1
|
Kumar V, Kumar A, Kumar Singh M, Dhyani P, Mishra H, Chandra Rai D. Bioactive metabolites identification of the foxnut and broken millet-based nutritional bar using HR-MS. FOOD CHEMISTRY. MOLECULAR SCIENCES 2024; 9:100214. [PMID: 39149574 PMCID: PMC11324833 DOI: 10.1016/j.fochms.2024.100214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 07/04/2024] [Accepted: 07/16/2024] [Indexed: 08/17/2024]
Abstract
The by-products of the grain processing industry are a vital resource for the valorization methods in the food industry. In comparison to the whole grain, the broken kernels and seeds own similar nutrient and bioactive compounds having multifaceted health properties. This study aims to develop a nutritional bar by utilizing the by-products from barnyard millet and foxnut with added sweeteners. Furthermore, high-resolution mass spectrometry (HR-MS) metabolomics was carried out in positive and negative both ion modes to identify the major bioactive compounds formed in the matrix of the best-optimized valorized bar. The formulation of the bar having 15 % foxnut flour and the barnyard flour each, was elucidated highest rheological and sensory scores. A sum of 29 bioactive metabolites has been observed in the obtained metabolome. Major metabolites were palmitoyl serinol, glycitein, persin, bufagargarizin, apigenin, carvone, etc. covering a wide area in the mass spectrum. The therapeutic value of these compounds is heart health promotion, anti-inflammatory, anti-carcinogenic, anti-diabetic, anti-microbial, etc. This work highlights the bioactivity of the valorized nutritional bar employing robust and accurate tool of mass spectrometry. The developed snack is a functional food for the consumers.
Collapse
Affiliation(s)
- Vishal Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Arvind Kumar
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Manish Kumar Singh
- Department of Food Technology, School of Engineering and Technology, Mizoram University, Aizawl, Mizoram, India
| | - Priya Dhyani
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Himanshu Mishra
- Department of Food Technology, School of Engineering and Technology, Mizoram University, Aizawl, Mizoram, India
| | - Dinesh Chandra Rai
- Department of Dairy Science and Food Technology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
2
|
Lim MW, Quan Tang Y, Aroua MK, Gew LT. Glycerol Extraction of Bioactive Compounds from Thanaka ( Hesperethusa crenulata) Bark through LCMS Profiling and Their Antioxidant Properties. ACS OMEGA 2024; 9:14388-14405. [PMID: 38559928 PMCID: PMC10976408 DOI: 10.1021/acsomega.4c00041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/20/2024] [Accepted: 02/26/2024] [Indexed: 04/04/2024]
Abstract
Organic solvents are hazardous to human and environmental health. The emergence of interest in finding greener solvents to replace organic solvents has sparked a series of studies in the use of glycerol for extracting bioactive compounds from natural products. In this study, we will first identify the bioactive compounds of glycerol- and nonglycerol-based Thanaka (Hesperethusa crenulata) bark extracts using liquid chromatography-mass spectrometry profiles; then, we will determine their antioxidant capacity, free radical scavenging activity, and total phenolic and flavonoid contents. Thanaka bark powder was extracted using solvents, namely, ethanol (TKE), water (TKW), glycerol (TKG), glycerol/water (1:1, v/v) (TKGW), and glycerol/ethanol (1:1, v/v) (TKGE). Among the five extracts, the extract of TKG has the highest number of bioactive compounds, as well as the highest total flavonoid content. TKGE possessed the highest total phenolic content and highest antioxidant activity shown in azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) and ferric-reducing antioxidant power assays among the five extracts. Overall, glycerol has better efficiency in extracting bioactive compounds from Thanaka bark as compared to ethanol and water. Hence, from the phytochemical content and antioxidant properties of Thanaka extracts, we conclude that glycerol is a good green solvent alternative to replace organic solvents.
Collapse
Affiliation(s)
- Min Wen Lim
- Department
of Biological Sciences, School of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| | - Yin Quan Tang
- School
of Biosciences, Faculty of Health & Medical Sciences, Taylor’s University, No. 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| | - Mohamed Kheireddine Aroua
- Centre
for Carbon Dioxide Capture and Utilization (CCDCU), School of Engineering
and Technology, Sunway University, No. 5, Jalan Universiti, Bandar
Sunway, 47500 Petaling
Jaya, Malaysia
- School
of Engineering, Lancaster University, LA1 4YW Lancaster, U.K.
| | - Lai Ti Gew
- Department
of Biological Sciences, School of Medical and Life Sciences, Sunway University, No. 5, Jalan Universiti, Bandar Sunway, 47500 Petaling Jaya, Selangor, Malaysia
| |
Collapse
|
3
|
Nagamalla S, Paul D, Mague JT, Sathyamoorthi S. Ring Opening of Aziridines by Pendant Silanols Allows for Preparations of (±)-Clavaminol H, (±)-Des-Acetyl-Clavaminol H, (±)-Dihydrosphingosine, and (±)- N-Hexanoyldihydrosphingosine. Org Lett 2022; 24:6202-6207. [PMID: 35951966 PMCID: PMC10017055 DOI: 10.1021/acs.orglett.2c02496] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We present a unique strategy for the synthesis of vicinal amino alcohols. Ring opening of aziridines with pendant silanols is compatible with a range of substrates. To engage productively in ring opening, the aziridine must be at least mildly activated, and a variety of such N-substituents are tolerated. The utility of this methodology is highlighted in facile preparations of the natural products (±)-Clavaminol H, (±)-dihydrosphingosine, and (±)-N-hexanoyldihydrosphingosine as well as a natural product analogue (±)-des-acetyl-Clavaminol H.
Collapse
Affiliation(s)
- Someshwar Nagamalla
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Debobrata Paul
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| | - Joel T Mague
- Department of Chemistry, Tulane University, New Orleans, Louisiana 70118, United States
| | - Shyam Sathyamoorthi
- Department of Medicinal Chemistry, University of Kansas, Lawrence, Kansas 66045, United States
| |
Collapse
|
4
|
Lai NJY, Ngu EL, Pang JR, Wong KH, Ardianto C, Ming LC, Lim SH, Walvekar SG, Anwar A, Yow YY. Carrageenophyte Kappaphycus malesianus Inhibits Microglia-Mediated Neuroinflammation via Suppression of AKT/NF- κB and ERK Signaling Pathways. Mar Drugs 2022; 20:md20080534. [PMID: 36005538 PMCID: PMC9410251 DOI: 10.3390/md20080534] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/16/2022] [Accepted: 08/18/2022] [Indexed: 11/22/2022] Open
Abstract
Neuroinflammation is an inflammatory response in any part of the central nervous system triggered by the activation of microglia and astrocytes to produce proinflammatory cytokines in the brain. However, overproduction of proinflammatory cytokines further contributes to the development of neurodegenerative disorders. Red seaweed, Kappaphycus malesianus, is a predominant carrageenophyte commercially cultivated in Semporna, Sabah, Malaysia. It is an important source of raw material for kappa-carrageenan productions in the food, pharmaceutical and cosmetics industries. However, no studies have been conducted focusing on the antineuroinflammatory effects of K. malesianus. The aim of the present study was to investigate the effect of the antineuroinflammatory activity of K. malesianus extracts (ethyl acetate, ethanol and methanol) on lipopolysaccharide-stimulated BV2 microglia and the underlying mechanisms involved in the regulation of neuroinflammatory pathways. Extract with the most promising antineuroinflammatory activity was analyzed using liquid chromatography-mass spectrometry (LC-MS). Our results show that methanol extract has a convincing antineuroinflammatory effect by suppressing both AKT/NF-κB and ERK signaling pathways to inhibit the expression of all proinflammatory cytokines without causing a cytotoxicity effect. LC-MS analysis of methanol extract revealed two compounds: prosopinine and eplerenone. Our findings indicated that metabolites of K. malesianus are potent antineuroinflammatory agents with respect to prevention of neurological disorders.
Collapse
Affiliation(s)
- Nicole Jean-Yean Lai
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Ee-Ling Ngu
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Jun-Rui Pang
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Kah-Hui Wong
- Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Chrismawan Ardianto
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
| | - Long Chiau Ming
- Department of Pharmacy Practice, Faculty of Pharmacy, Universitas Airlangga, Surabaya 60115, Indonesia
- PAPRSB Institute of Health Sciences, Universiti Brunei Darussalam, Gadong BE1410, Brunei
| | - Siew-Huah Lim
- Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Shweta Gangasa Walvekar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
| | - Yoon-Yen Yow
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Bandar Sunway 47500, Malaysia
- Correspondence:
| |
Collapse
|
5
|
Nováková G, Drabina P, Brůčková L, Báčová J, Handl J, Svoboda J, Vrbický M, Roušar T, Sedlák M. Enantioselective Synthesis of Clavaminol A, Xestoaminol C and their Stereoisomers Exhibiting Cytotoxic Activity. European J Org Chem 2020. [DOI: 10.1002/ejoc.202000353] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Gabriela Nováková
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Pavel Drabina
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Lenka Brůčková
- Department of Biological and Biochemical Sciences Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Jana Báčová
- Department of Biological and Biochemical Sciences Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Jiří Handl
- Department of Biological and Biochemical Sciences Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Jan Svoboda
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Martin Vrbický
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Tomáš Roušar
- Department of Biological and Biochemical Sciences Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| | - Miloš Sedlák
- Institute of Organic Chemistry and Technology Faculty of Chemical Technology University of Pardubice Studentská 573 532 10 Pardubice Czech Republic
| |
Collapse
|
6
|
New Spisulosine Derivative promotes robust autophagic response to cancer cells. Eur J Med Chem 2020; 188:112011. [PMID: 31926468 DOI: 10.1016/j.ejmech.2019.112011] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 12/02/2019] [Accepted: 12/24/2019] [Indexed: 11/24/2022]
Abstract
Therapy resistance by evasion of apoptosis is one of the hallmarks of human cancer. Therefore, restoration of cell death by non-apoptotic mechanisms is critical to successfully overcome therapy resistance in cancer. By rational drug design approach, here we try to provide evidence that subtle changes in the chemical structure of spisulosine completely switched its cytotoxic function from apoptosis to autophagy. Our most potent molecule (26b) in a series of 16 synthesized derivatives showed robust autophagic cell death in diverse cancer cells sparing normal counterpart. Compound 26b mediated lethal autophagy induction was confirmed by formation of characteristic autophagic vacuoles, LC3 puncta formation, upregulation of signature autophagy markers like Beclin and Atg family proteins. Altogether, we have detected novel autophagy inducer small molecule which can be tested further for drug discovery research.
Collapse
|
7
|
Čonková M, Martinková M, Gonda J, Jacková D, Pilátová MB, Kupka D, Jáger D. Stereoselective synthesis and antiproliferative activity of the isomeric sphinganine analogues. Carbohydr Res 2019; 472:76-85. [PMID: 30529492 DOI: 10.1016/j.carres.2018.09.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 09/27/2018] [Accepted: 09/27/2018] [Indexed: 12/21/2022]
Abstract
A flexible synthetic approach to biologically active sphingoid base-like compounds with a 3-amino-1,2-diol framework was achieved through a [3,3]-sigmatropic rearrangement and late stage olefin cross-metathesis as the key transformations. The stereochemistry of the newly created stereogenic centre was assigned via a single crystal X-ray analysis of the (4S,5R)-5-(hydroxymethyl)-4-vinyloxazolidine-2-thione. In order to rationalise the observed stereoselectivity of the aza-Claisen rearrangement, DFT calculations were carried out. The targeted isomeric sphingoid bases were screened in vitro for anticancer activity on a panel of seven human malignant cell lines. Cell viability experiments revealed that C17-homologues are more active than their C12 congeners.
Collapse
Affiliation(s)
- Miroslava Čonková
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Miroslava Martinková
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic.
| | - Jozef Gonda
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Dominika Jacková
- Institute of Chemical Sciences, Department of Organic Chemistry, P.J. Šafárik University, Moyzesova 11, 040 01, Košice, Slovak Republic
| | - Martina Bago Pilátová
- Institute of Pharmacology, Faculty of Medicine, P.J. Šafárik University, SNP 1, 040 66, Košice, Slovak Republic
| | - Daniel Kupka
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovak Republic
| | - Dávid Jáger
- Institute of Geotechnics, Slovak Academy of Sciences, Watsonova 45, 040 01, Košice, Slovak Republic
| |
Collapse
|
8
|
Liu H, Chen BS, de Souza FZR, Liu L. A Comparative Study on Asymmetric Reduction of Ketones Using the Growing and Resting Cells of Marine-Derived Fungi. Mar Drugs 2018; 16:E62. [PMID: 29443943 PMCID: PMC5852490 DOI: 10.3390/md16020062] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2018] [Revised: 02/01/2018] [Accepted: 02/03/2018] [Indexed: 01/14/2023] Open
Abstract
Whole-cell biocatalysts offer a highly enantioselective, minimally polluting route to optically active alcohols. Currently, most of the whole-cell catalytic performance involves resting cells rather than growing cell biotransformation, which is one-step process that benefits from the simultaneous growth and biotransformation, eliminating the need for catalysts preparation. In this paper, asymmetric reduction of 14 aromatic ketones to the corresponding enantiomerically pure alcohols was successfully conducted using the growing and resting cells of marine-derived fungi under optimized conditions. Good yields and excellent enantioselectivities were achieved with both methods. Although substrate inhibition might be a limiting factor for growing cell biotransformation, the selected strain can still completely convert 10-mM substrates into the desired products. The resting cell biotransformation showed a capacity to be recycled nine times without a significant decrease in the activity. This is the first study to perform asymmetric reduction of ketones by one-step growing cell biotransformation.
Collapse
Affiliation(s)
- Hui Liu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
| | - Bi-Shuang Chen
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510275, China.
| | | | - Lan Liu
- School of Marine Sciences, Sun Yat-Sen University, Guangzhou 510275, China.
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Guangzhou 510275, China.
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-Sen University, Guangzhou 510275, China.
| |
Collapse
|
9
|
The use of marine-derived fungi for preparation of enantiomerically pure alcohols. Appl Microbiol Biotechnol 2017; 102:1317-1330. [DOI: 10.1007/s00253-017-8707-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Revised: 11/27/2017] [Accepted: 12/11/2017] [Indexed: 10/18/2022]
|
10
|
Jain VK, Ramapanicker R. Diastereoselective synthesis of D-threo-sphinganine, L-erythro-sphinganine and (−)-spisulosine through asymmetric α-hydroxylation of a higher homologue of Garner's aldehyde. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.02.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
11
|
Martinková M, Gonda J, Jacková D. Simple marine 1-deoxysphingoid bases: biological activity and syntheses. ACTA ACUST UNITED AC 2016. [DOI: 10.1016/j.tetasy.2016.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
12
|
Fabišíková M, Martinková M, Hirková S, Gonda J, Pilátová MB, Gönciová G. Total synthesis and the anticancer activity of (+)-spisulosine. Carbohydr Res 2016; 435:26-36. [PMID: 27693911 DOI: 10.1016/j.carres.2016.09.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2016] [Revised: 08/25/2016] [Accepted: 09/20/2016] [Indexed: 12/26/2022]
Abstract
The total synthesis of the anticancer agent (+)-spisulosine has been accomplished. The strategy involved a substrate-controlled aza-Claisen rearrangement to establish the erythro-configured amino-alcohol motif followed by deoxygenation to create a methyl side-chain. Subsequent Wittig olefination then permitted the construction of the carbon backbone of the target molecule. To investigate the antiproliferative effect of 1, its biological profile was examined on a panel of 6 human malignant cell lines and demonstrated the significant anticancer activity of 1 on at least five of the evaluated lines with IC50 < 1 μM (MCF-7, HTC-116, Caco-2, Jurkat and HeLa).
Collapse
Affiliation(s)
- Milica Fabišíková
- Department of Organic Chemistry, Institute of Chemical Sciences, P.J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic
| | - Miroslava Martinková
- Department of Organic Chemistry, Institute of Chemical Sciences, P.J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic.
| | - Simona Hirková
- Department of Organic Chemistry, Institute of Chemical Sciences, P.J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic
| | - Jozef Gonda
- Department of Organic Chemistry, Institute of Chemical Sciences, P.J. Šafárik University, Moyzesova 11, 040 01 Košice, Slovak Republic
| | - Martina Bago Pilátová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, SNP 1, 040 66 Košice, Slovak Republic
| | - Gabriela Gönciová
- Department of Pharmacology, Faculty of Medicine, P.J. Šafárik University, SNP 1, 040 66 Košice, Slovak Republic
| |
Collapse
|
13
|
Total synthesis and in vitro bioevaluation of clavaminols A, C, H & deacetyl clavaminol H as potential chemotherapeutic and antibiofilm agents. Eur J Med Chem 2016; 120:86-96. [DOI: 10.1016/j.ejmech.2016.04.073] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2016] [Revised: 04/26/2016] [Accepted: 04/27/2016] [Indexed: 01/12/2023]
|
14
|
Vijai Kumar Reddy T, Jyotsna A, Prabhavathi Devi B, Prasad R, Poornachandra Y, Ganesh Kumar C. Design, synthesis and in vitro biological evaluation of short-chain C12-sphinganine and its 1,2,3-triazole analogs as potential antimicrobial and anti-biofilm agents. Eur J Med Chem 2016; 118:98-106. [DOI: 10.1016/j.ejmech.2016.04.020] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 03/24/2016] [Accepted: 04/07/2016] [Indexed: 12/31/2022]
|
15
|
Archer SG, Csatayová K, Davies SG, Fletcher AM, Roberts PM, Thomson JE. Asymmetric synthesis of N,O-diacetyl-3-epi-xestoaminol C: structure and absolute configuration confirmation of 3-epi-xestoaminol C. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.02.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Stanková K, Martinková M, Gonda J, Bago M, Pilátová M, Gönciová G. The convergent total synthesis of cytotoxic homospisulosine and its 3-epi-analogue. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.tetasy.2015.11.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Choi J, Ha HJ. The First Synthesis of 3-epi-Xestoaminol C. JOURNAL OF THE KOREAN CHEMICAL SOCIETY-DAEHAN HWAHAK HOE JEE 2015. [DOI: 10.5012/jkcs.2015.59.3.203] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
18
|
Duan J, Merrill AH. 1-Deoxysphingolipids Encountered Exogenously and Made de Novo: Dangerous Mysteries inside an Enigma. J Biol Chem 2015; 290:15380-15389. [PMID: 25947379 PMCID: PMC4505451 DOI: 10.1074/jbc.r115.658823] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The traditional backbones of mammalian sphingolipids are 2-amino, 1,3-diols made by serine palmitoyltransferase (SPT). Many organisms additionally produce non-traditional, cytotoxic 1-deoxysphingoid bases and, surprisingly, mammalian SPT biosynthesizes some of them, too (e.g. 1-deoxysphinganine from l-alanine). These are rapidly N-acylated to 1-deoxy-“ceramides” with very uncommon biophysical properties. The functions of 1-deoxysphingolipids are not known, but they are certainly dangerous as contributors to sensory and autonomic neuropathies when elevated by inherited SPT mutations, and they are noticeable in diabetes, non-alcoholic steatohepatitis, serine deficiencies, and other diseases. As components of food as well as endogenously produced, these substances are mysteries within an enigma.
Collapse
Affiliation(s)
- Jingjing Duan
- Schools of Biology and Chemistry & Biochemistry, and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332
| | - Alfred H Merrill
- Schools of Biology and Chemistry & Biochemistry, and the Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332.
| |
Collapse
|
19
|
Silveira-Dorta G, Sousa IJ, Fernandes MX, Martín VS, Padrón JM. Synthesis and identification of unprecedented selective inhibitors of CK1ε. Eur J Med Chem 2015; 96:308-17. [PMID: 25899335 DOI: 10.1016/j.ejmech.2015.03.046] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Revised: 03/18/2015] [Accepted: 03/19/2015] [Indexed: 12/26/2022]
Abstract
A small and structure-biased library of enantiopure anti-β-amino alcohols was prepared in a straightforward manner by a simplified version of the Reetz protocol. Antiproliferative activity testing against a panel of five human solid tumor cell lines gave GI50 values in the range 1-20 μM. The reverse screening by computational methods against 58 proteins involved in cancer pointed to kinases as possible therapeutic target candidates. The experimental determination of the interaction with 456 kinases indicated that the compounds behave as selective CK1ε inhibitors. Our results demonstrate that the lead compound represents the first selective CK1ε inhibitor with proven antiproliferative activity in cancer cell lines.
Collapse
Affiliation(s)
- Gastón Silveira-Dorta
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - Inês J Sousa
- Centro de Química da Madeira, Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Miguel X Fernandes
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain; Centro de Química da Madeira, Centro de Ciências Exatas e da Engenharia, Universidade da Madeira, Campus da Penteada, 9020-105 Funchal, Portugal
| | - Victor S Martín
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | - José M Padrón
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna, C/ Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain.
| |
Collapse
|
20
|
Jeena V, Robinson RS. The ‘Ireland’ one-pot alcohol oxidation coupling reactions: celebrating 30 years of diverse synthesis. Org Biomol Chem 2015. [DOI: 10.1039/c5ob01308a] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The Ireland one-pot oxidative coupling reaction is reviewed on the occasion of its 30th anniversary.
Collapse
Affiliation(s)
- Vineet Jeena
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Pietermaritzburg
- South Africa
| | - Ross S. Robinson
- School of Chemistry and Physics
- University of KwaZulu-Natal
- Pietermaritzburg
- South Africa
| |
Collapse
|
21
|
Sarabia F, Vivar-García C, García-Ruiz C, Sánchez-Ruiz A, Pino-González MS, García-Castro M, Chammaa S. Exploring the Reactivity of Chiral Glycidic Amides for Their Applications in Synthesis of Bioactive Compounds. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402221] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
22
|
Silveira-Dorta G, Donadel OJ, Martín VS, Padrón JM. Direct stereoselective synthesis of enantiomerically pure anti-β-amino alcohols. J Org Chem 2014; 79:6775-82. [PMID: 24708186 DOI: 10.1021/jo500481j] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Enantiomerically pure anti-β-amino alcohols were synthesized from optically pure α-(N,N-dibenzylamino)benzyl esters, derived from α-amino acids, by the sequential reduction to aldehyde with DIBAL-H at -78 °C and subsequent in situ addition of Grignard reagents. Besides anti-β-amino alcohols, anti-2-amino-1,3-diols and anti-3-amino-1,4-diols were obtained in good yields (60-95%) and excellent stereoselectivity (de > 95%). Our technique is compatible with free hydroxyl groups present in the substrate. To demonstrate the versatility of the method, spisulosine and sphinganine were synthesized in two steps from the appropriate N,N-dibenzyl-l-aminobenzyl ester in 42% and 45% yield, respectively.
Collapse
Affiliation(s)
- Gastón Silveira-Dorta
- Instituto Universitario de Bio-Orgánica "Antonio González" (IUBO-AG), Centro de Investigaciones Biomédicas de Canarias (CIBICAN), Universidad de La Laguna , C/Astrofísico Francisco Sánchez 2, 38206 La Laguna, Spain
| | | | | | | |
Collapse
|
23
|
Calder ED, Zaed AM, Sutherland A. Preparation of anti-vicinal amino alcohols: asymmetric synthesis of D-erythro-sphinganine, (+)-spisulosine, and D-ribo-phytosphingosine. J Org Chem 2013; 78:7223-33. [PMID: 23795558 PMCID: PMC3719175 DOI: 10.1021/jo401211j] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Indexed: 02/05/2023]
Abstract
Two variations of the Overman rearrangement have been developed for the highly selective synthesis of anti-vicinal amino alcohol natural products. A MOM ether-directed palladium(II)-catalyzed rearrangement of an allylic trichloroacetimidate was used as the key step for the preparation of the protein kinase C inhibitor D-erythro-sphinganine and the antitumor agent (+)-spisulosine, whereas the Overman rearrangement of chiral allylic trichloroacetimidates generated by the asymmetric reduction of an α,β-unsaturated methyl ketone allowed rapid access both to D-ribo-phytosphingosine and L-arabino-phytosphingosine.
Collapse
Affiliation(s)
- Ewen D.
D. Calder
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Ahmed M. Zaed
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| | - Andrew Sutherland
- WestCHEM, School of Chemistry, The Joseph Black Building, University of Glasgow, Glasgow G12 8QQ, United Kingdom
| |
Collapse
|
24
|
Abad JL, Nieves I, Rayo P, Casas J, Fabriàs G, Delgado A. Straightforward access to spisulosine and 4,5-dehydrospisulosine stereoisomers: probes for profiling ceramide synthase activities in intact cells. J Org Chem 2013; 78:5858-66. [PMID: 23679346 DOI: 10.1021/jo400440z] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A stereoselective synthesis of spisulosine (ES285) and 4,5-dehydrospisulosine stereoisomers is described. Hydrozirconation of 1-pentadecyne with Schwartz reagent, followed by diastereocontrolled addition to L- or D-alaninal afforded the required 2-amino-1,3-diol framework. The resulting sphingoid bases revealed as excellent probes for the profiling of ceramide synthase activity in intact cells. Among the sphingoid bases described in this work, spisulosine (ES285), RBM1-77, and RBM1-73 were the most suitable ones because of their highest acylation rates. These molecules should prove useful to study the role of the different ceramide synthases and the resulting N-acyl (dihydro)ceramides in cell fate.
Collapse
Affiliation(s)
- José Luis Abad
- Consejo Superior de Investigaciones Científicas (CSIC), Institut de Química Avançada de Catalunya (IQAC-CSIC), Research Unit on Bioactive Molecules (RUBAM), Jordi Girona 18-26, 08034 Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
25
|
Pandey M, Chowdhury PS, Dutta AK, Kumar P, Pal S. Retracted Article: A highly concise and practical route to clavaminols, sphinganine and (+)-spisulosine via indium mediated allylation of α-hydrazino aldehyde and a theoretical insight into the stereochemical aspects of the reaction. RSC Adv 2013. [DOI: 10.1039/c3ra43048k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The stereoselective synthesis of 1,2-amino alcohols is reported by proline-catalyzed α-amination of aldehyde and one-pot indium mediated allylation of the crude α-hydrazino aldehydes.
Collapse
Affiliation(s)
- Menaka Pandey
- Division of Organic Chemistry
- CSIR-NCL (National Chemical Laboratory)
- Pune 411008
- India
| | | | - Achintya Kumar Dutta
- Physical Chemistry Division
- CSIR-NCL (National Chemical Laboratory)
- Pune 411008
- India
| | - Pradeep Kumar
- Division of Organic Chemistry
- CSIR-NCL (National Chemical Laboratory)
- Pune 411008
- India
| | - Sourav Pal
- Physical Chemistry Division
- CSIR-NCL (National Chemical Laboratory)
- Pune 411008
- India
| |
Collapse
|
26
|
Xu K, Lai G, Zha Z, Pan S, Chen H, Wang Z. A Highlyanti-Selective Asymmetric Henry Reaction Catalyzed by a Chiral Copper Complex: Applications to the Syntheses of (+)-Spisulosine and a Pyrroloisoquinoline Derivative. Chemistry 2012; 18:12357-62. [DOI: 10.1002/chem.201201775] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2012] [Indexed: 12/13/2022]
|
27
|
Total synthesis and antifungal activity of (2S,3R)-2-aminododecan-3-ol. Bioorg Med Chem Lett 2012; 22:4678-80. [DOI: 10.1016/j.bmcl.2012.05.082] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Revised: 05/11/2012] [Accepted: 05/22/2012] [Indexed: 02/07/2023]
|