1
|
Li J, Ye B, Gao S, Liu X, Zhan P. The latest developments in the design and discovery of non-nucleoside reverse transcriptase inhibitors (NNRTIs) for the treatment of HIV. Expert Opin Drug Discov 2024; 19:1439-1456. [PMID: 39397419 DOI: 10.1080/17460441.2024.2415309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Accepted: 10/08/2024] [Indexed: 10/15/2024]
Abstract
INTRODUCTION This review encapsulates the recent strides in the development of non-nucleoside reverse transcriptase inhibitors (NNRTIs) for HIV treatment, focusing on the novel structural designs that promise to overcome limitations of existing therapies, such as drug resistance and toxicity. AREAS COVERED We underscore the application of computational chemistry and structure-based drug design in refining NNRTIs with enhanced potency and safety. EXPERT OPINION Highlighting the emergence of diverse chemical scaffolds like diarylpyrimidines, indoles, DABOs and HEPTs, the review reveals compounds with nanomolar efficacy and improved pharmacokinetics. The integration of artificial intelligence in drug discovery is poised to accelerate the evolution of NNRTIs, laying the foundation for addressing drug resistance in the era of anti-HIV therapy through innovative designs and multi-target strategies.
Collapse
Affiliation(s)
- Junyi Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Bing Ye
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Shenghua Gao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology, Ministry of Education, School of Pharmaceutical Sciences, Shandong University, Jinan, PR China
| |
Collapse
|
2
|
Khalifa Z, Patel AB. Tri-substituted 1,3,5-triazine-based analogs as effective HIV-1 non-nucleoside reverse transcriptase inhibitors (NNRTIs): A systematic review. Drug Dev Res 2024; 85:e22154. [PMID: 38349259 DOI: 10.1002/ddr.22154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/19/2023] [Accepted: 01/13/2024] [Indexed: 02/15/2024]
Abstract
Non-nucleoside reverse transcriptase inhibitors (NNRTIs) have significantly impacted the HIV-1 wild-type due to their high specificity and superior potency. As well as different combinations of NNRTIs have been used on clinically approved combining highly active antiretroviral therapy (HAART) to resist the growth of HIV-1 and decrease the mortality rate of HIV/AIDS. Although the feeble strength against the drug-resistant mutant strains and the long-term damaging effects have been reducing the effectiveness of HAART, it could be a crucial challenge to develop novel Anti-HIV leads with a vital mode of action and the least side effects. The extensive chemical reactivity and the diverse chemotherapeutic applications of the 1,3,5-triazine have provided a wide scope of research in medicinal chemistry via a structural modification. In this review, we focused on the Anti-HIV profile of the tri-substituted s-triazine derivatives with structure-based features and also discussed the active mode of action to evaluate the significant findings. The tri-substituted 1,3,5-triazine derivatives have been found more promising to inhibit the growth of the drug-sensitive and drug-resistant variants of HIV-1, especially HIV-1 wild-type, HIV-1 K103N/Y181C, and HIV-1 Tyr181Cys. It has been observed that these derivatives have interacted with the enzyme protein residues via a significantπ $\pi $ -π $\pi $ interaction and hydrogen bonding to resist the proliferation of the viral genomes. Further, the SAR and the active binding modes are critically described and highlight the role of structural variations with functional groups along with the binding affinity of targeted enzymes, which may be beneficial for rational drug discovery to develop highly dynamic Anti-HIV agents.
Collapse
Affiliation(s)
- Zebabanu Khalifa
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| | - Amit B Patel
- Department of Chemistry, Government College, Daman (Affiliated to Veer Narmad South Gujarat University, Surat), Daman, India
| |
Collapse
|
3
|
Kumawat J, Jain S, Misra N, Dwivedi J, Kishore D. 1,3,5-Triazine: Recent Development in Synthesis of its Analogs and Biological Profile. Mini Rev Med Chem 2024; 24:2019-2071. [PMID: 38847171 DOI: 10.2174/0113895575309800240526180356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/19/2024] [Accepted: 04/30/2024] [Indexed: 10/25/2024]
Abstract
Triazine is an important pharmacophore in the field of research for the development of novel medications due to its presence in numerous powerful physiologically active compounds with significant medical potential, such as anti-tumor, anti-viral, anti-inflammatory, anti-microbial, anti- HIV, anti-leishmanial and others. The easy availability of triazine, high reactivity, simple synthesis of their analog, and their notable broad range of biological activities have garnered chemist interest in designing s-triazine-based drugs. The interest of medicinal chemists has been sparked by the structure-activity relationship of these biologically active entities, leading to the discovery of several promising lead molecules. Its importance for medicinal chemistry research is demonstrated by the remarkable progress made with triazine derivatives in treating a variety of disorders in a very short period. Authors have collated and reviewed the medicinal potential of s-triazine analogous to afford medicinal chemists with a thorough and target-oriented overview of triazine-derived compounds. We hope the present compilation will help people from the industry and research working in the medicinal chemistry area.
Collapse
Affiliation(s)
- Jyoti Kumawat
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Sonika Jain
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Namita Misra
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| | - Dharma Kishore
- Department of Chemistry, Banasthali Vidyapith, Banasthali-304022, India
| |
Collapse
|
4
|
Singh S, Mandal MK, Masih A, Saha A, Ghosh SK, Bhat HR, Singh UP. 1,3,5-Triazine: A versatile pharmacophore with diverse biological activities. Arch Pharm (Weinheim) 2021; 354:e2000363. [PMID: 33760298 DOI: 10.1002/ardp.202000363] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 02/05/2021] [Accepted: 02/12/2021] [Indexed: 12/14/2022]
Abstract
1,3,5-Triazine and its derivatives have been the epicenter of chemotherapeutic molecules due to their effective biological activities, such as antibacterial, fungicidal, antimalarial, anticancer, antiviral, antimicrobial, anti-inflammatory, antiamoebic, and antitubercular activities. The present review represents a summarized report of the crucial biological activities possessed by substituted 1,3,5-triazine derivatives, with special attention to the most potent compounds.
Collapse
Affiliation(s)
- Saumya Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Milan K Mandal
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Anup Masih
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| | - Ashmita Saha
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Surajit K Ghosh
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Hans R Bhat
- Department of Pharmaceutical Sciences, Dibrugarh University, Dibrugarh, Assam, India
| | - Udaya P Singh
- Drug Design and Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology, and Sciences, Allahabad, Uttar Pradesh, India
| |
Collapse
|
5
|
DNA interaction analysis with automated biosensor of paraben derivative s-triazines. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Eom SY, Lee YR, Kwon CH. Accurate conformational stability and cationic structure of piperidine determined by conformer-specific VUV-MATI spectroscopy. Phys Chem Chem Phys 2020; 22:22823-22832. [PMID: 33021609 DOI: 10.1039/d0cp04407e] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Piperidine has received attention in pharmaceutical synthesis and biochemical degradation because of its conformational activity. We explored the conformational structures of piperidine in the neutral (S0) and cationic (D0) ground states by conformer-specific vacuum ultraviolet mass-analyzed threshold ionization (VUV-MATI) spectroscopy, which provides high-resolution vibrational spectra for the corresponding cationic conformer. To identify conformers corresponding to the obtained VUV-MATI spectra, equilibrium structures of piperidine conformers in the S0 and D0 states were determined at various density functional theory levels, and potential energy surfaces associated with the conformational changes were constructed. Notably, the chair form interconverting between the equatorial NH and the axial NH conformers (Chair-Eq and Chair-Ax) in piperidine lies on the global minimum of the S0 state, but only the axial-like NH conformer (Chair-Ax-like) in chair form exists in the D0 state. The vibrational assignment of the observed spectra was accomplished through Franck-Condon (FC) analysis for adiabatic transitions between two Chair-Eq and Chair-Ax conformers and a cationic Chair-Ax-like conformer. Rigorous FC analysis revealed the precise structure of a cationic Chair-Ax-like conformer induced by removal of an electron from the lone-pair sp3 orbital of the nitrogen atom in piperidine. The adiabatic ionization energies of Chair-Eq and Chair-Ax conformers converting to a cationic state were determined to be 64 704 ± 4 cm-1 (8.0223 ± 0.0005 eV) and 64 473 ± 4 cm-1 (7.9936 ± 0.0005 eV), respectively. Consequently, the difference between their adiabatic ionization energies allowed the accurate determination of the conformational stability of Chair-Eq and Chair-Ax conformers in piperidine (231 ± 4 cm-1).
Collapse
Affiliation(s)
- So Young Eom
- Department of Chemistry and Institute for Molecular Science and Fusion Technology, Kangwon National University, Chuncheon 24341, Korea.
| | | | | |
Collapse
|
7
|
Sacalis C, Morar C, Lameiras P, Lupan A, Silaghi-Dumitrescu R, Bende A, Katona G, Porumb D, Harakat D, Gál E, Darabantu M. Design, synthesis and structure of novel dendritic G-2 melamines comprising piperidine motifs as key linkers and 4-(n-octyloxy)aniline as a peripheral unit. Tetrahedron 2019. [DOI: 10.1016/j.tet.2019.130468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
8
|
Byrappa S, Rachaiah K, Kotian SY, Balaraju Y, Prabhuswamimath SC, Rai KML, Salimath BP. Synthesis and Screening of Pro-apoptotic and Angio-inhibitory Activity of Novel Benzisoxazole Derivatives both In Vitro and In Vivo. Anticancer Agents Med Chem 2019; 19:827-839. [PMID: 30648522 DOI: 10.2174/1871520619666190114170621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/21/2018] [Accepted: 01/28/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Triple Negative Breast Cancer (TNBC) tends to be more aggressive than other types of breast cancer. Resistance to chemotherapy is a major obstacle hence there is a significant need for new antineoplastic drugs with multi-target potency. Numerous Benzoisoxazole moieties have been found to possess a broad spectrum of pharmacological activities. In the present study, we have synthesized 9 novel derivatives of Benzisoxazole 7(a-i) and screened them for their biological potential. METHODS Chemical synthesis, Mass spectrometry (HRMS), cell proliferation and cytotoxicity assay, wound healing assay, flow cytometry and nuclear staining. Angio-inhibitory activity assessed by corneal micropocket assay and in vivo peritoneal angiogenesis assay. RESULTS The Benzisoxazole derivatives 7(a-i) were synthesized and screened for their biological potency by both in vitro and in vivo experimental models. Among the series, compound 3-(1-((3-(3(Benzyloxy)-4-methoxyphenyl)- 4,5-dihydroisoxazole-5-yl)methyl)piperidine-4-yl)6-fluorobenzo[d] isoxazole (7e) was found to be most promising, with an average IC50 value of 50.36 ± 1.7 µM in MTT assay and showed 81.3% cell death. The compound 7e also showed 60-70% inhibition on a recombinant Metastasis-Associated protein (MTA1) induced proliferation and cell migration in MDAMB-231 cells, which is known to play a major role in angiogenesis. The anti-tumour studies inferred the regression of tumour activity. This was due to inhibition of neovascularization and evoking apoptosis process as assessed by corneal vascularization, peritoneal angiogenesis and apoptotic hallmarks in 7e treated cells. CONCLUSION These findings not only show the biological efficacy of compound 7e but it is also an effective beginning to explore the mechanism of metastasis and cancer therapy strategy targeting MTA1. The observed biological activity makes compound 7e an attractive drug candidate.
Collapse
Affiliation(s)
- Sathish Byrappa
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - Kavitha Rachaiah
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - Sumana Y Kotian
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - Yashaswini Balaraju
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570 006, India
| | | | - Kuriya M L Rai
- Department of Studies in Chemistry, University of Mysore, Manasagangotri, Mysore 570 006, India
| | - Bharathi P Salimath
- Department of Studies in Biotechnology, University of Mysore, Manasagangotri, Mysore 570 006, India
| |
Collapse
|
9
|
Turan N, Özkay ÜD, Can NÖ, Can ÖD. Investigating the Antidepressant-like Effects of some Benzimidazolepiperidine Derivatives by In-Vivo Experimental Methods. LETT DRUG DES DISCOV 2019. [DOI: 10.2174/1570180815666181004103112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Background: Benzimidazole and piperidine rings are important pharmacophore groups
for drug design studies.
</P><P>
Objective: In this study, we aimed to investigate the antidepressant-like activity of some 2-(4-
substituted-phenyl)-1-[2-(piperidin-1-yl)ethyl]-1H-benzimidazole derivatives.
</P><P>
Methods: Tail-suspension Test (TST) and Modified Forced Swimming Tests (MFST) were used to
assess antidepressant-like activities of the test compounds. Moreover, locomotor activity performances
of the animals were evaluated by an activity cage device.
</P><P>
Results: In the TST and MFST, compounds 2c-2h (10 mg/kg) and the reference drug fluoxetine (20
mg/kg) significantly reduced the immobility time of mice indicating the antidepressant-like activities
of these compounds. Further, in MFST, the same compounds induced significant enhancement
in the duration of active swimming behaviors without affecting the climbing performance of the
animals. This prolongation in the swimming time, similar to fluoxetine, pointed out that antidepressant-
like activity of the compounds 2c-2h might be related to the serotonergic rather than noradrenergic
mechanisms. Besides, results of the activity cage tests demonstrated that none of the tested
compounds caused an alteration in the locomotor activities of mice, signifying that antidepressantlike
effects presented in this study were specific.
</P><P>
Conclusion: In conclusion, results of this present study supported the previous papers reporting the
therapeutic potential of compounds carrying benzimidazole and/or piperidine rings in their structure
and emphasized, once again, the importance of these pharmacophore groups in drug design studies.
Collapse
Affiliation(s)
- Nazlı Turan
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Ümide Demir Özkay
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Nafiz Öncü Can
- Department of Analytical Chemistry, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| | - Özgür Devrim Can
- Department of Pharmacology, Faculty of Pharmacy, Anadolu University, Eskisehir, Turkey
| |
Collapse
|
10
|
Zhou Z, Liu T, Kang D, Huo Z, Wu G, Daelemans D, De Clercq E, Pannecouque C, Zhan P, Liu X. Discovery of novel diarylpyrimidines as potent HIV-1 NNRTIs by investigating the chemical space of a less explored “hydrophobic channel”. Org Biomol Chem 2018; 16:1014-1028. [DOI: 10.1039/c7ob02828h] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
We described the identification of novel HIV-1 NNRTIs via exploration of the chemical space of a seldom explored “hydrophobic channel”.
Collapse
Affiliation(s)
- Zhongxia Zhou
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Tao Liu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Dongwei Kang
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Zhipeng Huo
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Gaochan Wu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Dirk Daelemans
- Rega Institute for Medical Research
- K.U.Leuven
- B-3000 Leuven
- Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research
- K.U.Leuven
- B-3000 Leuven
- Belgium
| | | | - Peng Zhan
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| | - Xinyong Liu
- Department of Medicinal Chemistry
- Key Laboratory of Chemical Biology (Ministry of Education)
- School of Pharmaceutical Sciences
- Shandong University
- 250012 Jinan
| |
Collapse
|
11
|
Discovery of novel piperidine-substituted indolylarylsulfones as potent HIV NNRTIs via structure-guided scaffold morphing and fragment rearrangement. Eur J Med Chem 2016; 126:190-201. [PMID: 27750153 DOI: 10.1016/j.ejmech.2016.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/27/2022]
Abstract
To further explore the chemical space around the entrance channel of HIV-1 reverse transcriptase (RT), a series of novel indolylarylsulfones (IASs) bearing N-substituted piperidine at indole-2-carboxamide were identified as potent HIV NNRTIs by structure-guided scaffold morphing and fragment rearrangement. All the IASs exhibited moderate to excellent potency against wild-type HIV-1 with EC50 values ranging from 0.62 μM to 0.006 μM 8 (EC50 = 6 nM) and 18 (EC50 = 9 nM) were identified as the most potent compounds, which were more active than NVP and DLV, and reached the same order of EFV and ETV. Furthermore, most compounds maintained high activity agaist various single HIV-1 mutants (L100I, K103N, E138K, Y181C) as well as one double mutant (F227L/V106A) with EC50 values in low-micromolar to double-digit nanomolar concentration ranges. Especially, 8 displayed outstanding potency against L100I (EC50 = 17 nM with a 2.8-fold resistance ratio) and 18 was relatively more potent to E138K mutant (EC50 = 43 nM with a 4.7-fold resistance ratio). Preliminary SARs and molecular modeling studies were also discussed in detail, which may provide valuable insights for further optimization.
Collapse
|
12
|
Viira B, Selyutina A, García-Sosa AT, Karonen M, Sinkkonen J, Merits A, Maran U. Design, discovery, modelling, synthesis, and biological evaluation of novel and small, low toxicity s-triazine derivatives as HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem 2016; 24:2519-2529. [PMID: 27108399 DOI: 10.1016/j.bmc.2016.04.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Revised: 03/10/2016] [Accepted: 04/08/2016] [Indexed: 11/15/2022]
Abstract
A set of top-ranked compounds from a multi-objective in silico screen was experimentally tested for toxicity and the ability to inhibit the activity of HIV-1 reverse transcriptase (RT) in cell-free assay and in cell-based assay using HIV-1 based virus-like particles. Detailed analysis of a commercial sample that indicated specific inhibition of HIV-1 reverse transcription revealed that a minor component that was structurally similar to that of the main compound was responsible for the strongest inhibition. As a result, novel s-triazine derivatives were proposed, modelled, discovered, and synthesised, and their antiviral activity and cellular toxicity were tested. Compounds 18a and 18b were found to be efficient HIV-1 RT inhibitors, with an IC50 of 5.6±1.1μM and 0.16±0.05μM in a cell-based assay using infectious HIV-1, respectively. Compound 18b also had no detectable toxicity for different human cell lines. Their binding mode and interactions with the RT suggest that there was strong and adaptable binding in a tight (NNRTI) hydrophobic pocket. In summary, this iterative study produced structural clues and led to a group of non-toxic, novel compounds to inhibit HIV-RT with up to nanomolar potency.
Collapse
Affiliation(s)
- Birgit Viira
- Institute of Chemistry, University of Tartu, Tartu 50411, Estonia
| | | | | | - Maarit Karonen
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Jari Sinkkonen
- Department of Chemistry, University of Turku, FI-20014 Turku, Finland
| | - Andres Merits
- Institute of Technology, University of Tartu, Tartu 50411, Estonia.
| | - Uko Maran
- Institute of Chemistry, University of Tartu, Tartu 50411, Estonia.
| |
Collapse
|
13
|
Chen W, Zhan P, Daelemans D, Yang J, Huang B, De Clercq E, Pannecouque C, Liu X. Structural optimization of pyridine-type DAPY derivatives to exploit the tolerant regions of the NNRTI binding pocket. Eur J Med Chem 2016; 121:352-363. [PMID: 27267005 DOI: 10.1016/j.ejmech.2016.05.054] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 05/13/2016] [Accepted: 05/23/2016] [Indexed: 11/24/2022]
Abstract
Based on the crystallographic studies of diarylpyrimidines (DAPYs), we embarked on incorporating the hydrophilic piperidyl or morpholinyl group into the known DAPY derivatives bearing the pyridine moiety as a core structure, with the double aim to exploit additional interactions with the HIV-1 NNRTI binding pocket (NNIBP), as well as to improve the compound solubility. The antiviral evaluation result show that the most potent compounds I-8b2, I-8b3, I-8b4 and I-8c3 exhibited anti-HIV-1 (IIIB) strain activity ranging from 7.4 nM to 9.4 nM (SI = 168-1283), superior to FDA-approved drugs of nevirapine (NVP), lamivudine (3TC) and delavirdine (DLV), and comparable to etravirine (ETV), zidovudine (AZT) and efavirenz (EFV). Additionally, compounds I-8c2 and I-8c3 showed moderate activity against NNRTI resistant strains baring mutations K103N and Y181C with EC50 values of 6.2 μM and 6.8 μM, respectively. Preliminary structure-activity relationships (SARs), reverse transcriptase inhibition efficacy and molecular modeling of selected compounds are also presented. These outcomes support our design hypothesis and demonstrate that the piperidyl group modified pyridine-typed DAPY derivatives are highly potent NNRTIs with improved water solubility.
Collapse
Affiliation(s)
- Wenmin Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Dirk Daelemans
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Jiapei Yang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Boshi Huang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium.
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, 250012, Jinan, Shandong, PR China.
| |
Collapse
|
14
|
Li X, Huang B, Zhou Z, Gao P, Pannecouque C, Daelemans D, De Clercq E, Zhan P, Liu X. Arylazolyl(azinyl)thioacetanilides: Part 19: Discovery of Novel Substituted Imidazo[4,5-b]pyridin-2-ylthioacetanilides as Potent HIV NNRTIs Via a Structure-based Bioisosterism Approach. Chem Biol Drug Des 2016; 88:241-53. [PMID: 26914186 DOI: 10.1111/cbdd.12751] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 01/14/2016] [Accepted: 02/14/2016] [Indexed: 12/15/2022]
Affiliation(s)
- Xiao Li
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| | - Boshi Huang
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| | - Zhongxia Zhou
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| | - Ping Gao
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| | - Christophe Pannecouque
- Rega Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 B-3000 Leuven Belgium
| | - Dirk Daelemans
- Rega Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 B-3000 Leuven Belgium
| | - Erik De Clercq
- Rega Institute for Medical Research; KU Leuven; Minderbroedersstraat 10 B-3000 Leuven Belgium
| | - Peng Zhan
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| | - Xinyong Liu
- Department of Medicinal Chemistry; Key Laboratory of Chemical Biology (Ministry of Education) School of Pharmaceutical Sciences; Shandong University; 44, West Culture Road Jinan Shandong 250012 China
| |
Collapse
|
15
|
Li W, Li X, De Clercq E, Zhan P, Liu X. Discovery of potent HIV-1 non-nucleoside reverse transcriptase inhibitors from arylthioacetanilide structural motif. Eur J Med Chem 2015; 102:167-79. [DOI: 10.1016/j.ejmech.2015.07.043] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2015] [Revised: 07/20/2015] [Accepted: 07/22/2015] [Indexed: 11/26/2022]
|
16
|
Singla P, Luxami V, Paul K. Triazine as a promising scaffold for its versatile biological behavior. Eur J Med Chem 2015; 102:39-57. [PMID: 26241876 DOI: 10.1016/j.ejmech.2015.07.037] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 12/19/2022]
Abstract
Among all heterocycles, the triazine scaffold occupies a prominent position, possessing a broad range of biological activities. Triazine is found in many potent biologically active molecules with promising biological potential like anti-inflammatory, anti-mycobacterial, anti-viral, anti-cancer etc. which makes it an attractive scaffold for the design and development of new drugs. The wide spectrum of biological activity of this moiety has attracted attention in the field of medicinal chemistry. Due to these biological activities, their structure-activity relationship has generated interest among medicinal chemists and this has culminated in the discovery of several lead molecules. The outstanding development of triazine derivatives in diverse diseases within very short span of time proves its magnitude for medicinal chemistry research. Therefore, these compounds have been synthesized as target structure by many researchers, and were further evaluated for their biological activities. In this review, we have compiled and discussed the biological potential of s-triazine derivatives, which could provide a low-height flying bird's eye view of the triazine derived compounds to a medicinal chemist, for a comprehensive and target oriented information for the development of clinically viable drugs.
Collapse
Affiliation(s)
- Prinka Singla
- School of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| | - Vijay Luxami
- School of Chemistry and Biochemistry, Thapar University, Patiala 147004, India
| | - Kamaldeep Paul
- School of Chemistry and Biochemistry, Thapar University, Patiala 147004, India.
| |
Collapse
|
17
|
Discovery of piperidin-4-yl-aminopyrimidine derivatives as potent non-nucleoside HIV-1 reverse transcriptase inhibitors. Eur J Med Chem 2015; 97:1-9. [DOI: 10.1016/j.ejmech.2015.04.050] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2015] [Revised: 04/23/2015] [Accepted: 04/24/2015] [Indexed: 11/18/2022]
|
18
|
3D-QSAR and docking studies on piperidine-substituted diarylpyrimidine analogues as HIV-1 reverse transcriptase inhibitors. Med Chem Res 2015. [DOI: 10.1007/s00044-015-1381-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
19
|
Fe3O4@Hpipe-4@Cu Nanocatalyst for Hydrogenation of Nitro-Aromatics and Azo Dyes. J Inorg Organomet Polym Mater 2015. [DOI: 10.1007/s10904-015-0218-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
20
|
Vitnik VD, Vitnik ŽJ. The spectroscopic (FT-IR, FT-Raman, (l3)C, (1)H NMR and UV) and NBO analyses of 4-bromo-1-(ethoxycarbonyl)piperidine-4-carboxylic acid. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 138:1-12. [PMID: 25434858 DOI: 10.1016/j.saa.2014.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/29/2014] [Accepted: 11/05/2014] [Indexed: 06/04/2023]
Abstract
In this work, we will report a combined experimental and theoretical study on molecular and vibrational structure of 4-bromo-1-(ethoxycarbonyl)piperidine-4-carboxylic acid (BEPA). BEPA has been characterized by FT-IR, FT-Raman, (1)H NMR, (13)C NMR and UV spectroscopy. The FT-IR and FT-Raman spectra of BEPA were recorded in the solid phase. The optimized geometry was calculated by B3LYP and M06-2X methods using 6-311G(d,p) basis set. The FT-IR and FT-Raman spectra of BEPA were calculated at the same level and were interpreted in terms of Potential Energy Distribution (PED) analysis. The scaled theoretical wavenumber showed very good agreement with the experimental values. The (1)H and (l3)C nuclear magnetic resonance (NMR) chemical shifts of the molecule were calculated by the Gauge-Independent Atomic Orbital (GIAO) method. Stability of the molecule arising from hyperconjugative interactions and charge delocalization has been analyzed using Natural Bond Orbital (NBO) analysis. Density plots over the highest occupied molecular orbitals (HOMO) and lowest unoccupied molecular orbitals (LUMO) energy surface directly identifies the donor and acceptor atoms in the molecule. It also provides information about the charge transfer within the molecule. To obtain chemical reactivity of the molecule, the molecular electrostatic potential (MEP) surface map is plotted over the optimized geometry of the molecule.
Collapse
Affiliation(s)
- Vesna D Vitnik
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11001 Belgrade, Serbia
| | - Željko J Vitnik
- Department of Chemistry, Institute of Chemistry, Technology and Metallurgy, University of Belgrade, Studentski trg 12-16, 11001 Belgrade, Serbia.
| |
Collapse
|
21
|
Chen X, Meng Q, Qiu L, Zhan P, Liu H, De Clercq E, Pannecouque C, Liu X. Design, Synthesis, and Anti-HIV Evaluation of Novel Triazine Derivatives Targeting the Entrance Channel of the NNRTI Binding Pocket. Chem Biol Drug Des 2014; 86:122-8. [PMID: 25358434 DOI: 10.1111/cbdd.12471] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Revised: 10/12/2014] [Accepted: 10/17/2014] [Indexed: 11/28/2022]
Abstract
A novel series of triazine derivatives targeting the entrance channel of the HIV-1 non-nucleoside reverse transcriptase inhibitor binding pocket (NNIBP) were designed and synthesized on the basis of our previous work. The results of a cell-based antiviral screening assay indicated that most compounds showed good-to-moderate activity against wild-type HIV-1 with EC50 values within the concentration range of 0.0078-0.16 μm (compound DCS-a4, EC50 = 7.8 nm). Some compounds displayed submicromolar activity against the K103N/Y181C resistant mutant strain (such as compound DCS-a4, EC50 = 0.65 μm). Molecular modeling studies confirmed that the new compounds could bind into the NNIBP similarly as the lead compound, and the newly introduced flexible heterocycles could occupy the entrance channel effectively. In addition, the preliminary structure-activity relationship and the RT inhibitory assay are presented in this study.
Collapse
Affiliation(s)
- Xuwang Chen
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, Ji'nan, Shandong, 250012, China
| | - Qing Meng
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, Ji'nan, Shandong, 250012, China
| | - Liyun Qiu
- Department of Pharmacy, Jinan Central Hospital Affiliated to Shandong University, Jinan, Shandong, 250013, China
| | - Peng Zhan
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, Ji'nan, Shandong, 250012, China
| | - Huiqing Liu
- Institute of Pharmacology, School of Medicine, Shandong University, 44, West Culture Road, Ji'nan, Shandong, 250012, China
| | - Erik De Clercq
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Christophe Pannecouque
- Rega Institute for Medical Research, KU Leuven, Minderbroedersstraat 10, B-3000, Leuven, Belgium
| | - Xinyong Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, 44, West Culture Road, Ji'nan, Shandong, 250012, China
| |
Collapse
|
22
|
Abstract
This review summarizes recent reports on s-triazine and its respective analogs from the medicinal chemistry angle. Due to its high reactivity and binding characteristic towards various enzymes, s-triazine has attracted attention. This is combined with facile synthesis and interesting pharmacology. The triazine class demonstrates wide biological applications - including antimicrobial, antituberculosis, anticancer, antiviral and antimalarial. In this article the library of s-triazine-based molecular designs has been collated with respective bioactivity. Compounds are further compared with other heterocyclic/nontriazine moieties to correlate the efficiency of privileged s-triazine. We hope this article may assist chemists in their drug design and discovery efforts.
Collapse
|
23
|
Li X, Zhang L, Tian Y, Song Y, Zhan P, Liu X. Novel HIV-1 non-nucleoside reverse transcriptase inhibitors: a patent review (2011 – 2014). Expert Opin Ther Pat 2014; 24:1199-227. [DOI: 10.1517/13543776.2014.964685] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
24
|
Li X, Lu X, Chen W, Liu H, Zhan P, Pannecouque C, Balzarini J, De Clercq E, Liu X. Arylazolyl(azinyl)thioacetanilides. Part 16: Structure-based bioisosterism design, synthesis and biological evaluation of novel pyrimidinylthioacetanilides as potent HIV-1 inhibitors. Bioorg Med Chem 2014; 22:5290-7. [DOI: 10.1016/j.bmc.2014.08.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2014] [Revised: 07/30/2014] [Accepted: 08/01/2014] [Indexed: 10/24/2022]
|
25
|
Li X, Chen W, Tian Y, Liu H, Zhan P, De Clercq E, Pannecouque C, Balzarini J, Liu X. Discovery of novel diarylpyrimidines as potent HIV NNRTIs via a structure-guided core-refining approach. Eur J Med Chem 2014; 80:112-21. [DOI: 10.1016/j.ejmech.2014.04.036] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 04/08/2014] [Accepted: 04/11/2014] [Indexed: 10/25/2022]
|
26
|
Cloete TT, de Kock C, Smith PJ, N'Da DD. Synthesis, in vitro antiplasmodial activity and cytotoxicity of a series of artemisinin–triazine hybrids and hybrid-dimers. Eur J Med Chem 2014; 76:470-81. [DOI: 10.1016/j.ejmech.2014.01.040] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Revised: 01/15/2014] [Accepted: 01/18/2014] [Indexed: 12/11/2022]
|
27
|
Discovery of nitropyridine derivatives as potent HIV-1 non-nucleoside reverse transcriptase inhibitors via a structure-based core refining approach. Eur J Med Chem 2014; 76:531-8. [DOI: 10.1016/j.ejmech.2014.02.047] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2013] [Revised: 02/13/2014] [Accepted: 02/17/2014] [Indexed: 01/18/2023]
|
28
|
Harish KP, Mohana KN, Mallesha L, Veeresh B. Synthesis andIn VivoAnticonvulsant Activity of 2-Methyl-2-[3-(5-piperazin-1-yl-[1,3,4]oxadiazol-2-yl)-phenyl]-propionitrile Derivatives. Arch Pharm (Weinheim) 2014; 347:256-67. [DOI: 10.1002/ardp.201300225] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/19/2013] [Accepted: 09/24/2013] [Indexed: 11/06/2022]
Affiliation(s)
- Kikkeri P. Harish
- Department of Studies in Chemistry; University of Mysore, Manasagangotri; Mysore Karnataka India
| | - Kikkeri N. Mohana
- Department of Studies in Chemistry; University of Mysore, Manasagangotri; Mysore Karnataka India
| | - Lingappa Mallesha
- PG Department of Chemistry; JSS College of Arts, Commerce and Science; Mysore Karnataka India
| | - Bantal Veeresh
- Department of Pharmacology and Toxicology; G Pullareddy College of Pharmacy; Mehdipatnam Hyderabad, Andhra Pradesh India
| |
Collapse
|
29
|
Zhang L, Zhan P, Chen X, Li Z, Xie Z, Zhao T, Liu H, De Clercq E, Pannecouque C, Balzarini J, Liu X. Design, synthesis and preliminary SAR studies of novel N-arylmethyl substituted piperidine-linked aniline derivatives as potent HIV-1 NNRTIs. Bioorg Med Chem 2014; 22:633-42. [DOI: 10.1016/j.bmc.2013.10.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2013] [Revised: 10/21/2013] [Accepted: 10/22/2013] [Indexed: 01/19/2023]
|
30
|
Novel piperidinylamino-diarylpyrimidine derivatives with dual structural conformations as potent HIV-1 non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem Lett 2013; 23:6593-7. [DOI: 10.1016/j.bmcl.2013.10.059] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Revised: 10/10/2013] [Accepted: 10/28/2013] [Indexed: 11/20/2022]
|
31
|
Yang S, Pannecouque C, Daelemans D, Ma XD, Liu Y, Chen FE, De Clercq E. Molecular design, synthesis and biological evaluation of BP-O-DAPY and O-DAPY derivatives as non-nucleoside HIV-1 reverse transcriptase inhibitors. Eur J Med Chem 2013; 65:134-43. [DOI: 10.1016/j.ejmech.2013.04.052] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2012] [Revised: 04/24/2013] [Accepted: 04/26/2013] [Indexed: 12/11/2022]
|
32
|
Chen X, Li Y, Ding S, Balzarini J, Pannecouque C, De Clercq E, Liu H, Liu X. Discovery of Piperidine-Linked Pyridine Analogues as Potent Non-nucleoside HIV-1 Reverse Transcriptase Inhibitors. ChemMedChem 2013; 8:1117-26. [DOI: 10.1002/cmdc.201300130] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2013] [Indexed: 11/10/2022]
|
33
|
Shi Y, Chu W, Wang Y, Wang S, Du J, Zhang J, Li S, Zhou G, Qin X, Zhang C. Synthesis, characterization and cytotoxicity of the Au(III) complexes with cyclic amine-based dithiocarbamate ligands. INORG CHEM COMMUN 2013. [DOI: 10.1016/j.inoche.2013.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
34
|
Dalvadi JP, Patel PK, Chikhalia KH. Convenient synthesis of s-triazine based urea derivatives via a palladium catalyzed C–N coupling reaction. RSC Adv 2013. [DOI: 10.1039/c3ra40490k] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
35
|
Islor AM, Jagadeesh MR, Suresh Kumar HM, Ananda Kumari R, Gerber T, Hosten E, Betz R. N (1)-(4-Methyl-phen-yl)piperidine-1,4-dicarboxamide. Acta Crystallogr Sect E Struct Rep Online 2012; 68:o3452. [PMID: 23476265 PMCID: PMC3589029 DOI: 10.1107/s1600536812047836] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 11/21/2012] [Indexed: 11/10/2022]
Abstract
In the title compound, C14H19N3O2, the heterocycle adopts a (1)C4 conformation with the N atom being one of the flap atoms. In the crystal, classical N-H⋯O hydrogen bonds and C-H⋯O contacts connect the mol-ecules into a three-dimensional network.
Collapse
Affiliation(s)
- Arun M Islor
- National Institute of Technology-Karnataka, Department of Chemistry, Medicinal Chemistry Laboratory, Surathkal, Mangalore 575 025, India
| | | | | | | | | | | | | |
Collapse
|
36
|
Design, synthesis, anti-HIV evaluation and molecular modeling of piperidine-linked amino-triazine derivatives as potent non-nucleoside reverse transcriptase inhibitors. Bioorg Med Chem 2012; 20:3856-64. [DOI: 10.1016/j.bmc.2012.04.030] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/11/2012] [Accepted: 04/16/2012] [Indexed: 01/17/2023]
|
37
|
M. Riyadh S, A. Kheder N, M. Asiry A. A Facile and Convenient Synthesis of Novel Pyridine Derivatives Incorporating Antipyrine Moiety and Investigation of Their Antimicrobial Activities. HETEROCYCLES 2012. [DOI: 10.3987/com-12-12520] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|