1
|
Huang ZC, Ruan ZL, Xu H, Dai HX. Ring expansion of 3-hydroxyoxindoles to 4-quinolones via palladium-catalyzed C-C(acyl) bond cleavage. Chem Commun (Camb) 2024; 61:109-112. [PMID: 39611758 DOI: 10.1039/d4cc05369a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2024]
Abstract
We report herein the construction of 4-quinolones via palladium-catalyzed regioselective β-acyl elimination of 3-hydroxyoxindoles and a subsequent Camps cyclization process. This protocol is highly efficient and various 4-quinolone derivatives are obtained in high yields. The construction of the core skeleton of the 4-quinolone antibiotics demonstrated the synthetic utility of this method.
Collapse
Affiliation(s)
- Zhi-Cong Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Zhi-Ling Ruan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| | - Hui Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Hui-Xiong Dai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
- State Key Laboratory of Organometallic Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai 200032, China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210023, China
| |
Collapse
|
2
|
Tummanapalli S, Gulipalli KC, Bodige S, Pommidi AK, Boya R, Choppadandi S, Bakangari MR, Punna SK, Medaboina S, Mamindla DY, Kanuka A, Endoori S, Ganapathi VK, Kottam SD, Kalbhor D, Valluri M. Cu-Catalyzed Tandem C-N and C-C Bond Formation Leading to 4( 1H)-Quinolones: A Scaffold with Diverse Biological Properties from Totally New Raw Materials in a Single Step. J Org Chem 2024; 89:1609-1617. [PMID: 38238153 DOI: 10.1021/acs.joc.3c02215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024]
Abstract
A novel Cu-catalyzed tandem C-N and C-C bond-formation reaction has been developed to furnish 2-substituted-4-(1H)-quinolones. 4-(1H)-quinolones play an important role in medicinal chemistry. Many 2-aryl(alkyl)-4(1H)-quinolones are found to exhibit diverse biological properties. While traditional methods have inherent issues [like starting materials with incompatible functional groups (NH2 and keto groups)], many modern methods either require activated starting materials (like Ynones) or employ expensive metals (Pd, Rh, Au, etc.) involving carbonylation using CO or metal complexes. Our protocol presents an environmentally friendly one-step method for the construction of these useful 2-substituted-4-(1H)-quinolones from easily available aryl boronic acid (or pinacolate ester) and nitriles as new raw materials, using a cheap Cu-catalyst and O2 (air) as a green oxidant. We further extended its application to the synthesis of various natural products, including the first formal total synthesis of punarnavine. A plausible mechanism involving an aryl nitrilium ion (formed due to the intermolecular C-N bond-forming coupling between aryl boron species and the nitrile group) followed by tandem intramolecular C-C bond formation has been proposed.
Collapse
Affiliation(s)
- Satyanarayana Tummanapalli
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Kali Charan Gulipalli
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Srinu Bodige
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Anil Kumar Pommidi
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Ravi Boya
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Suresh Choppadandi
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Mahendar Reddy Bakangari
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Shiva Kumar Punna
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Srinivas Medaboina
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Devender Yadav Mamindla
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Ashok Kanuka
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Srinivas Endoori
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Vijay Kumar Ganapathi
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Sainath Dharmavaram Kottam
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Dinesh Kalbhor
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| | - Muralikrishna Valluri
- Curia India Pvt. Ltd (Formerly Albany Molecular Research Hyderabad Research Centre), Plot # 9, MN Park, Turkapally, Shameerpet, Genome Valley, RR District, Hyderabad 500078, India
| |
Collapse
|
3
|
Sereesongsaeng N, Burrows JF, Scott CJ, Brix K, Burden RE. Cathepsin V regulates cell cycle progression and histone stability in the nucleus of breast cancer cells. Front Pharmacol 2023; 14:1271435. [PMID: 38026973 PMCID: PMC10657903 DOI: 10.3389/fphar.2023.1271435] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/17/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: We previously identified that Cathepsin V (CTSV) expression is associated with poor prognosis in ER+ breast cancer, particularly within the Luminal A subtype. Examination of the molecular role of the protease within Luminal A tumours, revealed that CTSV promotes tumour cell invasion and proliferation, in addition to degradation of the luminal transcription factor, GATA3, via the proteasome. Methods: Cell line models expressing CTSV shRNA or transfected to overexpress CTSV were used to examine the impact of CTSV on cell proliferation by MTT assay and flow cytometry. Western blotting analysis was used to identify the impact of CTSV on histone and chaperone protein expression. Cell fractionation and confocal microscopy was used to illustrate the presence of CTSV in the nuclear compartment. Results: In this work we have identified that CTSV has an impact on breast cancer cell proliferation, with CTSV depleted cells exhibiting delayed progression through the G2/M phase of the cell cycle. Further investigation has revealed that CTSV can control nuclear expression levels of histones H3 and H4 via regulating protein expression of their chaperone sNASP. We have discovered that CTSV is localised to the nuclear compartment in breast tumour cells, mediated by a bipartite nuclear localisation signal (NLS) within the CTSV sequence and that nuclear CTSV is required for cell cycle progression and histone stability in breast tumour cells. Discussion: Collectively these findings support the hypothesis that targeting CTSV may have utility as a novel therapeutic target in ER+ breast cancer by impairing cell cycle progression via manipulating histone stabilisation.
Collapse
Affiliation(s)
| | - James F. Burrows
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, Belfast, United Kingdom
| | - Christopher J. Scott
- The Patrick G Johnston Centre for Cancer Research, Medical Biology Centre, Queen’s University Belfast, Belfast, United Kingdom
| | - Klaudia Brix
- School of Science, Constructor University, Bremen, Germany
| | - Roberta E. Burden
- School of Pharmacy, Medical Biology Centre, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
4
|
Voura M, Anwar S, Sigala I, Parasidou E, Fragoulidou S, Hassan MI, Sarli V. Synthesis, Structural Modification, and Bioactivity Evaluation of Substituted Acridones as Potent Microtubule Affinity-Regulating Kinase 4 Inhibitors. ACS Pharmacol Transl Sci 2023; 6:1052-1074. [PMID: 37470016 PMCID: PMC10353068 DOI: 10.1021/acsptsci.3c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Indexed: 07/21/2023]
Abstract
Acridones present numerous pharmacological activities, including inhibition of microtubule affinity-regulating kinase 4 (MARK4) kinase activity. To investigate structure-activity relationships and develop potent MARK4 inhibitors, derivatives of 2-methylacridone were synthesized and tested for their activity against MARK4 kinase. Selective substitutions at the nitrogen atom were accomplished by treating 2-methylacridone with alkyl halides in the presence of K2CO3. In addition, amidation of acridone acetic acid 11 with piperazine or tryptophan methyl ester followed by derivatization with various amines gave a series of new acridone derivatives. Among the tested compounds, six were identified as possessing high inhibitory activity against MARK4. The molecular modeling studies showed that the derivatives bearing piperazine or tryptophan bind well to the ATP-binding site of MARK4. The antiproliferative activity of six active compounds was evaluated against HeLa and U87MG cancer cells. Tryptophan derivatives 23a, 23b, and 23c showed significant cytotoxicity against both cell lines with EC50 values ranging from 2.13 to 4.22 μM, while derivatives bearing piperazine were found to be not cytotoxic. Additionally, compound 23a decreased the proliferation of human MDA-MB-435 and U251 cancer cells in the low micromolar range; however, it also affects the non-cancerous HGF cells. Due to their high binding affinity against MARK4, the synthesized compounds could be potential agents to target MARK4 against cancer and tauopathies.
Collapse
Affiliation(s)
- Maria Voura
- Laboratory
of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Saleha Anwar
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Ioanna Sigala
- Laboratory
of Biochemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Eleftheria Parasidou
- Laboratory
of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Souzanna Fragoulidou
- Laboratory
of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| | - Md. Imtaiyaz Hassan
- Centre
for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi 110025, India
| | - Vasiliki Sarli
- Laboratory
of Organic Chemistry, Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124 Thessaloniki, Greece
| |
Collapse
|
5
|
Synthesis, cytotoxicity, and docking based analysis of acridone-N-acetamides as AKT kinase inhibitors. CHEMICAL PAPERS 2023. [DOI: 10.1007/s11696-023-02692-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
|
6
|
Ahmed U, Manzoor M, Qureshi S, Mazhar M, Fatima A, Aurangzeb S, Hamid M, Khan KM, Khan NA, Rashid Y, Anwar A. Anti-amoebic effects of synthetic acridine-9(10H)-one against brain-eating amoebae. Acta Trop 2023; 239:106824. [PMID: 36610529 DOI: 10.1016/j.actatropica.2023.106824] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/30/2022] [Accepted: 01/02/2023] [Indexed: 01/06/2023]
Abstract
Pathogenic A. castellanii and N. fowleri are opportunistic free-living amoebae. Acanthamoeba spp. are the causative agents of granulomatous amebic encephalitis (GAE) and amebic keratitis (AK), whereas Naegleria fowleri causes a very rare but severe brain infection called primary amebic meningoencephalitis (PAM). Acridinone is an important heterocyclic scaffold and both synthetic and naturally occurring derivatives have shown various valuable biological properties. In the present study, ten synthetic Acridinone derivatives (I-X) were synthesized and assessed against both amoebae for anti-amoebic and cysticidal activities in vitro. In addition, excystation, encystation, cytotoxicity, host cell pathogenicity was also performed in-vitro. Furthermore, molecular docking studies of these compounds with three cathepsin B paralogous enzymes of N. fowleri were performed in order to predict the possible docking mode with pathogen. Compound VII showed potent anti-amoebic activity against A. castellanii with IC50 53.46 µg/mL, while compound IX showed strong activity against N. fowleri in vitro with IC50 72.41 µg/mL. Compounds II and VII showed a significant inhibition of phenotypic alteration of A. castellanii, while compound VIII significantly inhibited N. fowleri cysts. Cytotoxicity assessment showed that these compounds caused minimum damage to human keratinocyte cells (HaCaT cells) at 100 µg/mL, while also effectively reduced the cytopathogenicity of Acanthamoeba to HaCaT cells. Moreover, Cathepsin B protease was investigated in-silico as a new molecular therapeutic target for these compounds. All compounds showed potential interactions with the catalytic residues. These results showed that acridine-9(10H)-one derivatives, in particular compounds II, VII, VIII and IX hold promise in the development of therapeutic agents against these free-living amoebae.
Collapse
Affiliation(s)
- Usman Ahmed
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia
| | - Mehwish Manzoor
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan
| | - Sehrish Qureshi
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Muzna Mazhar
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Arj Fatima
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Sana Aurangzeb
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Mehwish Hamid
- Department of Biochemistry, University of Karachi, Karachi, Pakistan
| | - Khalid Mohammed Khan
- H. E. J. Research Institute of Chemistry, International Center for Chemical and Biological Sciences, University of Karachi, Karachi, Pakistan; Department of Clinical Pharmacy, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Naveed Ahmed Khan
- Department of Clinical Sciences, College of Medicine, University of Sharjah, Sharjah, University City, United Arab Emirates; Department of Medical Biology, Faculty of Medicine, Istinye University, Istanbul, 34010, Turkey
| | - Yasmeen Rashid
- Department of Biochemistry, University of Karachi, Karachi, Pakistan.
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya, Selangor, Malaysia.
| |
Collapse
|
7
|
Lecaille F, Chazeirat T, Saidi A, Lalmanach G. Cathepsin V: Molecular characteristics and significance in health and disease. Mol Aspects Med 2022; 88:101086. [PMID: 35305807 DOI: 10.1016/j.mam.2022.101086] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/23/2022] [Accepted: 02/26/2022] [Indexed: 12/31/2022]
Abstract
Human cysteine cathepsins form a family of eleven proteases (B, C, F, H, K, L, O, S, V, W, X/Z) that play important roles in a considerable number of biological and pathophysiological processes. Among them, cathepsin V, also known as cathepsin L2, is a lysosomal enzyme, which is mainly expressed in cornea, thymus, heart, brain, and skin. Cathepsin V is a multifunctional endopeptidase that is involved in both the release of antigenic peptides and the maturation of MHC class II molecules and participates in the turnover of elastin fibrils as well in the cleavage of intra- and extra-cellular substrates. Moreover, there is increasing evidence that cathepsin V may contribute to the progression of diverse diseases, due to the dysregulation of its expression and/or its activity. For instance, increased expression of cathepsin V is closely correlated with malignancies (breast cancer, squamous cell carcinoma, or colorectal cancer) as well vascular disorders (atherosclerosis, aortic aneurysm, hypertension) being the most prominent examples. This review aims to shed light on current knowledge on molecular aspects of cathepsin V (genomic organization, protein structure, substrate specificity), its regulation by protein and non-protein inhibitors as well to summarize its expression (tissue and cellular distribution). Then the core biological and pathophysiological roles of cathepsin V will be depicted, raising the question of its interest as a valuable target that can open up pioneering therapeutic avenues.
Collapse
Affiliation(s)
- Fabien Lecaille
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France.
| | - Thibault Chazeirat
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France
| | - Ahlame Saidi
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France
| | - Gilles Lalmanach
- Université de Tours, Tours, France; INSERM, UMR 1100, Centre d'Etude des Pathologies Respiratoires (CEPR), Team "Mécanismes protéolytiques dans l'inflammation", Tours, France.
| |
Collapse
|
8
|
Mitrović A, Senjor E, Jukić M, Bolčina L, Prunk M, Proj M, Nanut MP, Gobec S, Kos J. New inhibitors of cathepsin V impair tumor cell proliferation and elastin degradation and increase immune cell cytotoxicity. Comput Struct Biotechnol J 2022; 20:4667-4687. [PMID: 36147668 PMCID: PMC9459403 DOI: 10.1016/j.csbj.2022.08.046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/19/2022] [Accepted: 08/20/2022] [Indexed: 11/26/2022] Open
Abstract
Identification of novel potent inhibitors of lysosomal cysteine peptidase cathepsin V. New inhibitors of cathepsin V demonstrated antitumor activity. They impair tumor cell proliferation and elastase degradation and increase immune cell cytotoxicity. Cathepsin V inhibitor impaired conversion of immunosuppressive factor cystatin F to its active monomeric form.
Cathepsin V is a human lysosomal cysteine peptidase with specific functions during pathological processes and is as such a promising therapeutic target. Peptidase inhibitors represent powerful pharmacological tools for regulating excessive proteolytic activity in various diseases. Cathepsin V is highly related to cathepsin L but differs in tissue distribution, binding site morphology, substrate specificity, and function. To validate its therapeutic potential and extend the number of potent and selective cathepsin V inhibitors, we used virtual high-throughput screening of commercially available compound libraries followed by an evaluation of kinetic properties to identify novel potent and selective cathepsin V inhibitors. We identified the ureido methylpiperidine carboxylate derivative, compound 7, as a reversible, selective, and potent inhibitor of cathepsin V. It also exhibited the most preferable characteristics for further evaluation with in vitro functional assays that simulate the processes in which cathepsin V is known to play an important role. Compound 7 exerted significant effects on cell proliferation, elastin degradation, and immune cell cytotoxicity. The latter was increased because compound 7 impaired conversion of immunosuppressive factor cystatin F to its active monomeric form. Taken together, our results present novel potent inhibitors of cathepsin V and provide new hit compounds for detailed development and optimization. Further, we demonstrate that cathepsin V is a potential target for new approaches to cancer therapy.
Collapse
Affiliation(s)
- Ana Mitrović
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
- Corresponding author at: Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia.
| | - Emanuela Senjor
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Marko Jukić
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Lara Bolčina
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Mateja Prunk
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Matic Proj
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Milica Perišić Nanut
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
| | - Stanislav Gobec
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| | - Janko Kos
- Department of Biotechnology, Jožef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
- Faculty of Pharmacy, University of Ljubljana, Aškerčeva cesta 7, 1000 Ljubljana, Slovenia
| |
Collapse
|
9
|
Silva VLM, Pinto DCGA, Santos CMM, Rocha DHA. 15.4.5 Quinolinones and Related Systems (Update 2022). KNOWLEDGE UPDATES 2022/3 2022. [DOI: 10.1055/sos-sd-115-01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
AbstractQuinolinones, of which the quinolin-4(1H)-one ring system can be highlighted, represent an exciting class of nitrogen heterocycles. The quinolinone motif can be found in many natural compounds and approved drugs for several diseases. This chapter is a comprehensive survey of the methods for the synthesis of quinolin-2(1H)-ones, quinolin-4(1H)-ones, and their thio- and amino derivatives, and is an update to the previous Science of Synthesis chapter (Section 15.4), covering the period between 2003 and 2020.
Collapse
|
10
|
Li Y, Ai X, Zou C, Liu Y, Ma L, Men J, Liu D, Sheng L, Ruan X, Liu H, Li W, Ma E, Yuan L. Discovery of a novel and selective cathepsin L inhibitor with anti-metastatic ability in vitro and in vivo against breast cancer cells. Bioorg Chem 2021; 115:105256. [PMID: 34426153 DOI: 10.1016/j.bioorg.2021.105256] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/05/2021] [Accepted: 08/05/2021] [Indexed: 12/31/2022]
Abstract
Asperphenamate is a natural product that has attracted considerable interest from researchers worldwide. In the last decade, aiming to increase the biological activity and improve druggability, modifications of the A-ring moiety in asperphenamate have been performed. Our laboratory has also recently reported functional derivatizations of the A ring and studied its effect on the inhibition of cysteine cathepsin L. However, the functional significance of the B-ring fragment toward cathepsin L has not been evaluated thus far. In this paper, forty-four derivatives of the B-ring substituted with different N-phenylsulfonyl groups were designed and synthesized. Among them, the paratrifluromethyl analog B-2a and the 2, 4-difluoro-5-chloro derivative B-11b showed more potent inhibitory activity against cathepsin L than the control compound, ABR, which displayed the strongest inhibitory effect on cathepsin L and S among all reported asperphenamate derivatives. In particular, compound B-2a showed more pronounced selectivity against cathepsin L than the other derivatives. Molecular docking revealed that the N-phenylsulfonylamide moiety was vital for the interactions between B-2a and cathepsin L. Moreover, B-2a displayed no toxicity against normal cells. Therefore, compound B-2a was selected for further studies. Wound-healing assays, Transwell chamber assays and breast cancer lung metastasis mouse models demonstrated that B-2a exhibited antimetastatic ability in vitro and in vivo.
Collapse
Affiliation(s)
- Yanchun Li
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Xinyu Ai
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China, Benxi 117000, PR China
| | - Chunyang Zou
- Department of Pharmacy, Liaoning Vocational College of Medicine, Shenyang 110101, PR China
| | - Yutong Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Lili Ma
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Jinyu Men
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Dongyue Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Lei Sheng
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China, Benxi 117000, PR China
| | - Xinhui Ruan
- Department of Pharmacy, Liaoning Vocational College of Medicine, Shenyang 110101, PR China
| | - Haihan Liu
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Weixia Li
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China
| | - Enlong Ma
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, PR China
| | - Lei Yuan
- Key Laboratory of Structure-Based Drug Design and Discovery (Shenyang Pharmaceutical University), Ministry of Education, Shenyang 110016, PR China; Institute of Drug Research in Medicine Capital of China, Benxi 117000, PR China.
| |
Collapse
|
11
|
Rao MS, Hussain S. DABCO-mediated decarboxylative cyclization of isatoic anhydride with aroyl/heteroaroyl/alkoylacetonitriles under microwave conditions: Strategy for the synthesis of substituted 4-quinolones. Tetrahedron Lett 2021. [DOI: 10.1016/j.tetlet.2021.153187] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
12
|
Lee SB, Jang Y, Ahn J, Chun S, Oh DC, Hong S. One-Pot Synthesis of 4-Quinolone via Iron-Catalyzed Oxidative Coupling of Alcohol and Methyl Arene. Org Lett 2020; 22:8382-8386. [PMID: 33058675 DOI: 10.1021/acs.orglett.0c03011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Herein, we describe the iron(III)-catalyzed oxidative coupling of alcohol/methyl arene with 2-amino phenyl ketone to synthesize 4-quinolone. Alcohols and methyl arenes are oxidized to the aldehyde in the presence of an iron catalyst and di-tert-butyl peroxide, followed by a tandem process, condensation with amine/Mannich-type cyclization/oxidation, to complete the 4-quinolone ring. This method tolerates various kinds of functional groups and provides a direct approach to the synthesis of 4-quinolones from less functionalized substrates.
Collapse
Affiliation(s)
- Seok Beom Lee
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Yoonkyung Jang
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Jiwon Ahn
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Simin Chun
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| | - Suckchang Hong
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea
| |
Collapse
|
13
|
Silva TL, dos Santos DA, de Jesus HC, Brömme D, Fernandes JB, Paixão MW, Corrêa AG, Vieira PC. Green asymmetric synthesis of epoxypeptidomimetics and evaluation as human cathepsin K inhibitors. Bioorg Med Chem 2020; 28:115597. [DOI: 10.1016/j.bmc.2020.115597] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/29/2020] [Accepted: 06/08/2020] [Indexed: 10/24/2022]
|
14
|
Voura M, Khan P, Thysiadis S, Katsamakas S, Queen A, Hasan GM, Ali S, Sarli V, Hassan MI. Probing the Inhibition of Microtubule Affinity Regulating Kinase 4 by N-Substituted Acridones. Sci Rep 2019; 9:1676. [PMID: 30737440 PMCID: PMC6368574 DOI: 10.1038/s41598-018-38217-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 11/16/2018] [Indexed: 12/18/2022] Open
Abstract
Microtubule affinity regulating kinase 4 (MARK4) becomes a unique anti-cancer drug target as its overexpression is responsible for different types of cancers. In quest of novel, effective MARK4 inhibitors, some acridone derivatives were synthesized, characterized and evaluated for inhibitory activity against human MARK4. Among all the synthesized compounds, three (7b, 7d and 7f) were found to have better binding affinity and enzyme inhibition activity in µM range as shown by fluorescence binding, ITC and kinase assays. Here we used functional assays of selected potential lead molecules with commercially available panel of 26 kinases of same family. A distinctive kinase selectivity profile was observed for each compound. The selective compounds were identified with submicromolar cellular activity against MARK4. Furthermore, in vitro antitumor evaluation against cancerous cells (MCF-7 and HepG2) revealed that compounds 7b, 7d and 7f inhibit cell proliferation and predominantly induce apoptosis in MCF-7 cells, with IC50 values of 5.2 ± 1.2 μM, 6.3 ± 1.2 μM, and 5.8 ± 1.4 μM respectively. In addition, these compounds significantly upsurge the oxidative stress in cancerous cells. Our observations support our approach for the synthesis of effective inhibitors against MARK4 that can be taken forward for the development of novel anticancer molecules targeting MARK4.
Collapse
Affiliation(s)
- Maria Voura
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Parvez Khan
- Centre for interdisciplinary research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Savvas Thysiadis
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Sotiris Katsamakas
- Department of Pharmaceutical Chemistry, School of Pharmacy, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece
| | - Aarfa Queen
- Centre for interdisciplinary research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
- Department of Chemistry, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Gulam Mustafa Hasan
- Department of Biochemistry, College of Medicine, Prince Sattam Bin Abdulaziz University, P.O. Box 173, Al-Kharj, 11942, Saudi Arabia
| | - Sher Ali
- Centre for interdisciplinary research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India
| | - Vasiliki Sarli
- Department of Chemistry, Aristotle University of Thessaloniki, University Campus, 54124, Thessaloniki, Greece.
| | - Md Imtaiyaz Hassan
- Centre for interdisciplinary research in Basic Sciences, Jamia Millia Islamia, Jamia Nagar, New Delhi, 110025, India.
| |
Collapse
|
15
|
Liu Y, Tian Y, Su K, Wang P, Guo X, Chen B. Rhodium(iii)-catalyzed [3 + 3] annulation reactions of N-nitrosoanilines and cyclopropenones: an approach to functionalized 4-quinolones. Org Chem Front 2019. [DOI: 10.1039/c9qo01250h] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report Rh(iii)-catalyzed [3 + 3] annulation reactions for the preparation of functionalized 4-quinolones from available N-nitrosoanilines and cyclopropenones.
Collapse
Affiliation(s)
- Yafeng Liu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Yuan Tian
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Kexin Su
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Peigen Wang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Xin Guo
- School of Chemistry and Chemical Engineering
- North Minzu University
- Yinchuan
- China
| | - Baohua Chen
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| |
Collapse
|
16
|
Saito T, Kutsumura N, Numata K, Mosaki S. Total Synthesis of Haplacutines B and C. HETEROCYCLES 2019. [DOI: 10.3987/com-18-s(f)7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
17
|
Asymmetric synthesis and evaluation of epoxy-α-acyloxycarboxamides as selective inhibitors of cathepsin L. Bioorg Med Chem 2017; 25:4620-4627. [DOI: 10.1016/j.bmc.2017.06.048] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2017] [Revised: 06/22/2017] [Accepted: 06/27/2017] [Indexed: 01/01/2023]
|
18
|
Design, synthesis, antitumor evaluation, 3D-QSAR and molecular docking studies of novel 4-aminoacridone compounds. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1953-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
19
|
Ma H, Guo C, Zhan Z, Lu G, Zhang Y, Luo X, Cui X, Huang G. Transition-metal-free oxidative intermolecular cyclization reaction: synthesis of 2-aryl-4-quinolones. NEW J CHEM 2017. [DOI: 10.1039/c7nj01293d] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, a novel and efficient intermolecular cyclization of 2-aminoacetophenones with aldehydes was developed for the synthesis of 2-aryl-4-quinolones through C–C and C–N bond formation.
Collapse
Affiliation(s)
- Haojie Ma
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Cui Guo
- Yanchuan County People's Hospital
- Yanchuan
- P. R. China
| | - Zhenzhen Zhan
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Guoqiang Lu
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - YiXin Zhang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Xinliang Luo
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - XinFeng Cui
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| | - Guosheng Huang
- State Key Laboratory of Applied Organic Chemistry
- Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province
- Department of Chemistry
- Lanzhou University
- Lanzhou
| |
Collapse
|
20
|
Zhou N, Yan Z, Zhang H, Wu Z, Zhu C. Metal-Free Radical Oxidative Cyclization of o-Azidoaryl Acetylenic Ketones with Sulfinic Acids To Access Sulfone-Containing 4-Quinolones. J Org Chem 2016; 81:12181-12188. [PMID: 27978760 DOI: 10.1021/acs.joc.6b01847] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A novel one-pot synthesis of sulfone-containing 4-quinolones with easily available sulfinic acids as sulfonylating precursors is described. This reaction is characterized by mild reaction conditions, high functional-group tolerance and amenability to gram-scale synthesis.
Collapse
Affiliation(s)
- Nengneng Zhou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Zhongfei Yan
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Honglin Zhang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Zhongkai Wu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
| | - Chengjian Zhu
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing University , Nanjing 210093, P. R. China
- Shanghai Institute of Organic Chemistry , Chinese Academy of Sciences, Shanghai 200032, China
| |
Collapse
|
21
|
|
22
|
Ma H, Zhou X, Wei D, Cao J, Shi C, Fan Y, Huang G. KHCO3- and DBU-Promoted Cascade Reaction to Synthesize 3-Benzyl-2-phenylquinolin-4(1 H)-ones. Chem Asian J 2016; 11:2829-2833. [DOI: 10.1002/asia.201600901] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Revised: 07/16/2016] [Indexed: 11/10/2022]
Affiliation(s)
- Haojie Ma
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University; Lanzhou P. R. China
| | - Xiaoqiang Zhou
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University; Lanzhou P. R. China
| | - DaiDong Wei
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University; Lanzhou P. R. China
| | - Jinhui Cao
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University; Lanzhou P. R. China
| | - Chong Shi
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University; Lanzhou P. R. China
| | - Yuxing Fan
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University; Lanzhou P. R. China
| | - Guosheng Huang
- State Key Laboratory of Applied Organic Chemistry; Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province; Department of Chemistry; Lanzhou University; Lanzhou P. R. China
| |
Collapse
|
23
|
Hu W, Lin JP, Song LR, Long YQ. Direct synthesis of 2-aryl-4-quinolones via transition-metal-free intramolecular oxidative C(sp(3))-H/C(sp(3))-H coupling. Org Lett 2015; 17:1268-71. [PMID: 25700137 DOI: 10.1021/acs.orglett.5b00248] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
A novel, metal-free oxidative intramolecular Mannich reaction was developed between secondary amines and unmodified ketones, affording a simple and direct access to a broad range of 2-arylquinolin-4(1H)-ones through C(sp(3))-H activation/C(sp(3))-C(sp(3)) bond formation from readily available N-arylmethyl-2-aminophenylketones, using TEMPO as the oxidant and KO(t)Bu as the base.
Collapse
Affiliation(s)
- Wei Hu
- CAS Key Laboratory of Receptor Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences , 555 Zuchongzhi Road, Shanghai 201203, China
| | | | | | | |
Collapse
|
24
|
Singh M, Raghav N. 2,3-Dihydroquinazolin-4(1H)-one derivatives as potential non-peptidyl inhibitors of cathepsins B and H. Bioorg Chem 2015; 59:12-22. [PMID: 25665518 DOI: 10.1016/j.bioorg.2015.01.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 01/15/2015] [Accepted: 01/19/2015] [Indexed: 12/17/2022]
Abstract
A direct correlation between cathepsin expression-cancer progression and elevated levels of cathepsins due to an imbalance in cellular inhibitors-cathepsins ratio in inflammatory diseases necessitates the work on the identification of potential inhibitors to cathepsins. In the present work we report the synthesis of some 2,3-dihydroquinazolin-4(1H)-ones followed by their evaluation as cysteine protease inhibitors in general and cathepsin B and cathepsin H inhibitors in particular. 2,3-Dihydroquinazolin-4(1H)-ones, synthesized by the condensation of anthranilamide and carbonyl compound in presence of PPA-SiO2 catalyst, were characterized by spectral analysis. The designed compounds were screened as inhibitors to proteolysis on endogenous protein substrates. Further, a distinct differential pattern of inhibition was obtained for cathepsins B and H. The inhibition was more to cathepsin B with Ki values in nanomolar range. However, cathepsin H was inhibited at micromolar concentration. Maximum inhibition was shown by compounds, 1e and 1f for cathepsin B and compounds 1c and 1f for cathepsin H. The synthesized compounds were established as reversible inhibitors of cathepsins B and H. The results were also compared with the energy of interaction between enzyme active site and compounds using iGemdock software.
Collapse
Affiliation(s)
- Mamta Singh
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India
| | - Neera Raghav
- Department of Chemistry, Kurukshetra University, Kurukshetra 136119, India.
| |
Collapse
|
25
|
Raghav N, Singh M. Design, synthesis and docking studies of bischalcones based quinazoline-2(1H)-ones and quinazoline-2(1H)-thiones derivatives as novel inhibitors of cathepsin B and cathepsin H. Eur J Pharm Sci 2014; 54:28-39. [DOI: 10.1016/j.ejps.2013.12.018] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2013] [Revised: 12/03/2013] [Accepted: 12/29/2013] [Indexed: 11/30/2022]
|
26
|
Mn(III)-based reaction of alkenes with quinolinones. Formation of peroxyquinolinones and quinoline-related derivatives. Tetrahedron 2014. [DOI: 10.1016/j.tet.2014.01.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|