positive expression of AKT and mTOR, with decreased mRNA expression. There was a positive correlation between the expression of AKT and that of mTOR (r = 0.92). Thus, ω-6/ω-3 PUFAs in different proportions are associated with the mRNA expression of AKT and mTOR in the tissues of mouse xenograft model of human endometrial cancer.
Collapse
Affiliation(s)
- Xiaoyuan Lu
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Xuzhou Medical College, No.99 Huaihai West Road, Xuzhou, 221000, Jiangsu, China.
| | - Xuan Ding
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Xuzhou Medical College, No.99 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| | - Li Jing
- Department of Gynaecology and Obstetrics, Affiliated Hospital of Xuzhou Medical College, No.99 Huaihai West Road, Xuzhou, 221000, Jiangsu, China
| |
Collapse
|
12
|
Synthesis of Biodegradable Pyrazole, Pyran, Pyrrole, Pyrimidine and Chromene Derivatives having Medical and Surface Activities. J SURFACTANTS DETERG 2016. [DOI: 10.1007/s11743-016-1881-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
13
|
Khan AA, Alanazi AM, Jabeen M, Hassan I, Bhat MA. Targeted nano-delivery of novel omega-3 conjugate against hepatocellular carcinoma: Regulating COX-2/bcl-2 expression in an animal model. Biomed Pharmacother 2016; 81:394-401. [PMID: 27261618 DOI: 10.1016/j.biopha.2016.04.033] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2015] [Revised: 04/14/2016] [Accepted: 04/17/2016] [Indexed: 12/30/2022] Open
Abstract
The present approach enumerates the effectiveness of tuftsin tagged nano-liposome for the cytosolic transport of 2,6-di-isopropylphenol-linolenic acid conjugate against liver cancer in mice. Initially, the conjugate in its free form was examined for anticancer potential on HepG2 liver cancer cells. Induction of apoptosis and suppression of migration and adhesion of HepG2 cells confirmed the effectiveness of conjugate as an anticancer agent. After this, role of the conjugate entrapped in a nano-carrier was evaluated in animal model. The nano-formulation comprising of conjugate bearing tuftsin tagged liposome was firsly characterized and then its therapeutic effect was determined. The nano-formulation had 100-130nm size nanoparticles and showed sustained release of the conjugate in the surrounding milieu. The nano-formulation distinctly reduced the expression of COX-2, an important molecule that is vastly expressed in hepatocellular carcinoma. The utilization of in-house engineered nano-formulation was also successful in significantly up-regulating Bax and down-regulating bcl-2 gene expression eventually helping in better survival of treated mice. Histopathological analysis also revealed positive recovery of the general architecture and the violent death of cancer cells by apoptosis at tumor specific site. The site specific delivery of conjugate entrapped in tuftsin tagged liposomes was highly safe as well as efficaceous. Nano-formulation based approach showed a visible chemotherapeutic effect on liver cancer progression in experimental mice thereby making it a potential candidate for treatment of liver cancer in clinical settings.
Collapse
Affiliation(s)
- Azmat Ali Khan
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| | - Amer M Alanazi
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mumtaz Jabeen
- Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India
| | - Iftekhar Hassan
- Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mashooq Ahmad Bhat
- Pharmaceutical Biotechnology Laboratory, Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
14
|
Yasa SR, Kaki SS, Rao BB, Jain N, Penumarthy V. Synthesis, characterization and evaluation of antiproliferative activity of diisopropylphenyl esters of fatty acids from selected oils. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1564-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
15
|
Singh M, Kanoujia J, Singh P, Parashar P, Arya M, Tripathi CB, Sinha VR, Saraf SA. Development of an α-linolenic acid containing a soft nanocarrier for oral delivery-part II: buccoadhesive gel. RSC Adv 2016. [DOI: 10.1039/c6ra20896g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Development and evaluation of a novel buccoadhesive gel containing microemulsion to enhance the permeation and bioavailability of simvastatin.
Collapse
Affiliation(s)
- Mahendra Singh
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Jovita Kanoujia
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Pooja Singh
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Poonam Parashar
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Malti Arya
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Chandra Bhushan Tripathi
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| | - Vivek R. Sinha
- University Institute of Pharmaceutical Sciences
- Panjab University
- Chandigarh-160014 (UT)
- India
| | - Shubhini A. Saraf
- Department of Pharmaceutical Sciences
- Babasaheb Bhimrao Ambedkar University (A Central University) Vidya Vihar
- Lucknow-226025
- India
| |
Collapse
|
16
|
Reddy YS, Kaki SS, Rao BB, Jain N, Vijayalakshmi P. Study on Synthesis, Characterization and Antiproliferative Activity of Novel Diisopropylphenyl Esters of Selected Fatty Acids. J Oleo Sci 2016; 65:81-9. [DOI: 10.5650/jos.ess15151] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Yasa Sathyam Reddy
- Centre for Lipid Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT)
| | - Shiva Shanker Kaki
- Centre for Lipid Research, CSIR-Indian Institute of Chemical Technology (CSIR-IICT)
| | - Bala Bhaskara Rao
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT)
| | - Nishant Jain
- Centre for Chemical Biology, CSIR-Indian Institute of Chemical Technology (CSIR-IICT)
| | | |
Collapse
|
17
|
Venepally V, Prasad RBN, Poornachandra Y, Kumar CG, Jala RCR. Synthesis of novel ethyl 1-ethyl-6-fluoro-7-(fatty amido)-1,4-dihydro-4-oxoquinoline-3-carboxylate derivatives and their biological evaluation. Bioorg Med Chem Lett 2015; 26:613-617. [PMID: 26646219 DOI: 10.1016/j.bmcl.2015.11.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 10/30/2015] [Accepted: 11/19/2015] [Indexed: 10/22/2022]
Abstract
A series of novel ethyl 1-ethyl-6-fluoro-7-(fatty amido)-1,4-dihydro-4-oxoquinoline-3-carboxylate derivatives were prepared through multistep synthesis. The key step in the synthesis was to obtain the C-7 fatty amide derivative. The azide was selectively formed at C-7 position using sodium azide at 60°C. Subsequently, the azide was reduced under mild conditions using zinc and ammonium chloride to form the corresponding amine. The synthesized derivatives were further subjected to biological evaluation studies like cytotoxicity against a panel of cancer cell lines such as DU145, A549, SKOV3, MCF7 and normal lung cells, IMR-90 as well as with antimicrobial and antioxidant activities. It was observed that the carboxylated quinolone derivatives with hexanoic (8a), octanoic (8b), lauric (8d) and myristic (8e) moieties exhibited promising cytotoxicity against all the tested cancer cell lines. The results also suggested that hexanoic acid-based fatty amide carboxylated quinolone derivative (8a) exhibited promising activity against both bacterial and fungal strains and significant antibacterial activity was observed against Staphylococcus aureus MTCC 96 (MIC value of 3.9μg/mL). The compound 8a also showed excellent anti-biofilm activity against Staphylococcus aureus MTCC 96 and Bacillus subtilis MTCC 121 with MIC values of 2.1 and 4.6μg/mL, respectively.
Collapse
Affiliation(s)
- Vijayendar Venepally
- Centre for Lipid Research, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - R B N Prasad
- Centre for Lipid Research, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Y Poornachandra
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - C Ganesh Kumar
- Medicinal Chemistry and Pharmacology Division, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research, New Delhi, India
| | - Ram Chandra Reddy Jala
- Centre for Lipid Research, CSIR-Indian Institute of Chemical Technology, Tarnaka, Hyderabad 500007, India; Academy of Scientific and Innovative Research, New Delhi, India.
| |
Collapse
|
18
|
Badrealam KF, Owais M. Nano-Sized Drug Delivery Systems: Development and Implication in Treatment of Hepatocellular Carcinoma. Dig Dis 2015; 33:675-82. [PMID: 26398762 DOI: 10.1159/000438497] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Liver cancer results in enormous human toll worldwide. Over the years, various chemotherapeutic entities have been employed for treatment of advanced HCC; however, as of yet none embody attributes to improve overall survival. Following rapid advancement in nanotechnology, it is envisage that nanoscale systems may emerge as intriguing platforms to improve chemotherapeutic strategies against various cancers including liver cancer; with better insight in the understanding of pathophysiology of liver cancer and material science, the field of nanotechnology may bring newer hope to liver cancer treatment. Reckoning with these, we detailed the arsenal of nanoformulations that are in various stages of clinical development/ preclinical settings for the treatment of liver cancer together with providing a glimpse of the attributes of nanotechnology in revolutionizing the status of chemotherapeutic modalities.
Collapse
|
19
|
Biophysical Interactions of Novel Oleic Acid Conjugate and its Anticancer Potential in HeLa Cells. J Fluoresc 2015; 25:519-25. [DOI: 10.1007/s10895-015-1512-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Accepted: 01/19/2015] [Indexed: 10/24/2022]
|
20
|
Chauhan A, Zubair S, Nadeem A, Ansari SA, Ansari MY, Mohammad O. Escheriosome-mediated cytosolic delivery of PLK1-specific siRNA: potential in treatment of liver cancer in BALB/c mice. Nanomedicine (Lond) 2014; 9:407-20. [PMID: 24910873 DOI: 10.2217/nnm.13.21] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM In the present study, the anticancer efficacy of a novel escheriosome-based formulation of PLK1-specific siRNA was evaluated against liver cancer in BALB/c mice. MATERIALS & METHODS The escheriosome-based siRNA nanoparticles were prepared using lipids isolated from Escherichia coli. The escheriosomes were characterized for size, surface charge and stability. The anticancer potential of PLK1-specific siRNA formulation was ascertained on the basis of expression of pro-/anti-apoptotic factors and histopathological studies. RESULTS The escheriosome-entrapped siRNA was found to be released in surrounding milieu in a sustained manner. The nanoformulation was successful in modulating proapoptotic factors and eventually helped in better survival of the treated animals. CONCLUSION Our data demonstrate the efficacy of systemically administered siRNA in the treatment of experimental liver cancer. This novel therapeutic strategy may be applicable to a broad range of cancers in patients with the obstinate form of the disease.
Collapse
|
21
|
Khan AA, Jabeen M, Khan AA, Owais M. Anticancer efficacy of a novel propofol-linoleic acid-loaded escheriosomal formulation against murine hepatocellular carcinoma. Nanomedicine (Lond) 2013; 8:1281-94. [PMID: 23311988 DOI: 10.2217/nnm.12.166] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM The preparation and characterization of a novel escheriosomal nanoparticle formulation of a potent anticancer conjugate, 2,6-diisopropylphenol-linoleic acid (2,6P-LA), and evaluation of its anticancer efficacy against diethyl nitrosamine-induced hepatocellular carcinoma (HCC) in BALB/c mice. MATERIALS & METHODS Escheriosomized 2,6P-LA nanoparticles were characterized for size, zeta-potential, entrapment efficiency, release kinetics and in vivo toxicity. Their anticancer potential was evaluated on the basis of survival, DNA fragmentation, caspase-3 activation, western blot analysis of apoptotic factors and histopathological changes in hepatocytes of treated animals. RESULTS The escheriosomized 2,6P-LA nanoparticles exhibited low toxicity, biocompatibility and bioavailability. As revealed by apoptosis induction, survival rate, expression profiles of Bax, Bcl-2 and caspase-9, escheriosomized 2,6P-LA nanoparticles were more effective in the treatment of HCC than the free form of 2,6P-LA in experimental animals. CONCLUSION 2,6P-LA-bearing escheriosome nanoparticles are effective in suppressing HCC in mice. Original submitted 17 January 2012; Revised submitted 27 August 2012; Published online 14 January 2013.
Collapse
Affiliation(s)
- Azmat Ali Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India.
| | | | | | | |
Collapse
|
22
|
Synthesis and characterization of novel n-9 fatty acid conjugates possessing antineoplastic properties. Lipids 2012; 47:973-86. [PMID: 22923370 DOI: 10.1007/s11745-012-3707-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2011] [Accepted: 07/30/2012] [Indexed: 01/20/2023]
Abstract
The present study enumerates the synthesis, spectroscopic characterization, and evaluation of anticancer potential of esters of two n-9 fatty acids viz., oleic acid (OLA) and ricinoleic acid (RCA) with 2,4- or 2,6-diisopropylphenol. The synthesis strategy involved esterification of the hydroxyl group of diisopropylphenol (propofol) to the terminal carboxyl group of n-9 fatty acid. The synthesized propofol-n-9 conjugates having greater lipophilic character were tested initially for cytotoxicity in-vitro. The conjugates showed specific growth inhibition of cancer cell lines whereas no effect was observed in normal cells. In general, pronounced growth inhibition was found against the human skin malignant melanoma cell line (SK-MEL-1). The anticancer potential was also determined by testing the effect of these conjugates on cell migration, cell adhesion and induction of apoptosis in SK-MEL-1 cancer cells. Propofol-OLA conjugates significantly induced apoptosis in contrast to propofol-RCA conjugates which showed only weak signals for cytochrome c. Conclusively, the synthesized novel ester conjugates showed considerable moderation of anti-tumor activity. This preliminary study places in-house synthesized conjugates into the new class of anticancer agents that possess selectivity toward cancer cells over normal cells.
Collapse
|