1
|
Asokan K, Zahir Hussain A, Ilangovan A. Efficient amidation of weak amines: synthesis, chiral separation by SFC, and antimicrobial activity of N-(9,10-dioxo-9,10-dihydroanthracen-1-yl) carboxamide. Org Biomol Chem 2024; 22:309-319. [PMID: 38059916 DOI: 10.1039/d3ob01774e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/08/2023]
Abstract
An effective and straightforward method for the synthesis of 1-aminoanthracene-9,10-dione carboxamides by coupling a weakly reactive amine, 1-aminoanthracene-9,10-dione, and sterically hindered carboxylic acids was achieved using COMU as the coupling agent. Furthermore, making use of the advantages associated with the super-critical fluid chromatography (SFC) technique, a simplified and straightforward method for the chiral separation of optically active amide derivatives from the impurities associated with the reaction mixture, in a single step, was demonstrated. The antimicrobial activity of selected 1-aminoanthracene-9,10-dione carboxamides was studied. Advanced NMR and other spectral techniques were used for the thorough characterization of all the compounds. This study provides a general and simplified method for coupling a weak amine with a sterically hindered acid using COMU as a coupling agent, and demonstrates the separation of optically pure compounds from reaction related impurities in a single step using SFC, and identification of amide derivatives of 1-aminoanthracene-9,10-dione as potential antimicrobial agents.
Collapse
Affiliation(s)
- Kathiravan Asokan
- Aragen Life Sciences Pvt. Ltd, Bengaluru-562106, India
- Department of Chemistry, Jamal Mohamed College, Tiruchirappalli, Tamil Nadu-620020, India
- School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu-620024, India.
| | - A Zahir Hussain
- Department of Chemistry, Jamal Mohamed College, Tiruchirappalli, Tamil Nadu-620020, India
| | - Andivelu Ilangovan
- School of Chemistry, Bharathidasan University, Tiruchirappalli, Tamil Nadu-620024, India.
| |
Collapse
|
2
|
Chen LC, Mokgautsi N, Kuo YC, Wu ATH, Huang HS. In Silico Evaluation of HN-N07 Small Molecule as an Inhibitor of Angiogenesis and Lymphangiogenesis Oncogenic Signatures in Non-Small Cell Lung Cancer. Biomedicines 2023; 11:2011. [PMID: 37509650 PMCID: PMC10376976 DOI: 10.3390/biomedicines11072011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/12/2023] [Accepted: 07/14/2023] [Indexed: 07/30/2023] Open
Abstract
Tumor angiogenesis and lymphangiogenesis pathways have been identified as important therapeutic targets in non-small cell lung cancer (NSCLC). Bevacizumab, which is a monoclonal antibody, was the initial inhibitor of angiogenesis and lymphangiogenesis that received approval for use in the treatment of advanced non-small cell lung cancer (NSCLC) in combination with chemotherapy. Despite its usage, patients may still develop resistance to the treatment, which can be attributed to various histological subtypes and the initiation of treatment at advanced stages of cancer. Due to their better specificity, selectivity, and safety compared to chemotherapy, small molecules have been approved for treating advanced NSCLC. Based on the development of multiple small-molecule antiangiogenic drugs either in house and abroad or in other laboratories to treat NSCLC, we used a quinoline-derived small molecule-HN-N07-as a potential target drug for NSCLC. Accordingly, we used computational simulation tools and evaluated the drug-likeness properties of HN-N07. Moreover, we identified target genes, resulting in the discovery of the target BIRC5/HIF1A/FLT4 pro-angiogenic genes. Furthermore, we used in silico molecular docking analysis to determine whether HN-N07 could potentially inhibit BIRC5/HIF1A/FLT4. Interestingly, the results of docking HN-N07 with the BIRC5, FLT4, and HIF1A oncogenes revealed unique binding affinities, which were significantly higher than those of standard inhibitors. In summary, these results indicate that HN-N07 shows promise as a potential inhibitor of oncogenic signaling pathways in NSCLC. Ongoing studies that involve in vitro experiments and in vivo investigations using tumor-bearing mice are in progress, aiming to evaluate the therapeutic effectiveness of the HN-N07 small molecule.
Collapse
Affiliation(s)
- Lung-Ching Chen
- Division of Cardiology, Department of Internal Medicine, Shin Kong Wu Ho-Su Memorial Hospital, Taipei 11101, Taiwan
- School of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Ntlotlang Mokgautsi
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Cheng Kuo
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- School of Post-Baccalaureate Chinese Medicine, College of Chinese Medicine, China Medical University, Taichung 40402, Taiwan
| | - Alexander T H Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
| | - Hsu-Shan Huang
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
- Graduate Institute for Cancer Biology & Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 11490, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei 11490, Taiwan
- PhD Program in Drug Discovery and Development Industry, College of Pharmacy, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
3
|
Multiomics Study of a Novel Naturally Derived Small Molecule, NSC772864, as a Potential Inhibitor of Proto-Oncogenes Regulating Cell Cycle Progression in Colorectal Cancer. Cells 2023; 12:cells12020340. [PMID: 36672275 PMCID: PMC9856482 DOI: 10.3390/cells12020340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/24/2022] [Accepted: 01/04/2023] [Indexed: 01/18/2023] Open
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignant tumors, and it contributes to high numbers of deaths globally. Although advances in understanding CRC molecular mechanisms have shed significant light on its pathogenicity, current treatment options, including combined chemotherapy and molecular-targeted agents, are still limited due to resistance, with almost 25% of patients developing distant metastasis. Therefore, identifying novel biomarkers for early diagnosis is crucial, as they will also influence strategies for new targeted therapies. The proto-oncogene, c-Met, a tyrosine kinase that promotes cell proliferation, motility, and invasion; c-MYC, a transcription factor associated with the modulation of the cell cycle, proliferation, apoptosis; and cyclin D1 (CCND1), an essential regulatory protein in the cell cycle, all play crucial roles in cancer progression. In the present study, we explored computational simulations through bioinformatics analysis and identified the overexpression of c-Met/GSK3β/MYC/CCND1 oncogenic signatures that were associated with cancer progression, drug resistance, metastasis, and poor clinical outcomes in CRC. We further demonstrated the anticancer activities of our newly synthesized quinoline-derived compound, NSC772864, against panels of the National Cancer Institute's human CRC cell lines. The compound exhibited cytotoxic activities against various CRC cell lines. Using target prediction tools, we found that c-Met/GSK3β/MYC/CCND1 were target genes for the NSC772864 compound. Subsequently, we performed in silico molecular docking to investigate protein-ligand interactions and discovered that NSC772864 exhibited higher binding affinities with these oncogenes compared to FDA-approved drugs. These findings strongly suggest that NSC772864 is a novel and potential antiCRC agent.
Collapse
|
4
|
Ali AAA, Lee YR, Wu AT, Yadav VK, Yu DS, Huang HS. Structure-based strategies for synthesis, lead optimization and biological evaluation of N-substituted anthra[1,2-c][1,2,5]thiadiazole-6,11-dione derivatives as potential multi-target anticancer agents. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2020.10.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
|
5
|
Fan ZF, Ho ST, Wen R, Fu Y, Zhang L, Wang J, Hu C, Shaw PC, Liu Y, Cheng MS. Design, Synthesis and Molecular Docking Analysis of Flavonoid Derivatives as Potential Telomerase Inhibitors. Molecules 2019; 24:molecules24173180. [PMID: 31480619 PMCID: PMC6749477 DOI: 10.3390/molecules24173180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 08/28/2019] [Accepted: 08/31/2019] [Indexed: 12/29/2022] Open
Abstract
Based on the structural scaffolds of natural products, two series of flavonoid derivatives, for a total of twelve compounds, were designed and synthesized as potential human telomerase inhibitors. Using a modified TRAP-PCR assay, compound 5c exhibited the most potent inhibitory activity against human telomerase with an IC50 value of less than 50 μM. In vitro, the results demonstrated that compound 5c had potent anticancer activity against five classes of tumor cell lines. The molecular docking and molecular dynamics analyses binding to the human telomerase holoenzyme were performed to elucidate the binding mode of active compound 5c. This finding helps the rational design of more potent telomerase inhibitors based on the structural scaffolds of natural products.
Collapse
Affiliation(s)
- Zhan-Fang Fan
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sai-Tim Ho
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China
| | - Rui Wen
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ya Fu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lei Zhang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jian Wang
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chun Hu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Pang-Chui Shaw
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, Hong Kong, China.
| | - Yang Liu
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Mao-Sheng Cheng
- Key Laboratory of Structure-Based Drugs Design and Discovery (Ministry of Education), School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
6
|
Novel tacrine platinum(II) complexes display high anticancer activity via inhibition of telomerase activity, dysfunction of mitochondria, and activation of the p53 signaling pathway. Eur J Med Chem 2018; 158:106-122. [PMID: 30205260 DOI: 10.1016/j.ejmech.2018.09.008] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/29/2018] [Accepted: 09/04/2018] [Indexed: 01/18/2023]
Abstract
In this work, we designed and synthesized tacrine platinum(II) complexes [PtClL(DMSO)]⋅CH3OH (Pt1), [PtClL(DMP)] (Pt2), [PtClL(DPPTH)] (Pt3), [PtClL(PTH)] (Pt4), [PtClL(PIPTH)] (Pt5), [PtClL(PM)] (Pt6) and [PtClL(en)] (Pt7) with 4,4'-dimethyl-2,2'-bipyridine (DMP), 4,7-diphenyl-1,10-phenanthroline (DPPTH), 1,10-phenanthroline (PTH), 2-(1-pyrenecarboxaldehyde) imidazo [4,5-f]-[1,10] phenanthroline (PIPTH), 2-picolylamine (PM) and 1,2-ethylenediamine (en) as telomerase inhibitors and p53 activators. Biological evaluations demonstrated that Pt1Pt7 exhibited cytotoxic activity against the tested NCIH460, Hep-G2, SK-OV-3, SK-OV-3/DDP and MGC80-3 cancer cell lines, with Pt5 displaying the highest cytotoxicity. Pt5 exhibited an IC50 value of 0.13 ± 0.16 μM against SK-OV-3/DDP cancer cells and significantly reduced tumor growth in a Hep-G2 xenograft mouse model (tumor growth inhibition (TGI) = 40.8%, p < 0.05) at a dose of 15.0 mg/kg. Interestingly, Pt1Pt7 displayed low cytotoxicity against normal HL-7702 cells. Mechanistic studies revealed that these compounds caused cell cycle arrest at the G2/M and S phases, and regulated the expression of CDK2, cyclin A, p21, p53 and p27. Further mechanistic studies showed that Pt5 induced SK-OV3/DDP cell apoptosis via dysfunction of mitochondria, inhibition of the telomerase activity by directly targeting the c-myc promoter, and activation of the p53 signaling pathway. Taken together, Pt5 has the potential to be further developed as a new antitumor drug.
Collapse
|
7
|
Identification of a new class of WNT1 inhibitor: Cancer cells migration, G-quadruplex stabilization and target validation. Oncotarget 2018; 7:67986-68001. [PMID: 27626678 PMCID: PMC5356533 DOI: 10.18632/oncotarget.6622] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2015] [Accepted: 11/16/2015] [Indexed: 12/31/2022] Open
Abstract
Developing the Wnt pathway inhibitors has been considered as a therapeutic approach for cancers and other Wnt-related diseases. Previously we found that the G-rich sequence of WNT1 promoter is capable of forming G-quadruplex structure and stabilizing agents for Wnt1-mediated signaling pathway. Using a established cell-based drug screen system that enabled the evaluation of WNT1 expression activity in a G-quadruplex structure dependent manner, we evaluated a series of 6-substituted 9-chloro-11H-indeno[1,2-c]quinolin-11-one derivatives that potentially inhibit the Wnt1-mediated signaling pathway. The most potent compound SJ26 showed repression of WNT1 activity in a G-quadruplex structure-dependent manner. Moreover, compound SJ26 inhibited the WNT1-mediated downstream signaling pathway and suppressed migration activity of cancer cells. Thus, we have identified a tetracyclic azafluorenone, SJ26, that is capable of binding to G-quadruplex DNA structure, repressing WNT1 expression, and inhibiting cell migration.
Collapse
|
8
|
Kosbar TR, Abou-Zeid L, Sofan MA. Synthesis, Biological Evaluation, and Molecular Docking Studies of Novel Pyrazolo[3,4-d
]pyrimidines as Potential Telomerase Inhibitors. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Affiliation(s)
- Tamer R. Kosbar
- Department of Chemistry, Faculty of Science; Damietta University; 34517 New Damietta Egypt
| | - Laila Abou-Zeid
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy; Mansoura University; 35516 Mansoura Egypt
- Medicinal Chemistry Department, Faculty of Pharmacy; Delta University; Mansoura Egypt
| | - Mamdouh A. Sofan
- Department of Chemistry, Faculty of Science; Damietta University; 34517 New Damietta Egypt
| |
Collapse
|
9
|
Lee CC, Chen CL, Liu FL, Chiou CY, Chen TC, Wu CC, Sun WH, Chang DM, Huang HS. Development of 1-Amino-4-(phenylamino)anthraquinone-2-sulfonate Sodium Derivatives as a New Class of Inhibitors of RANKL-Induced Osteoclastogenesis. Arch Pharm (Weinheim) 2016; 349:342-55. [DOI: 10.1002/ardp.201500475] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/20/2016] [Accepted: 03/23/2016] [Indexed: 11/09/2022]
Affiliation(s)
- Chia-Chung Lee
- Graduate Institute of Cancer Biology and Drug Discovery; College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
- School of Pharmacy; National Defense Medical Center; Taipei Taiwan
- Rheumatology/Immunology/Allergy; Taipei Veterans General Hospital; Taipei Taiwan
| | - Chun-Liang Chen
- Graduate Institute of Cancer Biology and Drug Discovery; College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
- School of Pharmacy; National Defense Medical Center; Taipei Taiwan
- Rheumatology/Immunology/Allergy; Taipei Veterans General Hospital; Taipei Taiwan
| | - Fei-Lan Liu
- Rheumatology/Immunology/Allergy; Taipei Veterans General Hospital; Taipei Taiwan
| | - Chung-Yu Chiou
- Graduate Institute of Cancer Biology and Drug Discovery; College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
- School of Pharmacy; National Defense Medical Center; Taipei Taiwan
| | - Tsung-Chih Chen
- Graduate Institute of Cancer Biology and Drug Discovery; College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
- School of Pharmacy; National Defense Medical Center; Taipei Taiwan
| | - Cheng-Chi Wu
- Rheumatology/Immunology/Allergy; Taipei Veterans General Hospital; Taipei Taiwan
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei Taiwan
| | - Wei-Hsin Sun
- Department of Life Sciences; National Central University; Jhongli City Taiwan
| | - Deh-Ming Chang
- Rheumatology/Immunology/Allergy; Taipei Veterans General Hospital; Taipei Taiwan
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei Taiwan
| | - Hsu-Shan Huang
- Graduate Institute of Cancer Biology and Drug Discovery; College of Medical Science and Technology; Taipei Medical University; Taipei Taiwan
- School of Pharmacy; National Defense Medical Center; Taipei Taiwan
- Graduate Institute of Life Sciences; National Defense Medical Center; Taipei Taiwan
| |
Collapse
|
10
|
Lee YR, Chen TC, Lee CC, Chen CL, Ahmed Ali AA, Tikhomirov A, Guh JH, Yu DS, Huang HS. Ring fusion strategy for synthesis and lead optimization of sulfur-substituted anthra[1,2-c][1,2,5]thiadiazole-6,11-dione derivatives as promising scaffold of antitumor agents. Eur J Med Chem 2015; 102:661-76. [DOI: 10.1016/j.ejmech.2015.07.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 07/07/2015] [Accepted: 07/31/2015] [Indexed: 12/25/2022]
|
11
|
Langie SA, Koppen G, Desaulniers D, Al-Mulla F, Al-Temaimi R, Amedei A, Azqueta A, Bisson WH, Brown D, Brunborg G, Charles AK, Chen T, Colacci A, Darroudi F, Forte S, Gonzalez L, Hamid RA, Knudsen LE, Leyns L, Lopez de Cerain Salsamendi A, Memeo L, Mondello C, Mothersill C, Olsen AK, Pavanello S, Raju J, Rojas E, Roy R, Ryan E, Ostrosky-Wegman P, Salem HK, Scovassi I, Singh N, Vaccari M, Van Schooten FJ, Valverde M, Woodrick J, Zhang L, van Larebeke N, Kirsch-Volders M, Collins AR. Causes of genome instability: the effect of low dose chemical exposures in modern society. Carcinogenesis 2015; 36 Suppl 1:S61-S88. [PMID: 26106144 PMCID: PMC4565613 DOI: 10.1093/carcin/bgv031] [Citation(s) in RCA: 143] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2014] [Revised: 12/08/2014] [Accepted: 12/11/2014] [Indexed: 12/17/2022] Open
Abstract
Genome instability is a prerequisite for the development of cancer. It occurs when genome maintenance systems fail to safeguard the genome's integrity, whether as a consequence of inherited defects or induced via exposure to environmental agents (chemicals, biological agents and radiation). Thus, genome instability can be defined as an enhanced tendency for the genome to acquire mutations; ranging from changes to the nucleotide sequence to chromosomal gain, rearrangements or loss. This review raises the hypothesis that in addition to known human carcinogens, exposure to low dose of other chemicals present in our modern society could contribute to carcinogenesis by indirectly affecting genome stability. The selected chemicals with their mechanisms of action proposed to indirectly contribute to genome instability are: heavy metals (DNA repair, epigenetic modification, DNA damage signaling, telomere length), acrylamide (DNA repair, chromosome segregation), bisphenol A (epigenetic modification, DNA damage signaling, mitochondrial function, chromosome segregation), benomyl (chromosome segregation), quinones (epigenetic modification) and nano-sized particles (epigenetic pathways, mitochondrial function, chromosome segregation, telomere length). The purpose of this review is to describe the crucial aspects of genome instability, to outline the ways in which environmental chemicals can affect this cancer hallmark and to identify candidate chemicals for further study. The overall aim is to make scientists aware of the increasing need to unravel the underlying mechanisms via which chemicals at low doses can induce genome instability and thus promote carcinogenesis.
Collapse
Affiliation(s)
- Sabine A.S. Langie
- Environmental Risk and Health Unit, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
- Department of Nutrition, University of Oslo, Oslo 0316, Norway
| | - Gudrun Koppen
- *To whom correspondence should be addressed. Tel: +32 14335165; Fax: +32 14580523
| | - Daniel Desaulniers
- Health Canada, Environmental Health Sciences and Research Bureau, Environmental Health Centre, Ottawa, Ontario K1A0K9, Canada
| | - Fahd Al-Mulla
- Department of Pathology, Kuwait University, Safat 13110, Kuwait
| | | | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Firenze, Florence 50134, Italy
| | - Amaya Azqueta
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, University of Navarra, Pamplona 31009, Spain
| | - William H. Bisson
- Environmental and Molecular Toxicology, Environmental Health Sciences Center, Oregon State University, Corvallis, OR 97331, USA
| | - Dustin Brown
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Gunnar Brunborg
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Amelia K. Charles
- Hopkins Building, School of Biological Sciences, University of Reading, Reading, Berkshire RG6 6UB, UK
| | - Tao Chen
- Division of Genetic and Molecular Toxicology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR 72079, USA
| | - Annamaria Colacci
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Firouz Darroudi
- Human and Environmental Safety Research, Department of Health Sciences, College of North Atlantic, Doha, State of Qatar
| | - Stefano Forte
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Laetitia Gonzalez
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | - Roslida A. Hamid
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, University Putra, Serdang 43400, Selangor, Malaysia
| | - Lisbeth E. Knudsen
- University of Copenhagen, Department of Public Health, Copenhagen 1353, Denmark
| | - Luc Leyns
- Laboratory for Cell Genetics, Vrije Universiteit Brussel, Brussels 1050, Belgium
| | | | - Lorenzo Memeo
- Mediterranean Institute of Oncology, 95029 Viagrande, Italy
| | - Chiara Mondello
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Carmel Mothersill
- Medical Physics & Applied Radiation Sciences, McMaster University, Hamilton, Ontario L8S4L8, Canada
| | - Ann-Karin Olsen
- Department of Chemicals and Radiation, Division of Environmental Medicine, Norwegian Institute of Public Health, PO Box 4404, N-0403 Oslo, Norway
| | - Sofia Pavanello
- Department of Cardiac, Thoracic and Vascular Sciences, Unit of Occupational Medicine, University of Padova, Padova 35128, Italy
| | - Jayadev Raju
- Toxicology Research Division, Bureau of Chemical Safety Food Directorate, Health Products and Food Branch Health Canada, Ottawa, Ontario K1A0K9, Canada
| | - Emilio Rojas
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Rabindra Roy
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Elizabeth Ryan
- Department of Environmental and Radiological Health Sciences/Food Science and Human Nutrition, College of Veterinary Medicine and Biomedical Sciences, Colorado State University/Colorado School of Public Health, Fort Collins, CO 80523-1680, USA
| | - Patricia Ostrosky-Wegman
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Hosni K. Salem
- Urology Department, kasr Al-Ainy School of Medicine, Cairo University, El Manial, Cairo 12515, Egypt
| | - Ivana Scovassi
- Institute of Molecular Genetics, National Research Council, Pavia 27100, Italy
| | - Neetu Singh
- Centre for Advanced Research, King George’s Medical University, Chowk, Lucknow 226003, Uttar Pradesh, India
| | - Monica Vaccari
- Center for Environmental Carcinogenesis and Risk Assessment, Environmental Protection and Health Prevention Agency, Bologna 40126, Italy
| | - Frederik J. Van Schooten
- Department of Toxicology, NUTRIM School for Nutrition, Toxicology and Metabolism, Maastricht University, 6200MD, PO Box 61, Maastricht, The Netherlands
| | - Mahara Valverde
- Departamento de Medicina Genomica y Toxicologia Ambiental, Instituto de Investigaciones Biomedicas, Universidad Nacional Autonoma de México, México CP 04510, México
| | - Jordan Woodrick
- Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC 20057, USA
| | - Luoping Zhang
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720-7360, USA
| | - Nik van Larebeke
- Laboratory for Analytical and Environmental Chemistry, Vrije Universiteit Brussel, Brussels 1050, Belgium
- Study Centre for Carcinogenesis and Primary Prevention of Cancer, Ghent University, Ghent 9000, Belgium
| | | | | |
Collapse
|
12
|
Chen CL, Liu FL, Lee CC, Chen TC, Chang WW, Guh JH, Ahmed Ali AA, Chang DM, Huang HS. Ring fusion strategy for the synthesis of anthra[2,3-d]oxazole-2-thione-5,10-dione homologues as DNA topoisomerase inhibitors and as antitumor agents. Eur J Med Chem 2014; 87:30-8. [DOI: 10.1016/j.ejmech.2014.09.016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2014] [Revised: 08/22/2014] [Accepted: 09/04/2014] [Indexed: 10/24/2022]
|
13
|
Chen TC, Wu CL, Lee CC, Chen CL, Yu DS, Huang HS. Structure-based hybridization, synthesis and biological evaluation of novel tetracyclic heterocyclic azathioxanthone analogues as potential antitumor agents. Eur J Med Chem 2014; 103:615-27. [PMID: 25799376 DOI: 10.1016/j.ejmech.2014.09.050] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 08/08/2014] [Accepted: 09/06/2014] [Indexed: 01/27/2023]
Abstract
A series of tetracyclic heterocyclic azathioxanthones were synthesized and evaluated for cell proliferations, topoisomerase inhibitions, and NCI-60 cell panel assay, respectively. Compounds 5, 7, 8, 16, and 19 were selected for topoisomerase assay after MTT assay. 7 not only showed cytotoxic effect (IC50 = 2.84 ± 0.64 μM) in PC-3 cells but also revealed topoisomerases inhibition with IC50 (10-25 μM) and increased apoptotic cleavage of PARP and caspase 3 activity. The overall of novel azathioxanthones with different cytostatic and cytotoxic activities should be further developed as new potential candidates for anticancer drugs.
Collapse
Affiliation(s)
- Tsung-Chih Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Lun Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Chia-Chung Lee
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Chun-Liang Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan
| | - Dah-Shyong Yu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; Uro-Oncology Laboratory, Division of Urology, Department of Surgery, Tri-Service General Hospital, Taipei 114, Taiwan.
| | - Hsu-Shan Huang
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan; Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei 114, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan.
| |
Collapse
|
14
|
Hsu JL, Liu SP, Lee CC, Hsu LC, Ho YF, Huang HS, Guh JH. A unique amidoanthraquinone derivative displays antiproliferative activity against human hormone-refractory metastatic prostate cancers through activation of LKB1-AMPK-mTOR signaling pathway. Naunyn Schmiedebergs Arch Pharmacol 2014; 387:979-90. [DOI: 10.1007/s00210-014-0998-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2014] [Accepted: 05/22/2014] [Indexed: 12/21/2022]
|
15
|
Chen TC, Yu DS, Huang KF, Fu YC, Lee CC, Chen CL, Huang FC, Hsieh HH, Lin JJ, Huang HS. Structure-based design, synthesis and biological evaluation of novel anthra[1,2-d]imidazole-6,11-dione homologues as potential antitumor agents. Eur J Med Chem 2013; 69:278-93. [DOI: 10.1016/j.ejmech.2013.06.058] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2013] [Revised: 06/16/2013] [Accepted: 06/29/2013] [Indexed: 12/13/2022]
|
16
|
Morales P, Vara D, Goméz-Cañas M, Zúñiga MC, Olea-Azar C, Goya P, Fernández-Ruiz J, Díaz-Laviada I, Jagerovic N. Synthetic cannabinoid quinones: preparation, in vitro antiproliferative effects and in vivo prostate antitumor activity. Eur J Med Chem 2013; 70:111-9. [PMID: 24141201 DOI: 10.1016/j.ejmech.2013.09.043] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2013] [Revised: 09/17/2013] [Accepted: 09/20/2013] [Indexed: 11/26/2022]
Abstract
Chromenopyrazolediones have been designed and synthesized as anticancer agents using the multi-biological target concept that involves quinone cytotoxicity and cannabinoid antitumor properties. In cell cytotoxicity assays, these chromenopyrazolediones have antiproliferative activity against human prostate cancer and hepatocellular carcinoma. It has been shown that the most potent, derivative 4 (PM49), inhibits prostate LNCaP cell viability (IC₅₀ = 15 μM) through a mechanism involving oxidative stress, PPARγ receptor and partially CB₁ receptor. It acts on prostate cell growth by causing G₀/G₁ phase arrest and triggering apoptosis as assessed by flow cytometry measurements. In the in vivo treatment, compound 4 at 2 mg/kg, blocks the growth of LNCaP tumors and reduces the growth of PC-3 tumors generated in mice. These studies suggest that 4 is a good potential anticancer agent against hormone-sensitive prostate cancer.
Collapse
Affiliation(s)
- Paula Morales
- Instituto de Química Médica, CSIC, Calle Juan de la Cierva, 3, 28006 Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Lee CC, Chang DM, Huang KF, Chen CL, Chen TC, Lo Y, Guh JH, Huang HS. Design, synthesis and antiproliferative evaluation of fluorenone analogs with DNA topoisomerase I inhibitory properties. Bioorg Med Chem 2013; 21:7125-33. [PMID: 24094433 DOI: 10.1016/j.bmc.2013.09.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 09/03/2013] [Accepted: 09/03/2013] [Indexed: 11/29/2022]
Abstract
A series of 2,7-diamidofluorenones were designed, synthesized, and screened by SRB assay. Some synthesized compounds exhibited antitumor activities in submicromolar range. Ten compounds (3a, 3b, 3c, 3g, 3j, 3l, 4a, 4h, 4i, and 4j) were also selected by NCI screening system and 3c (GI50=1.66 μM) appeared to be the most active agent of this series. Furthermore, 3c attenuated topoisomerase I-mediated DNA relaxation at low micromolar concentrations. These results indicated that fluorenones have potential to be further developed into anticancer drugs.
Collapse
Affiliation(s)
- Chia-Chung Lee
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei 114, Taiwan; School of Pharmacy, National Defense Medical Center, Taipei 114, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Nor SMM, Sukari MAHM, Azziz SSSA, Fah WC, Alimon H, Juhan SF. Synthesis of new cytotoxic aminoanthraquinone derivatives via nucleophilic substitution reactions. Molecules 2013; 18:8046-62. [PMID: 23884135 PMCID: PMC6270256 DOI: 10.3390/molecules18078046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 06/21/2013] [Accepted: 06/25/2013] [Indexed: 11/26/2022] Open
Abstract
Aminoanthraquinones were successfully synthesized via two reaction steps. 1,4-Dihydroxyanthraquinone (1) was first subjected to methylation, reduction and acylation to give an excellent yield of anthracene-1,4-dione (3), 1,4-dimethoxyanthracene-9,10-dione (5) and 9,10-dioxo-9,10-dihydroanthracene-1,4-diyl diacetate (7). Treatment of 1, 3, 5 and 7 with BuNH2 in the presence of PhI(OAc)2 as catalyst produced seven aminoanthraquinone derivatives 1a, b, 3a, and 5a–d. Amination of 3 and 5 afforded three new aminoanthraquinones, namely 2-(butylamino)anthracene-1,4-dione (3a), 2-(butylamino)anthracene-9,10-dione (5a) and 2,3-(dibutylamino)anthracene-9,10-dione (5b). All newly synthesised aminoanthraquinones were examined for their cytotoxic activity against MCF-7 (estrogen receptor positive human breast) and Hep-G2 (human hepatocellular liver carcinoma) cancer cells using MTT assay. Aminoanthraquinones 3a, 5a and 5b exhibited strong cytotoxicity towards both cancer cell lines (IC50 1.1–13.0 µg/mL).
Collapse
Affiliation(s)
- Siti Mariam Mohd Nor
- Department of Chemistry, Faculty of Science, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | | | | | | | | | | |
Collapse
|
19
|
Lee YR, Yu DS, Liang YC, Huang KF, Chou SJ, Chen TC, Lee CC, Chen CL, Chiou SH, Huang HS. New approaches of PARP-1 inhibitors in human lung cancer cells and cancer stem-like cells by some selected anthraquinone-derived small molecules. PLoS One 2013; 8:e56284. [PMID: 23451039 PMCID: PMC3581553 DOI: 10.1371/journal.pone.0056284] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 01/12/2013] [Indexed: 12/20/2022] Open
Abstract
Poly (ADP-ribose) polymerase-1 (PARP-1) and telomerase, as well as DNA damage response pathways are targets for anticancer drug development, and specific inhibitors are currently under clinical investigation. The purpose of this work is to evaluate anticancer activities of anthraquinone-derived tricyclic and tetracyclic small molecules and their structure-activity relationships with PARP-1 inhibition in non-small cell lung cancer (NSCLC) and NSCLC-overexpressing Oct4 and Nanog clone, which show high-expression of PARP-1 and more resistance to anticancer drug. We applied our library selected compounds to NCI's 60 human cancer cell-lines (NCI-60) in order to generate systematic profiling data. Based on our analysis, it is hypothesized that these drugs might be, directly and indirectly, target components to induce mitochondrial permeability transition and the release of pro-apoptotic factors as potential anti-NSCLC or PARP inhibitor candidates. Altogether, the most active NSC747854 showed its cytotoxicity and dose-dependent PARP inhibitory manner, thus it emerges as a promising structure for anti-cancer therapy with no significant negative influence on normal cells. Our studies present evidence that telomere maintenance should be taken into consideration in efforts not only to overcome drug resistance, but also to optimize the use of telomere-based therapeutics. These findings will be of great value to facilitate structure-based design of selective PARP inhibitors, in general, and telomerase inhibitors, in particular. Together, the data presented here expand our insight into the PARP inhibitors and support the resource-demanding lead optimization of structurally related small molecules for human cancer therapy.
Collapse
Affiliation(s)
- Yu-Ru Lee
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Dah-Shyong Yu
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
- Uro-Oncology Laboratory, Division of Urology, Department of Surgery, Tri-Service General Hospital, Taipei, Taiwan
| | - Ya-Chun Liang
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
| | | | | | - Tsung-Chih Chen
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Chia-Chung Lee
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Chun-Liang Chen
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
| | - Shih-Hwa Chiou
- Institute of Pharmacology, National Yang- Ming University, Taipei, Taiwan
- Department of Medical Research and Education, Taipei Veterans General Hospital, Taipei, Taiwan
- * E-mail: (SHC); (HSH)
| | - Hsu-Shan Huang
- Graduate Institute of Life Science, National Defense Medical Center, Taipei, Taiwan
- School of Pharmacy, National Defense Medical Center, Taipei, Taiwan
- Department of Pharmacy Practice, Tri-Service General Hospital, Taipei, Taiwan
- * E-mail: (SHC); (HSH)
| |
Collapse
|
20
|
Structure-based design, synthesis and evaluation of novel anthra[1,2-d]imidazole-6,11-dione derivatives as telomerase inhibitors and potential for cancer polypharmacology. Eur J Med Chem 2012; 60:29-41. [PMID: 23279865 DOI: 10.1016/j.ejmech.2012.11.032] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2012] [Revised: 11/12/2012] [Accepted: 11/22/2012] [Indexed: 12/22/2022]
Abstract
A series of anthra[1,2-d]imidazole-6,11-dione derivatives were synthesized and evaluated for telomerase inhibition, hTERT expression and suppression of cancer cell growth in vitro. All of the compounds tested, except for compounds 4, 7, 16, 24, 27 and 28 were selected by the NCI screening system. Among them, compounds 16, 39, and 40 repressed hTERT expression without greatly affecting cell growth, suggesting for the selectivity toward hTERT expression. Taken together, our findings indicated that the analysis of cytotoxicity and telomerase inhibition might provide information applicable for further developing potential telomerase and polypharmacological targeting strategy.
Collapse
|
21
|
Zhang YB, Wang XL, Liu W, Yang YS, Tang JF, Zhu HL. Design, synthesis and biological evaluation of heterocyclic azoles derivatives containing pyrazine moiety as potential telomerase inhibitors. Bioorg Med Chem 2012; 20:6356-65. [PMID: 23018096 DOI: 10.1016/j.bmc.2012.08.059] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2012] [Revised: 08/30/2012] [Accepted: 08/31/2012] [Indexed: 02/02/2023]
Abstract
Three series of novel heterocyclic azoles derivatives containing pyrazine (5a-5k, 8a-8k and 11a-11k) have been designed, synthesized, structurally determined, and their biological activities were evaluated as potential telomerase inhibitors. Among the oxadiazole derivatives, compound 5c showed the most potent biological activity against SW1116 cancer cell line (IC(50)=2.46 μM against SW1116 and IC(50)=3.55 μM for telomerase). Compound 8h performed the best in the thiadiazole derivatives (IC(50)=0.78 μM against HEPG2 and IC(50)=1.24 μM for telomerase), which was comparable to the positive control. While compound 11f showed the most potent biological activity (IC(50)=4.12 μM against SW1116 and IC(50)=15.03 μM for telomerase) among the triazole derivatives. Docking simulation by positioning compounds 5c, 8h and 11f into the telomerase structure active site was performed to explore the possible binding model. The results of apoptosis demonstrated that compound 8h possessed good antitumor activity against HEPG2 cancer cell line. Therefore, compound 8h with potent inhibitory activity in tumor growth inhibition may be a potential antitumor agent against HEPG2 cancer cell. Therefore, the introduction of oxadiazole, thiadiazole and triazole structures reinforced the combination of our compounds and the receptor, resulting in progress of bioactivity.
Collapse
Affiliation(s)
- Yan-Bin Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Nanjing University, Nanjing 210093, PR China
| | | | | | | | | | | |
Collapse
|
22
|
Design, synthesis and evaluation of telomerase inhibitory, hTERT repressing, and anti-proliferation activities of symmetrical 1,8-disubstituted amidoanthraquinones. Eur J Med Chem 2012; 50:102-12. [DOI: 10.1016/j.ejmech.2012.01.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Revised: 01/19/2012] [Accepted: 01/22/2012] [Indexed: 11/22/2022]
|