1
|
Nguyen TD, Choi JA, Lim HJ, Chae CH, Lee J, Son SH, Kim J, Son D, Kim HJ, Song CH. Inhibitors of acetohydroxyacid synthase as promising agents against non-tuberculous mycobacterial diseases. J Antibiot (Tokyo) 2025; 78:181-189. [PMID: 39672903 DOI: 10.1038/s41429-024-00799-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 11/22/2024] [Accepted: 12/02/2024] [Indexed: 12/15/2024]
Abstract
Acetohydroxyacid synthase (AHAS), exclusively present in microorganisms and plants, is a promising target for several herbicides due to its catalytic role in the branched-chain amino acid biosynthetic pathway. Previous studies have shown that K13787, a pyrazolopyrimidine sulfonamide AHAS inhibitor, was moderately effective against pulmonary infection caused by M. tuberculosis and nontuberculous mycobacteria (NTM). In this study, we synthesized various structural derivatives of K13787 based on the molecular docking studies and assessed their MICs against mycobacteria species. Among the synthetic compounds screened, K13787, along with KNT2077 and KNT2099, exhibited inhibitory efficacy against M. avium and M. abscessus, including CLR-resistant NTM species. Notably, these compounds displayed a synergistic effect (FIC ≤ 0.5) when combined with CLR against M. avium and M. abscessus. Our findings suggest that these newly identified AHAS-targeted compounds hold promise as lead candidates for novel antimycobacterial agents against NTM infections. Considering the structure-activity relationship, K13787, KNT2077, and KTN2099 emerge as potential treatments for NTM species.
Collapse
Affiliation(s)
- Tam Doan Nguyen
- Department of Microbiology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Ji-Ae Choi
- Department of Microbiology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Hee-Jong Lim
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Chong Hak Chae
- Therapeutics & Biotechnology Division, Korea Research Institute of Chemical Technology, 141 Gajeong-ro, Yuseong-gu, Daejeon, 34114, South Korea
| | - Junghwan Lee
- Department of Microbiology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
- Translational Immunology Institute, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Sang-Hun Son
- Department of Microbiology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Jaewhan Kim
- Department of Microbiology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Doyi Son
- Department of Microbiology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
- Translational Immunology Institute, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea
| | - Hwa-Jung Kim
- Department of Microbiology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea.
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea.
- Translational Immunology Institute, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea.
| | - Chang-Hwa Song
- Department of Microbiology, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea.
- Department of Medical Science, College of Medicine, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea.
- Translational Immunology Institute, Chungnam National University, 266 Munhwa-ro, Jung-gu, Daejeon, 35015, South Korea.
| |
Collapse
|
2
|
Novel Sulfonylurea Derivatives as Potential Antimicrobial Agents: Chemical Synthesis, Biological Evaluation, and Computational Study. Antibiotics (Basel) 2023; 12:antibiotics12020323. [PMID: 36830234 PMCID: PMC9951967 DOI: 10.3390/antibiotics12020323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 01/28/2023] [Accepted: 02/02/2023] [Indexed: 02/08/2023] Open
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is a worldwide health threat and has already tormented humanity during its long history, creating an urgent need for the development of new classes of antibacterial agents. In this study, twenty-one novel sulfonylurea derivatives containing phenyl-5-vinyl and pyrimidinyl-4-aryl moieties were designed and synthesized, among which, nine compounds exhibited inhibitory potencies against Gram-positive bacterial strains: MRSA (Chaoyang clinical isolates), S. aureus ATCC6538, vancomycin-resistant Enterococci-309 (VRE-309), and Bacillus subtilis ATCC 6633. Especially, 9i and 9q demonstrated inhibitory activities against the four bacterial strains with minimum inhibitory concentrations (MICs) of 0.78-1.56 μg/mL, and quite a few of other MRSA clinical strains with MICs of 0.78 μg/mL, superior to those of the positive controls vancomycin (MIC of 1 μg/mL) and methicillin (MIC of >200 μg/mL). This is the very first time that sulfonylurea derivatives have been identified as promising inhibitors against different MRSA clinical isolates. In addition, all the MIC values of the synthesized compounds against Candida albicans were greater than 100 μg/mL. Since the reported anti-Candida activities of sulfonylureas were due to acetohydroxyacid synthase (AHAS) inhibition, the molecular target against MRSA for the target sulfonylureas was thought to be a different mode of action. Density functional theory (DFT) calculations were finally performed to understand the structure-activity relationships, based on which, significant differences were observed between their HOMO maps for compounds with strong antibacterial activities and weak anti-MRSA effects. The present results hence provide valuable guidance for the discovery of novel agents to treat bacterial infections, especially against MRSA.
Collapse
|
3
|
Meng FF, Sun XW, Shang MH, Zhang JS, Niu CW, Li YH, Wang ZW, Wang JG, Li ZM. Chemical preparation, degradation analysis, computational docking and biological activities of novel sulfonylureas with 2,5-disubstituted groups. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 188:105261. [PMID: 36464366 DOI: 10.1016/j.pestbp.2022.105261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/24/2022] [Accepted: 10/07/2022] [Indexed: 06/17/2023]
Abstract
Based on the previous finding that a substitution at 5-position of the benzene ring is favorable to enhance the degradation rates of sulfonylurea herbicides, a total of 16 novel 2,5-disubsituted sulfonylurea compounds were chemically synthesized and fully characterized by means of 1H NMR, 13C NMR, HRMS and X-ray diffraction. By using HPLC analysis, the degradation behavior of M03, a compound belonging to this family, was studied and confirmed that chlorsulfuron itself is not a degraded product of the 2,5-disubstituted sulfonylureas. Inhibition constants against plant acetohydroxyacid synthase (AHAS) were determined for selected compounds, among which SU3 showed seven times stronger activity against the mutant W574L enzyme than chlorsulfuron. Molecular docking suggested that the substituted group at 5-position of benzene ring is likely to interact with the surrounding residues Met200 and Asp376 of AtAHAS. From the greenhouse herbicidal assay and crop safety test, SU5 and SU6 are considered as herbicide candidates to control dicotyledon weeds in corn, while SU3 is likely to be a promising candidate to control dicotyledon weed species and barnyard grass in wheat. The present research has therefore provided some new insights to understand the structure-activity relationships of herbicidal sulfonylureas with di-substitutions at benzene ring.
Collapse
Affiliation(s)
- Fan-Fei Meng
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Xue-Wen Sun
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Ming-Hao Shang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Jia-Shuang Zhang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Cong-Wei Niu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Yong-Hong Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, PR China
| | - Zhong-Wen Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, PR China.
| | - Zheng-Ming Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, PR China
| |
Collapse
|
4
|
Sel S, Tunç T, Ortaakarsu AB, Mamaş S, Karacan N, Karacan MS. Acetohydroxyacid Synthase (AHAS) Inhibitor‐Based Commercial Sulfonylurea Herbicides as Glutathione Reductase Inhibitors: in Vitro and in Silico Studies. ChemistrySelect 2022. [DOI: 10.1002/slct.202202235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sedat Sel
- İstanbul University Pharmacy Faculty Analytic Chemistry 34116, Beyazıt İstanbul Turkey
| | - Turgay Tunç
- Department of Chemistry Engineering Faculty of Engineering University of Kırşehir Ahi Evran Kırsehir 40100 Turkey
| | | | - Serhat Mamaş
- Gazi University Science Faculty Chemistry Department 06500 Ankara Turkey
| | - Nurcan Karacan
- Gazi University Science Faculty Chemistry Department 06500 Ankara Turkey
| | | |
Collapse
|
5
|
Meng F, Mi P, Yu Z, Wei W, Gao L, Ren J, Li Z, Dai H. Design, synthesis and biological evaluation of 5‑substituted sulfonylureas as novel antifungal agents targeting acetohydroxyacid synthase. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
6
|
Wu L, Gu YC, Li YH, Zhou S, Wang ZW, Li ZM. Synthesis, Herbicidal Activity, Crop Safety and Soil Degradation of Pyrimidine- and Triazine-Substituted Chlorsulfuron Derivatives. Molecules 2022; 27:2362. [PMID: 35408768 PMCID: PMC9000356 DOI: 10.3390/molecules27072362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 04/01/2022] [Accepted: 04/05/2022] [Indexed: 11/25/2022] Open
Abstract
Chlrosulfuron, a classical sulfonylurea herbicide that exhibits good safety for wheat but causes a certain degree of damage to subsequent corn in a wheat-corn rotation mode, has been suspended field application in China since 2014. Our previous study found that diethylamino-substituted chlorsulfuron derivatives accelerated the degradation rate in soil. In order to obtain sulfonylurea herbicides with good crop safety for both wheat and corn, while maintaining high herbicidal activities, a series of pyrimidine- and triazine-based diethylamino-substituted chlorsulfuron derivatives (W102-W111) were systematically evaluated. The structures of the synthesized compounds were confirmed with 1H NMR, 13C NMR, and HRMS. The preliminary biological assay results indicate that the 4,6-disubstituted pyrimidine and triazine derivatives could maintain high herbicidal activity. It was found that the synthesized compounds could accelerate degradation rates, both in acidic and alkaline soil. Especially, in alkaline soil, the degradation rate of the target compounds accelerated more than 22-fold compared to chlorsulfuron. Moreover, most chlorsulfuron analogs exhibited good crop safety for both wheat and corn at high dosages. This study provided a reference for the further design of new sulfonylurea herbicides with high herbicidal activity, fast degradation rates, and high crop safety.
Collapse
Affiliation(s)
- Lei Wu
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.W.); (Y.-H.L.); (S.Z.)
| | - Yu-Cheng Gu
- Syngenta Jealott’s Hill International Research Centre, Bracknell RG42 6EY, Berkshire, UK;
| | - Yong-Hong Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.W.); (Y.-H.L.); (S.Z.)
| | - Sha Zhou
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.W.); (Y.-H.L.); (S.Z.)
| | - Zhong-Wen Wang
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.W.); (Y.-H.L.); (S.Z.)
| | - Zheng-Ming Li
- State Key Laboratory of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China; (L.W.); (Y.-H.L.); (S.Z.)
| |
Collapse
|
7
|
Synthesis of diaryl urea derivatives and evaluation of their antiproliferative activities in colon adenocarcinoma. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.132318] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
8
|
Wang HL, Li HR, Zhang YC, Yang WT, Yao Z, Wu RJ, Niu CW, Li YH, Wang JG. Discovery of ortho-Alkoxy Substituted Novel Sulfonylurea Compounds That Display Strong Herbicidal Activity against Monocotyledon Grasses. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:8415-8427. [PMID: 34283603 DOI: 10.1021/acs.jafc.1c02081] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
In the present study, we have designed and synthesized a series of 42 novel sulfonylurea compounds with ortho-alkoxy substitutions at the phenyl ring and evaluated their herbicidal activities. Some target compounds showed excellent herbicidal activity against monocotyledon weed species. When applied at 7.5 g ha-1, 6-11 exhibited more potent herbicidal activity against barnyard grass (Echinochloa crus-galli) and crab grass (Digitaria sanguinalis) than commercial acetohydroxyacid synthase (AHAS; EC 2.2.1.6) inhibitors triasulfuron, penoxsulam, and nicosulfuron at both pre-emergence and postemergence conditions. 6-11 was safe for peanut for postemergence application at this ultralow dosage, suggesting that it could be considered a potential herbicide candidate for peanut fields. Although 6-11 and triasulfuron share similar chemical structures and have close Ki values for plant AHAS, a significant difference has been observed between their LUMO maps from DFT calculations, which might be a possible factor that leads to their different behaviors toward monocotyledon weed species.
Collapse
Affiliation(s)
- Hai-Lian Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Hao-Ran Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yi-Chi Zhang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wen-Tao Yang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Zheng Yao
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Ren-Jun Wu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Cong-Wei Niu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Yong-Hong Li
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, National Pesticide Engineering Research Center, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
9
|
Li JH, Li RH, Wang Y, Li SX, Wu YP, Zhang J, Zhu YG, Xie BJ. Synthesis, herbicidal activity, enzyme activity, and molecular docking of novel aniline thiourea. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1901702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Jia hui Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Ran hong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yan Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Sui xin Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yun peng Wu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Jing Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yong gang Zhu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Bei jie Xie
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
10
|
Bui TT, Tran VL, Ngo DQ, Tran VC, Tran VS, Tran TPT. Synthesis and evaluation of α-glucosidase inhibitory activity of sulfonylurea derivatives. ZEITSCHRIFT FUR NATURFORSCHUNG SECTION B-A JOURNAL OF CHEMICAL SCIENCES 2021. [DOI: 10.1515/znb-2020-0134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Two series of sulfonylureas derivatives including 24 compounds (4, 7, 5a–5o, 8a–8h), among them 17 new derivatives, have been synthesized and evaluated for their α-glucosidase inhibitory activity. Compounds 5c, 5h and 8e showed significant in vitro α-glucosidase inhibition with IC50 values of 5.58, 79.85 and 213.36 µm, respectively, comparing with the standard compounds acarbose (IC50 = 268.29 µm) and glipizide (IC50 = 300.47 µm). The preliminary structure-activity relationships (SARs) of the synthesized compounds were also investigated.
Collapse
Affiliation(s)
- Thi Thoi Bui
- Vietnam Institute of Industrial Chemistry , Nr. 2 Pham Ngu Lao street , Hoan Kiem distric , Ha Noi , Viet Nam
| | - Van Loc Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), and Graduate University of Science and Technology (VAST) , Nr. 18 Hoang Quoc Viet Road , Cau Giay district , Hanoi , Viet Nam
| | - Dai Quang Ngo
- Vietnam National Chemical Group , Nr. 1A Trang Tien street , Hoan Kiem district , Ha Noi , Viet Nam
| | - Van Chien Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), and Graduate University of Science and Technology (VAST) , Nr. 18 Hoang Quoc Viet Road , Cau Giay district , Hanoi , Viet Nam
| | - Van Sung Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), and Graduate University of Science and Technology (VAST) , Nr. 18 Hoang Quoc Viet Road , Cau Giay district , Hanoi , Viet Nam
| | - Thi Phuong Thao Tran
- Institute of Chemistry, Vietnam Academy of Science and Technology (VAST), and Graduate University of Science and Technology (VAST) , Nr. 18 Hoang Quoc Viet Road , Cau Giay district , Hanoi , Viet Nam
| |
Collapse
|
11
|
Li JH, Wang Y, Wu YP, Li RH, Liang S, Zhang J, Zhu YG, Xie BJ. Synthesis, herbicidal activity study and molecular docking of novel pyrimidine thiourea. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 172:104766. [PMID: 33518053 DOI: 10.1016/j.pestbp.2020.104766] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/16/2020] [Accepted: 12/19/2020] [Indexed: 06/12/2023]
Abstract
According to the pharmacophore binding strategy and principle of bioelectronic isobaric, used the sulfonylurea bridge as the parent structure, a series of novel thiourea compounds containing aromatic-substituted pyrimidines were designed and synthesized. The preliminary herbicidal activity tests showed that some compounds had good herbicidal activity against Digitaria adscendens, Amaranthus retroflexus, especially for compound 4d and 4f. The results showed that compound 4d had an inhibition rate of 81.5% on the root growth of Brassica napus L. at the concentration of 100 mg L-1, and compound 4f had an inhibition rate of 81% on the root growth of Digitaria adscendens at the concentration of 100 mg L-1. Compounds 4d and 4f had higher comparative activity on Echinochloa crus-galli than the commercial herbicide bensulfuron-methyl. The preliminary structure-activity relationship (SAR) was also summarized. We also tested the in vivo AHAS enzyme activity inhibition experiment of 14 compounds at 100 mg L-1, and the results showed that they all have inhibitory activity on the enzyme, with the highest inhibition rate reaching 44.4% (compound 4d). Based on the results of molecular docking to yeast acetohydroxyacid synthase (AHAS), the possible herbicidal activity mechanism of these compounds was evaluated.
Collapse
Affiliation(s)
- Jia-Hui Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yan Wang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China.
| | - Yun-Peng Wu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Ran-Hong Li
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Shuang Liang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Jing Zhang
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Yong-Gang Zhu
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| | - Bei-Jie Xie
- College of Plant Protection, Jilin Agricultural University, Changchun, PR China
| |
Collapse
|
12
|
Meng FF, Wu L, Gu YC, Zhou S, Li YH, Chen MG, Zhou S, Zhao YY, Ma Y, Li ZM. Research on the controllable degradation of N-methylamido and dialkylamino substituted at the 5 th position of the benzene ring in chlorsulfuron in acidic soil. RSC Adv 2020; 10:17870-17880. [PMID: 35515605 PMCID: PMC9053611 DOI: 10.1039/d0ra00811g] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Accepted: 04/06/2020] [Indexed: 01/07/2023] Open
Abstract
Owing to the lengthy residual problems associated with chlorsulfuron, metsulfuron-methyl, and ethametsulfuron, which prevents them from being used in the "annual multi-crop planting system", the application of these sulfonylurea herbicides (SU) has regrettably been terminated in China since 2014. In this field, we were the first to discover that the 5th position of the benzene ring in chlorsulfuron is a key point for influencing its degradation rate and the amino moiety at this position showed faster degradation rates and maintained their original potent bioactivity. In this study, we further elaborated on N-methylamido and dialkylamino substituents at the same position in chlorsulfuron to obtain 18 novel structures as M and N series. Their half-life degradation (DT50) values were faster, to varying degrees, than chlorsulfuron in acidic soil. It was found that most of the titled structures also retained their potent herbicidal activity and the crop safety of the M series towards corn greatly increased. Based on these data, a comprehensive graph describing the structure/degradation relationship was established first. Relating to the new molecules, their herbicidal activity (A), degradation rates (D), and crop safety (S) relationship were correlated and we used this approach to predict and explore the most preferable molecule, which coincided to the corresponding experimental data. The new concept of controllable degradation will provide us with more insight when searching for new ecological bioactive molecules in the future.
Collapse
Affiliation(s)
- Fan-Fei Meng
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 China
| | - Lei Wu
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 China
| | - Yu-Cheng Gu
- Syngenta Jealott's Hill International Research Centre RG42 6EY UK
| | - Sha Zhou
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 China
| | - Yong-Hong Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 China
| | - Ming-Gui Chen
- Tianjin Tianbin Ruicheng Environmental Technology Engineering Co., Ltd Tianjin 300000 China
| | - Shaa Zhou
- The School of Forestry and Bio-Technology, Zhejiang A&F University Zhejiang 311300 China
| | - Yang-Yang Zhao
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 China
| | - Yi Ma
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 China
| | - Zheng-Ming Li
- State Key Laboratory of Elemento-Organic Chemistry, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University Tianjin 300071 China
| |
Collapse
|
13
|
Xie Y, Tummala P, Oakley AJ, Deora GS, Nakano Y, Rooke M, Cuellar ME, Strasser JM, Dahlin JL, Walters MA, Casarotto MG, Board PG, Baell JB. Development of Benzenesulfonamide Derivatives as Potent Glutathione Transferase Omega-1 Inhibitors. J Med Chem 2020; 63:2894-2914. [PMID: 32105470 DOI: 10.1021/acs.jmedchem.9b01391] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Glutathione transferase omega-1 (GSTO1-1) is an enzyme whose function supports the activation of interleukin (IL)-1β and IL-18 that are implicated in a variety of inflammatory disease states for which small-molecule inhibitors are sought. The potent reactivity of the active-site cysteine has resulted in reported inhibitors that act by covalent labeling. In this study, structure-activity relationship (SAR) elaboration of the reported GSTO1-1 inhibitor C1-27 was undertaken. Compounds were evaluated for inhibitory activity toward purified recombinant GSTO1-1 and for indicators of target engagement in cell-based assays. As covalent inhibitors, the kinact/KI values of selected compounds were determined, as well as in vivo pharmacokinetics analysis. Cocrystal structures of key novel compounds in complex with GSTO1-1 were also solved. This study represents the first application of a biochemical assay for GSTO1-1 to determine kinact/KI values for tested inhibitors and the most extensive set of cell-based data for a GSTO1-1 inhibitor SAR series reported to date. Our research culminated in the discovery of 25, which we propose as the preferred biochemical tool to interrogate cellular responses to GSTO1-1 inhibition.
Collapse
Affiliation(s)
- Yiyue Xie
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Padmaja Tummala
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Aaron J Oakley
- Molecular Horizons and School of Chemistry and Molecular Bioscience and Illawarra Health and Medical Research Institute, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Girdhar Singh Deora
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Yuji Nakano
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
| | - Melissa Rooke
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Matthew E Cuellar
- Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Jessica M Strasser
- Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Jayme L Dahlin
- Department of Pathology, Brigham and Women's Hospital, 75 Francis Street, Boston, Massachusetts 02115, United States
| | - Michael A Walters
- Institute for Therapeutics Discovery and Development, University of Minnesota, 717 Delaware Street SE, Minneapolis, Minnesota 55414, United States
| | - Marco G Casarotto
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Philip G Board
- John Curtin School of Medical Research, Australian National University, Canberra, ACT 2600, Australia
| | - Jonathan B Baell
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 211816, People's Republic of China
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, VIC 3052, Australia
- ARC Centre for Fragment-Based Design, Monash University, Parkville, VIC 3052, Australia
| |
Collapse
|
14
|
Hessainia S, Boukhari A, Cheraiet Z. An efficient one‐pot synthesis of
N
‐(substituted phenyl)‐1,2,5‐thiadiazolidine‐2‐carboxamide 1,1‐dioxide derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3767] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Sihem Hessainia
- Laboratory of Organic Synthesis, Modeling and Optimization of Chemical Processes, Department of ChemistryBadji Mokhtar‐Annaba University Annaba P.O. Box 12, 23000 Algeria
| | - Abbes Boukhari
- Laboratory of Organic Synthesis, Modeling and Optimization of Chemical Processes, Department of ChemistryBadji Mokhtar‐Annaba University Annaba P.O. Box 12, 23000 Algeria
| | | |
Collapse
|
15
|
Chen W, Li Y, Zhou Y, Ma Y, Li Z. Design, synthesis and SAR study of novel sulfonylurea derivatives containing arylpyrimidine moieties as potential anti-phytopathogenic fungal agents. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.04.072] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
16
|
Bamborough P, Chung CW, Demont EH, Bridges AM, Craggs PD, Dixon DP, Francis P, Furze RC, Grandi P, Jones EJ, Karamshi B, Locke K, Lucas SCC, Michon AM, Mitchell DJ, Pogány P, Prinjha RK, Rau C, Roa AM, Roberts AD, Sheppard RJ, Watson RJ. A Qualified Success: Discovery of a New Series of ATAD2 Bromodomain Inhibitors with a Novel Binding Mode Using High-Throughput Screening and Hit Qualification. J Med Chem 2019; 62:7506-7525. [PMID: 31398032 DOI: 10.1021/acs.jmedchem.9b00673] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The bromodomain of ATAD2 has proved to be one of the least-tractable proteins within this target class. Here, we describe the discovery of a new class of inhibitors by high-throughput screening and show how the difficulties encountered in establishing a screening triage capable of finding progressible hits were overcome by data-driven optimization. Despite the prevalence of nonspecific hits and an exceptionally low progressible hit rate (0.001%), our optimized hit qualification strategy employing orthogonal biophysical methods enabled us to identify a single active series. The compounds have a novel ATAD2 binding mode with noncanonical features including the displacement of all conserved water molecules within the active site and a halogen-bonding interaction. In addition to reporting this new series and preliminary structure-activity relationship, we demonstrate the value of diversity screening to complement the knowledge-based approach used in our previous ATAD2 work. We also exemplify tactics that can increase the chance of success when seeking new chemical starting points for novel and less-tractable targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Paola Grandi
- Cellzome , Meyerhofstrasse 1 , Heidelberg 69117 , Germany
| | | | | | | | | | | | | | | | | | - Christina Rau
- Cellzome , Meyerhofstrasse 1 , Heidelberg 69117 , Germany
| | - Ana Maria Roa
- GlaxoSmithKline Tres Cantos , 28760 Tres Cantos , Madrid , Spain
| | | | | | | |
Collapse
|
17
|
Wu RJ, Ren T, Gao JY, Wang L, Yu Q, Yao Z, Song GQ, Ruan WB, Niu CW, Song FH, Zhang LX, Li M, Wang JG. Chemical preparation, biological evaluation and 3D-QSAR of ethoxysulfuron derivatives as novel antifungal agents targeting acetohydroxyacid synthase. Eur J Med Chem 2018; 162:348-363. [PMID: 30448420 DOI: 10.1016/j.ejmech.2018.11.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 11/01/2018] [Accepted: 11/03/2018] [Indexed: 12/29/2022]
Abstract
Accetohydroxyacid synthase (AHAS) is the first enzyme involved in the biosynthetic pathway of branched-chain amino acids. Earlier gene mutation of Candida albicans in a mouse model suggested that this enzyme is a promising target of antifungals. Recent studies have demonstrated that some commercial AHAS-inhibiting sulfonylurea herbicides exerted desirable antifungal activity. In this study, we have designed and synthesized 68 novel ethoxysulfulron (ES) derivatives and evaluated their inhibition constants (Ki) against C. albicans AHAS and cell based minimum inhibitory concentration (MIC) values. The target compounds 5-1, 5-10, 5-22, 5-31 and 5-37 displayed stronger AHAS inhibitions than ES did. Compound 5-1 had the best Ki of 6.7 nM against fungal AHAS and MIC values of 2.5 mg/L against Candida albicans and Candica parapsilosis after 72 h. A suitable nematode model was established here and the antifungal activity of 5-1 was further evaluated in vivo. A possible binding mode was simulated via molecular docking and a comparative field analysis (CoMFA) model was constructed to understand the structure-activity relationship. The current study has indicated that some ES derivatives should be considered as promising hits to develop antifungal drugs with novel biological target.
Collapse
Affiliation(s)
- Ren-Jun Wu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Tongtong Ren
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie-Yu Gao
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui, 230009, China
| | - Li Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Qilin Yu
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Zheng Yao
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Guo-Qing Song
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Wei-Bin Ruan
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Cong-Wei Niu
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Fu-Hang Song
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Li-Xin Zhang
- State Key Laboratory of Microbial Resources and CAS Key Laboratory of Pathogenic Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, 100101, China; State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Mingchun Li
- Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, College of Life Sciences, Nankai University, Tianjin, 300071, China.
| | - Jian-Guo Wang
- State-Key Laboratory and Research Institute of Elemento-Organic Chemistry, College of Chemistry, Nankai University, Tianjin 300071, China.
| |
Collapse
|
18
|
Liu XH, Wang Q, Sun ZH, Wedge DE, Becnel JJ, Estep AS, Tan CX, Weng JQ. Synthesis and insecticidal activity of novel pyrimidine derivatives containing urea pharmacophore against Aedes aegypti. PEST MANAGEMENT SCIENCE 2017; 73:953-959. [PMID: 27448764 DOI: 10.1002/ps.4370] [Citation(s) in RCA: 64] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/16/2016] [Accepted: 07/19/2016] [Indexed: 05/18/2023]
Abstract
BACKGROUND Aedes aegypti is a major mosquito vector for the transmission of serious diseases, especially dengue and yellow fever. More than 1 billion people in developing countries are at risk. The widespread and continual use of pesticides can lead to resistant mosquitoes. In order to maintain mosquito control gains, it is critical to develop and evaluate novel bioactive molecules that differ in mode of action from currently used products. RESULTS A series of novel pyrimidine derivatives were designed and synthesized. Their structures were elucidated by proton nuclear magnetic resonance spectroscopy and high-resolution mass spectrometry. The biological activities of these compounds were tested against Ae. aegypti. Many of them exhibited insecticidal activity against adult and larval mosquitoes. Compound 4d displayed relatively good activity to reach 70% mortality at 2 µg mL-1 . Furthermore, density functional theory calculations were established to study the structure-activity relationship of these novel compounds. CONCLUSION A practical synthetic route for pyrimidine derivatives is presented. This study suggests that these pyrimidine derivatives exhibit some activity against the yellow fever mosquito and, with further structure modification, could be novel lead compounds for the development of insecticides against mosquitoes. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xing-Hai Liu
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Qiao Wang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Zhao-Hui Sun
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - David E Wedge
- USDA-ARS, Natural Products Utilization Research Unit, University, MS, USA
| | - James J Becnel
- USDA-ARS, Center for Medical, Agricultural and Veterinary Entomology (CMAVE), Gainesville, FL, USA
| | - Alden S Estep
- Navy Entomology Center of Excellence, CMAVE Detachment, Gainesville, FL, USA
| | - Cheng-Xia Tan
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| | - Jian-Quan Weng
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, China
| |
Collapse
|
19
|
Hua X, Zhou S, Chen M, Wei W, Liu M, Lei K, Zhou S, Li Y, Wang B, Li Z. Controllable Effect of Structural Modification of Sulfonylurea Herbicides on Soil Degradation. CHINESE J CHEM 2016. [DOI: 10.1002/cjoc.201600438] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
20
|
Wei W, Cheng D, Liu J, Li Y, Ma Y, Li Y, Yu S, Zhang X, Li Z. Design, synthesis and SAR study of novel sulfonylureas containing an alkenyl moiety. Org Biomol Chem 2016; 14:8356-66. [PMID: 27533925 DOI: 10.1039/c6ob01555g] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A series of sulfonylurea compounds was designed and synthesized via introducing an alkenyl moiety into the aryl-5 position and most title compounds exhibited enhanced antifungal activities and limited herbicidal activities compared with chlorsulfuron. Then, a CoMSIA calculation for antifungal activities was carried out to establish a 3D-QSAR model in which a cross-validated q(2) of 0.585 and a correlation coefficient r(2) of 0.989 were obtained. The derived model revealed that hydrophobic and electrostatic fields were the two most important factors for antifungal activity. Structure optimization was performed according to the CoMSIA model and compound 9z was found to be as potent as chlorothalonil in vitro against C. cornigerum, the pathogen of the wheat sharp eyespot disease. In order to study the fungicidal mechanism, 9z was successfully docked into yeast AHAS using a flexible molecular docking method and the resulting binding pattern was similar to that of chlorimuron-ethyl, indicating that the antifungal activity of compounds 9 was probably due to the inhibition of fungal AHAS.
Collapse
Affiliation(s)
- Wei Wei
- State Key Laboratory of Elemento-Organic Chemistry, Institute of Elemento-Organic, Chemistry, Collaborative Innovation Center of Chemical Science and Engineering, (Tianjin), Nankai University, Tianjin 300071, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Design, synthesis and herbicidal activity of novel sulfonylureas containing tetrahydrophthalimide substructure. Chem Res Chin Univ 2016. [DOI: 10.1007/s40242-016-5480-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Wang BL, Shi YX, Zhang SJ, Ma Y, Wang HX, Zhang LY, Wei W, Liu XH, Li YH, Li ZM, Li BJ. Syntheses, biological activities and SAR studies of novel carboxamide compounds containing piperazine and arylsulfonyl moieties. Eur J Med Chem 2016; 117:167-78. [PMID: 27092414 DOI: 10.1016/j.ejmech.2016.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2015] [Revised: 04/03/2016] [Accepted: 04/04/2016] [Indexed: 11/26/2022]
Abstract
A series of novel carboxamide compounds 19a-19j, 20a-20j and 22a-22d containing piperazine and arylsulfonyl moieties have been synthesized. The bioassay results showed that some compounds exhibited favorable herbicidal activities against dicotyledonous plants and many of them possessed excellent antifungal activities. Among 24 novel compounds, some showed superiority over the commercial fungicides Chlorothalonil, Dimethomorph, Thiophanate-methyl, Iprodione, and Zhongshengmycin at 500 mg/L concentration. Some compounds also exhibited high KARI inhibitory activity at 100 μg/mL concentration and could be used as new KARI lead inhibitors for further studies. Moreover, SAR of these new compounds were comprehensively investigated using different computational methods in which 3D-QSAR model obtained provided useful information for further structural optimization for the discovery of new fungicides. The results of this research will contribute to explore comprehensive biological activities of piperazine-containing compounds in different areas of chemistry.
Collapse
Affiliation(s)
- Bao-Lei Wang
- State-Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yan-Xia Shi
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Shu-Jun Zhang
- State-Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yi Ma
- State-Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hong-Xue Wang
- State-Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Li-Yuan Zhang
- State-Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Wei Wei
- State-Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Xing-Hai Liu
- State-Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Yong-Hong Li
- State-Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China
| | - Zheng-Ming Li
- State-Key Laboratory of Elemento-Organic Chemistry, National Pesticide Engineering Research Center (Tianjin), Collaborative Innovation Center of Chemical Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Bao-Ju Li
- Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
23
|
Parida KN, Chandra A, Moorthy JN. Oxidation of thiols to sulphonic acids with Oxone®/NaHCO3and KBrO3. ChemistrySelect 2016. [DOI: 10.1002/slct.201600028] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Keshaba Nanda Parida
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 INDIA
| | - Ajeet Chandra
- Department of Chemistry; Indian Institute of Technology Kanpur; Kanpur 208016 INDIA
| | | |
Collapse
|
24
|
Wei W, Cheng D, Chen W, Liu J, Wan Y, Li Y, Li Y, Yu S, Li Z. Design, syntheses and biological activities of novel sulfonylureas containing an oxime ether moiety. Chem Res Chin Univ 2016. [DOI: 10.1007/s40242-016-5406-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
25
|
Hua XW, Chen MG, Zhou S, Zhang DK, Liu M, Zhou S, Liu JB, Lei K, Song HB, Li YH, Gu YC, Li ZM. Research on controllable degradation of sulfonylurea herbicides. RSC Adv 2016. [DOI: 10.1039/c5ra25765d] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Through studying structure, bioassay and soil degradation tri-factor relationship, potential controllable degradation of SU was firstly explored and summarized.
Collapse
|
26
|
Thakur AS, Deshmukh R, Jha AK, Sudhir Kumar P. Synthesis and oral hypoglycemic effect of novel thiazine containing trisubstituted benzenesulfonylurea derivatives. Saudi Pharm J 2015; 23:475-82. [PMID: 26594112 PMCID: PMC4605906 DOI: 10.1016/j.jsps.2014.11.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 11/29/2014] [Indexed: 10/31/2022] Open
Abstract
A new series of 3-(4-substituted phenyl)-1-(4-(4,6-dimethyl-6H-1,3-thiazin-2-yl)phenylsulfonyl)-1-substituted urea (5a-o) was synthesized by an effectual route via sulfonylcarbamates and explores the novel site for substitution in sulfonylurea as well as the way of thiazine can be prepared. The molecules were established by elemental analysis and spectroscopic viz. IR, (1)H NMR, (13)C NMR and MS techniques. All the fifteen derivatives were shown very prominent oral hypoglycemic effect at the dose of 40 mg/kg body weight (p.o.) in respect of standard drug glibenclamide and control. The hypoglycemic effect was studied using oral glucose tolerance test in normal and NIDDM in STZ-rat model. The compounds 5a, 5d, 5f, 5i, 5k and 5n were dominant out of fifteen derivatives for blood glucose lowering activity (more than 80%) when comparing with NIDDM control. These derivatives were either containing simply phenyl ring (5a, 5f and 5k) on to the second amine of sulfonylurea (R' = H) or nitro group at the para position in compound 5d, 5i and 5n (R' = NO2 ) to produce significant oral hypoglycemic effect. Other structural activity relationship is also observed regarding the heteroaromatic and substituted aromatic group at R and R' position respectively.
Collapse
Affiliation(s)
- Alok Singh Thakur
- Faculty of Pharmaceutical Sciences, SSGI, SSTC, Junwani, Bhilai, C.G., India
| | - Ravitas Deshmukh
- Faculty of Pharmaceutical Sciences, SSGI, SSTC, Junwani, Bhilai, C.G., India
| | - Arvind Kumar Jha
- Faculty of Pharmaceutical Sciences, SSGI, SSTC, Junwani, Bhilai, C.G., India
| | - P. Sudhir Kumar
- School of Pharmaceutical Sciences, Siksha O Anusandhan University, Bhubaneswar, Odisha, India
| |
Collapse
|
27
|
Szafrański K, Sławiński J. Synthesis of Novel 1-(4-Substituted pyridine-3-sulfonyl)-3-phenylureas with Potential Anticancer Activity. Molecules 2015; 20:12029-44. [PMID: 26140437 PMCID: PMC6332147 DOI: 10.3390/molecules200712029] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Revised: 06/16/2015] [Accepted: 06/24/2015] [Indexed: 11/16/2022] Open
Abstract
A series of novel 4-substituted-N-(phenylcarbamoyl)-3-pyridinesulfonamides 11–27 have been synthesized by the reaction of 4-substituted pyridine-3-sulfonamides 2–10 with the appropriate aryl isocyanates in presence of potassium carbonate. The in vitro anticancer activity of compounds 11, 12, 14–21 and 24–26 was evaluated at the U.S. National Cancer Institute and in light of the results, some structure-activity relationships were discussed. The most prominent compound, N-[(4-chlorophenyl)carbamoyl]-4-[4-(3,4-dichlorophenyl)piperazin-1-yl]pyridine-3-sulfonamide (21) has exhibited a good activity profile and selectivity toward the subpanels of leukemia, colon cancer and melanoma, with average GI50 values ranging from 13.6 to 14.9 µM.
Collapse
Affiliation(s)
- Krzysztof Szafrański
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| | - Jarosław Sławiński
- Department of Organic Chemistry, Medical University of Gdańsk, Al. Gen. J. Hallera 107, 80-416 Gdańsk, Poland.
| |
Collapse
|
28
|
Development of ssDNA aptamers as potent inhibitors of Mycobacterium tuberculosis acetohydroxyacid synthase. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2015; 1854:1338-50. [PMID: 25988243 DOI: 10.1016/j.bbapap.2015.05.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Revised: 04/22/2015] [Accepted: 05/09/2015] [Indexed: 01/01/2023]
Abstract
Acetohydroxyacid synthase (AHAS) from Mycobacterium tuberculosis (Mtb) is a promising potential drug target for an emerging class of new anti-tuberculosis agents. In this study, we identify short (30-mer) single-stranded DNA aptamers as a novel class of potent inhibitors of Mtb-AHAS through an in vitro DNA-SELEX method. Among all tested aptamers, two candidate aptamers (Mtb-Apt1 and Mtb-Apt6) demonstrated the greatest inhibitory potential against Mtb-AHAS activity with IC50 values in the low nanomolar range (28.94±0.002 and 22.35±0.001 nM respectively). Interestingly, inhibition kinetics analysis of these aptamers showed different modes of enzyme inhibition (competitive and mixed type of inhibition respectively). Secondary structure-guided mutational modification analysis of Mtb-Apt1 and Mtb-Apt6 identified the minimal region responsible for their inhibitory action and consequently led to 17-mer and 20-mer shortened aptamers that retained equivalent or greater inhibitory potential. Notably, a modeling and docking exercise investigated the binding site of these two potent inhibitory aptamers on the target protein and showed possible involvement of some key catalytic dimer interface residues of AHAS in the DNA-protein interactions that lead to its potent inhibition. Importantly, these two short candidate aptamers, Mtb-Apt1 (17-mer) and Mtb-Apt6 (20-mer), also demonstrated significant growth inhibition against multidrug-resistant (MDR-TB) and extensively drug-resistant (XDR-TB) strains of tuberculosis with very low MIC of 5.36 μg/ml and 6.24 μg/ml, respectively and no significant cytotoxicity against mammalian cell line. This is the first report of functional inhibitory aptamers against Mtb-AHAS and provides the basis for development of these aptamers as novel and strong anti-tuberculosis agents.
Collapse
|
29
|
Lu W, Baig IA, Sun HJ, Cui CJ, Guo R, Jung IP, Wang D, Dong M, Yoon MY, Wang JG. Synthesis, crystal structure and biological evaluation of substituted quinazolinone benzoates as novel antituberculosis agents targeting acetohydroxyacid synthase. Eur J Med Chem 2015; 94:298-305. [DOI: 10.1016/j.ejmech.2015.03.014] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/03/2015] [Accepted: 03/05/2015] [Indexed: 11/17/2022]
|
30
|
Synthesis and evaluation of novel N-(4′-arylpyrimidin-2′-yl) sulfonylurea derivatives as potential antifungal agents. Chem Res Chin Univ 2015. [DOI: 10.1007/s40242-015-4362-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
31
|
Baig IA, Moon JY, Kim MS, Koo BS, Yoon MY. Structural and functional significance of the highly-conserved residues in Mycobacterium tuberculosis acetohydroxyacid synthase. Enzyme Microb Technol 2014; 58-59:52-9. [DOI: 10.1016/j.enzmictec.2014.02.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2013] [Revised: 02/05/2014] [Accepted: 02/18/2014] [Indexed: 10/25/2022]
|
32
|
Patel KN, Telvekar VN. Design, synthesis and antitubercular evaluation of novel series of N-[4-(piperazin-1-yl)phenyl]cinnamamide derivatives. Eur J Med Chem 2014; 75:43-56. [DOI: 10.1016/j.ejmech.2014.01.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 01/13/2014] [Accepted: 01/18/2014] [Indexed: 11/30/2022]
|
33
|
Liu Y, Bao P, Wang D, Li Z, Li Y, Tang L, Zhou Y, Zhao W. Evaluation of the In Vivo Efficacy of Novel Monosubstituted Sulfonylureas against H37Rv and Extensively Drug-Resistant Tuberculosis. Jpn J Infect Dis 2014; 67:485-7. [DOI: 10.7883/yoken.67.485] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
34
|
Biochemical characterization and evaluation of potent inhibitors of the Pseudomonas aeruginosa PA01 acetohydroxyacid synthase. Biochimie 2013; 95:1411-21. [DOI: 10.1016/j.biochi.2013.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Accepted: 03/10/2013] [Indexed: 11/17/2022]
|
35
|
Baig IA, Gedi V, Lee SC, Koh SH, Yoon MY. Role of a highly conserved proline-126 in ThDP binding of Mycobacterium tuberculosis acetohydroxyacid synthase. Enzyme Microb Technol 2013; 53:243-9. [PMID: 23931689 DOI: 10.1016/j.enzmictec.2013.05.006] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/12/2013] [Accepted: 05/14/2013] [Indexed: 11/30/2022]
Abstract
Acetohydroxyacid synthase (AHAS) of Mycobacterium tuberculosis is a promising target for the development of anti-tuberculosis agents. With the absence of an available bacterial AHAS crystal structure, that of M. tuberculosis, site-directed mutagenesis has been a useful tool for determining its structural and functional features. In this study, a highly conserved proline residue (P126 of M. tuberculosis AHAS) was selected, and the possible role was evaluated by site-directed mutagenesis. P126 was replaced by valine, threonine, alanine, and glutamate to yield P126V, P126T, P126A, and P126E, respectively. All variants were expressed in their soluble forms in Escherichia coli and purified to near homogeneity. The molecular mass (SDS-PAGE) of the purified variants was ∼68 kDa, which is similar to that of wild-type AHAS. The P126V, P126T, and P126A variants exhibited significantly lower activity than wild-type AHAS, whereas P126E was inactive under the tested assay conditions. Furthermore, the P126V and P126T variants showed a significantly decreased preference toward pyruvate and ThDP as substrate and cofactor respectively, whereas the P126A showed similar kinetics to that of wild-type AHAS. Like in AHAS from yeast Saccharomyces cerevisiae (PDB ID: 1N0H), residue P126 is located in the ThDP binding pocket of M. tuberculosis AHAS homology model. Collectively, these results suggest that the conserved P126 plays a significant role in the ThDP binding of M. tuberculosis AHAS.
Collapse
|
36
|
Synthesis and herbicidal activity of novel sulfonylureas containing 1,2,4-triazolinone moiety. Chem Res Chin Univ 2013. [DOI: 10.1007/s40242-013-2377-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
37
|
Wang D, Zhu X, Cui C, Dong M, Jiang H, Li Z, Liu Z, Zhu W, Wang JG. Discovery of Novel Acetohydroxyacid Synthase Inhibitors as Active Agents against Mycobacterium tuberculosis by Virtual Screening and Bioassay. J Chem Inf Model 2013; 53:343-53. [PMID: 23316686 DOI: 10.1021/ci3004545] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Affiliation(s)
- Di Wang
- Department of Clinical Laboratory,
309 Hospital of Chinese People’s Liberation Army, Beijing 100091,
China
| | - Xuelian Zhu
- State Key Laboratory
of Drug
Research, Drug Discovery and Design Center, Shanghai Institute of
Materia Medica, Shanghai 201203, China
| | - Changjun Cui
- State Key Laboratory and Institute
of Elemento-Organic Chemistry, Nankai University, Tianjin 300071,
China
| | - Mei Dong
- Department of Clinical Laboratory,
309 Hospital of Chinese People’s Liberation Army, Beijing 100091,
China
| | - Hualiang Jiang
- State Key Laboratory
of Drug
Research, Drug Discovery and Design Center, Shanghai Institute of
Materia Medica, Shanghai 201203, China
| | - Zhengming Li
- State Key Laboratory and Institute
of Elemento-Organic Chemistry, Nankai University, Tianjin 300071,
China
| | - Zhen Liu
- Department of Clinical Laboratory,
309 Hospital of Chinese People’s Liberation Army, Beijing 100091,
China
| | - Weiliang Zhu
- State Key Laboratory
of Drug
Research, Drug Discovery and Design Center, Shanghai Institute of
Materia Medica, Shanghai 201203, China
| | - Jian-Guo Wang
- State Key Laboratory and Institute
of Elemento-Organic Chemistry, Nankai University, Tianjin 300071,
China
| |
Collapse
|
38
|
Wang D, Pan L, Cao G, Lei H, Meng X, He J, Dong M, Li Z, Liu Z. Evaluation of the in vitro and intracellular efficacy of new monosubstituted sulfonylureas against extensively drug-resistant tuberculosis. Int J Antimicrob Agents 2012; 40:463-6. [DOI: 10.1016/j.ijantimicag.2012.06.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2012] [Revised: 06/15/2012] [Accepted: 06/15/2012] [Indexed: 10/28/2022]
|