1
|
Bojovic D, Nikolic M, Nedeljkovic N, Vesovic M, Zivanovic A, Karovic M. Medicinal Chemistry Insights in Neuronal Nitric Oxide Synthase Inhibitors Containing Nitrogen Heterocyclic Compounds: A Mini Review. Chem Biodivers 2025; 22:e202402637. [PMID: 39436922 DOI: 10.1002/cbdv.202402637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 10/21/2024] [Indexed: 10/25/2024]
Abstract
Many scientific reports over the last two decades have focused on the discovery and development of novel nNOS inhibitors. The structural identity of isoforms, bioavailability, pharmacokinetic, and safety profile issues remain major obstacles in the discovery of more potent and selective nNOS inhibitors. This review aims to provide an in-depth overview of the molecular interaction patterns between nNOS active site and inhibitors containing structurally diverse nitrogen heterocyclic compounds and highlight the structural properties needed to develop selective nNOS inhibitors. Previously published data allowed the usage of the structure-driven approach in the designing of selective nNOS inhibitors, which relies on the specific structural features required to achieve isoform-selectivity towards nNOS. The incorporation of chiral pyrrolidine ring, two aminopyridine heads, or a specific amino tail group, along with the inhibitor's capacity to adopt the curled conformation in the nNOS environment significantly strengthens the molecular interaction between the inhibitor and nNOS residues by forming specific electrostatic interactions and non-bonded contacts that are vital for isoform selectivity. Additional structure-activity relationship investigations are necessary to elucidate more structural characteristics that will ultimately resolve the exact structural basis required for isoform-selective inhibition of nNOS.
Collapse
Affiliation(s)
- Dijana Bojovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Milos Nikolic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Nikola Nedeljkovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Marina Vesovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Ana Zivanovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| | - Marko Karovic
- Department of Pharmacy, Faculty of Medical Sciences, University of Kragujevac, 34000, Kragujevac, Serbia
| |
Collapse
|
2
|
|
3
|
Huang Y, Liao J, Wang W, Liu H, Guo H. Synthesis of heterocyclic compounds through nucleophilic phosphine catalysis. Chem Commun (Camb) 2020; 56:15235-15281. [PMID: 33320123 DOI: 10.1039/d0cc05699e] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Nucleophilic phosphine catalysis is a practical and powerful tool for the synthesis of various heterocyclic compounds with the advantages of environmentally friendly, metal-free, and mild reaction conditions. The present report summarizes the construction of four to eight-membered heterocyclic compounds containing nitrogen, oxygen and sulphur atoms through phosphine-catalyzed intramolecular annulations and intermolecular [2+2], [3+2], [4+1], [3+1+1], [5+1], [4+2], [2+2+2], [3+3], [4+3] and [3+2+3] annulations of electron-deficient alkenes, allenes, alkynes and Morita-Baylis-Hillman carbonates.
Collapse
Affiliation(s)
- Yifan Huang
- Department of Chemistry and Innovation Center of Pesticide Research, China Agricultural University, Beijing 100193, China.
| | | | | | | | | |
Collapse
|
4
|
Mittal A, Kakkar R. Nitric Oxide Synthases and Their Inhibitors: A Review. LETT DRUG DES DISCOV 2020. [DOI: 10.2174/1570180816666190222154457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Nitric Oxide (NO), an important biological mediator, is involved in the regulation of the cardiovascular, nervous and immune systems in mammals. Synthesis of NO is catalyzed by its biosynthetic enzyme, Nitric Oxide Synthase (NOS). There are three main isoforms of the enzyme, neuronal NOS, endothelial NOS and inducible NOS, which have very similar structures but differ in their expression and activities. NO is produced in the active site of the enzyme in two distinct cycles from oxidation of the substrate L-arg (L-arginine) in nicotinamide adenine dinucleotide phosphate (NADPH)-dependent reaction. NOS has gained considerable attention of biochemists due to its complexity and unique catalytic mechanism. The review focuses on NOS structure, its function and catalytic reaction mechanism. In particular, the review is concluded with a discussion on the role of all three isoforms of NOS in physiological and pathological conditions and their inhibitors with a focus on the role of computational techniques in their development.
Collapse
Affiliation(s)
- Anshika Mittal
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Rita Kakkar
- Computational Chemistry Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| |
Collapse
|
5
|
Discovery of indoline derivatives that inhibit esophageal squamous cell carcinoma growth by Noxa mediated apoptosis. Bioorg Chem 2019; 92:103190. [PMID: 31465969 DOI: 10.1016/j.bioorg.2019.103190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 07/27/2019] [Accepted: 08/08/2019] [Indexed: 11/23/2022]
Abstract
A series of novel indoline derivatives were synthesized and evaluated for antiproliferative activity against four selected cancer cell lines (Hela, A549, HepG2 and KYSE30). Among them, compound 20 displayed the potent inhibition activity against esophageal cancer cells (Kyse30, Kyse450, Kyse510 and EC109). Cellular mechanism studies in esophageal squamous cell carcinoma (ESCC) cells elucidated compound 20 inhibited cell growths in vitro and in vivo, reduced colony formation, arrested cell cycle at M phase, and induced Noxa-dependent apoptosis in ESCC. Importantly, compound 20 was identified as a novel Noxa mediated apoptosis inducer. These results suggested that compound 20 might be a promising anticancer agent with potential for development of further clinical applications.
Collapse
|
6
|
Xu F, Korch KM, Watson DA. Synthesis of Indolines and Derivatives by Aza-Heck Cyclization. Angew Chem Int Ed Engl 2019; 58:13448-13451. [PMID: 31310448 DOI: 10.1002/anie.201907758] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Indexed: 11/07/2022]
Abstract
For the first time, an aza-Heck cyclization that allows the preparation of indoline scaffolds is described. Using N-hydroxy anilines as electrophiles, which can be easily accessed from the corresponding nitroarenes, this method provides indolines bearing pendant functionality and complex ring topologies. Synthesis of challenging indolines, such as those bearing fully substituted carbon atoms at C2, is also possible using this method.
Collapse
Affiliation(s)
- Feiyang Xu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Katerina M Korch
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| | - Donald A Watson
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, 19716, USA
| |
Collapse
|
7
|
Xu F, Korch KM, Watson DA. Synthesis of Indolines and Derivatives by Aza‐Heck Cyclization. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201907758] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Feiyang Xu
- Department of Chemistry and BiochemistryUniversity of Delaware Newark DE 19716 USA
| | - Katerina M. Korch
- Department of Chemistry and BiochemistryUniversity of Delaware Newark DE 19716 USA
| | - Donald A. Watson
- Department of Chemistry and BiochemistryUniversity of Delaware Newark DE 19716 USA
| |
Collapse
|
8
|
Venkanna A, Cho KH, Dhorma LP, Kumar DN, Hah JM, Park HG, Kim SY, Kim MH. Chemistry-oriented synthesis (ChOS) and target deconvolution on neuroprotective effect of a novel scaffold, oxaza spiroquinone. Eur J Med Chem 2019; 163:453-480. [DOI: 10.1016/j.ejmech.2018.11.037] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 11/13/2018] [Accepted: 11/16/2018] [Indexed: 01/09/2023]
|
9
|
Tejero J, Shiva S, Gladwin MT. Sources of Vascular Nitric Oxide and Reactive Oxygen Species and Their Regulation. Physiol Rev 2019; 99:311-379. [PMID: 30379623 PMCID: PMC6442925 DOI: 10.1152/physrev.00036.2017] [Citation(s) in RCA: 337] [Impact Index Per Article: 56.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Revised: 03/30/2018] [Accepted: 05/06/2018] [Indexed: 02/07/2023] Open
Abstract
Nitric oxide (NO) is a small free radical with critical signaling roles in physiology and pathophysiology. The generation of sufficient NO levels to regulate the resistance of the blood vessels and hence the maintenance of adequate blood flow is critical to the healthy performance of the vasculature. A novel paradigm indicates that classical NO synthesis by dedicated NO synthases is supplemented by nitrite reduction pathways under hypoxia. At the same time, reactive oxygen species (ROS), which include superoxide and hydrogen peroxide, are produced in the vascular system for signaling purposes, as effectors of the immune response, or as byproducts of cellular metabolism. NO and ROS can be generated by distinct enzymes or by the same enzyme through alternate reduction and oxidation processes. The latter oxidoreductase systems include NO synthases, molybdopterin enzymes, and hemoglobins, which can form superoxide by reduction of molecular oxygen or NO by reduction of inorganic nitrite. Enzymatic uncoupling, changes in oxygen tension, and the concentration of coenzymes and reductants can modulate the NO/ROS production from these oxidoreductases and determine the redox balance in health and disease. The dysregulation of the mechanisms involved in the generation of NO and ROS is an important cause of cardiovascular disease and target for therapy. In this review we will present the biology of NO and ROS in the cardiovascular system, with special emphasis on their routes of formation and regulation, as well as the therapeutic challenges and opportunities for the management of NO and ROS in cardiovascular disease.
Collapse
Affiliation(s)
- Jesús Tejero
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Sruti Shiva
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| | - Mark T Gladwin
- Pittsburgh Heart, Lung, Blood and Vascular Medicine Institute, University of Pittsburgh , Pittsburgh, Pennsylvania ; Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania ; Department of Pharmacology and Chemical Biology, University of Pittsburgh , Pittsburgh, Pennsylvania ; and Department of Medicine, Center for Metabolism and Mitochondrial Medicine, University of Pittsburgh , Pittsburgh, Pennsylvania
| |
Collapse
|
10
|
Li H, Evenson RJ, Chreifi G, Silverman RB, Poulos TL. Structural Basis for Isoform Selective Nitric Oxide Synthase Inhibition by Thiophene-2-carboximidamides. Biochemistry 2018; 57:6319-6325. [PMID: 30335983 PMCID: PMC6282162 DOI: 10.1021/acs.biochem.8b00895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The overproduction of nitric oxide in the brain by neuronal nitric oxide synthase (nNOS) is associated with a number of neurodegenerative diseases. Although inhibiting nNOS is an important therapeutic goal, it is important not to inhibit endothelial NOS (eNOS) because of the critical role played by eNOS in maintaining vascular tone. While it has been possible to develop nNOS selective aminopyridine inhibitors, many of the most potent and selective inhibitors exhibit poor bioavailability properties. Our group and others have turned to more biocompatible thiophene-2-carboximidamide (T2C) inhibitors as potential nNOS selective inhibitors. We have used crystallography and computational methods to better understand how and why two commercially developed T2C inhibitors exhibit selectivity for human nNOS over human eNOS. As with many of the aminopyridine inhibitors, a critical active site Asp residue in nNOS versus Asn in eNOS is largely responsible for controlling selectivity. We also present thermodynamic integration results to better understand the change in p Ka and thus the charge of inhibitors once bound to the active site. In addition, relative free energy calculations underscore the importance of enhanced electrostatic stabilization of inhibitors bound to the nNOS active site compared to eNOS.
Collapse
Affiliation(s)
- Huiying Li
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, California 92697-3900, United States
| | - Ryan J. Evenson
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Georges Chreifi
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, California 92697-3900, United States
- Current address: Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, United States
| | - Richard B. Silverman
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, United States
| | - Thomas L. Poulos
- Departments of Molecular Biology and Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, California 92697-3900, United States
| |
Collapse
|
11
|
Poulos TL, Li H. Nitric oxide synthase and structure-based inhibitor design. Nitric Oxide 2016; 63:68-77. [PMID: 27890696 DOI: 10.1016/j.niox.2016.11.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/09/2016] [Accepted: 11/21/2016] [Indexed: 11/24/2022]
Abstract
Once it was discovered that the enzyme nitric oxide synthase (NOS) is responsible for the biosynthesis of NO, NOS became a drug target. Particularly important is the over production of NO by neuronal NOS (nNOS) in various neurodegenerative disorders. After the various NOS isoforms were identified, inhibitor development proceeded rapidly. It soon became evident, however, that isoform selectivity presents a major challenge. All 3 human NOS isoforms, nNOS, eNOS (endothelial NOS), and iNOS (inducible NOS) have nearly identical active site structures thus making selective inhibitor design especially difficult. Of particular importance is the avoidance of inhibiting eNOS owing to its vital role in the cardiovascular system. This review summarizes some of the history of NOS inhibitor development and more recent advances in developing isoform selective inhibitors using primarily structure-based approaches.
Collapse
Affiliation(s)
- Thomas L Poulos
- Departments of Molecular Biology & Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, Irvine, CA 92697-3900, USA.
| | - Huiying Li
- Departments of Molecular Biology & Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, Irvine, CA 92697-3900, USA
| |
Collapse
|
12
|
Camacho ME, Chayah M, García ME, Fernández-Sáez N, Arias F, Gallo MA, Carrión MD. Quinazolinones, Quinazolinthiones, and Quinazolinimines as Nitric Oxide Synthase Inhibitors: Synthetic Study and Biological Evaluation. Arch Pharm (Weinheim) 2016; 349:638-50. [DOI: 10.1002/ardp.201600020] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 05/23/2016] [Accepted: 05/27/2016] [Indexed: 02/05/2023]
Affiliation(s)
- M. Encarnación Camacho
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - Mariem Chayah
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - M. Esther García
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - Nerea Fernández-Sáez
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - Fabio Arias
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - Miguel A. Gallo
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| | - M. Dora Carrión
- Facultad de Farmacia, Departamento de Química Farmacéutica y Orgánica; Universidad de Granada; Granada Spain
| |
Collapse
|
13
|
Gao Z, Wang C, Yuan C, Zhou L, Xiao Y, Guo H. Phosphine-catalyzed [4+1] annulation of 2-tosylaminochalcones with allenoates: synthesis of trans-2,3-disubstitued indolines. Chem Commun (Camb) 2015; 51:12653-6. [DOI: 10.1039/c5cc04279h] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Phosphine-catalyzed [4+1] annulation of 2-tosylaminochalcones with allenoates has been achieved, giving trans-2,3-disubstitued indolines as major diastereoisomers in moderate to good yields.
Collapse
Affiliation(s)
- Zhenzhen Gao
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Chang Wang
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Chunhao Yuan
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Leijie Zhou
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Yumei Xiao
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| | - Hongchao Guo
- Department of Applied Chemistry
- China Agricultural University
- Beijing 100193
- China
| |
Collapse
|
14
|
Mukherjee P, Cinelli MA, Kang S, Silverman RB. Development of nitric oxide synthase inhibitors for neurodegeneration and neuropathic pain. Chem Soc Rev 2014; 43:6814-38. [PMID: 24549364 PMCID: PMC4138306 DOI: 10.1039/c3cs60467e] [Citation(s) in RCA: 105] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Nitric oxide (NO) is an important signaling molecule in the human body, playing a crucial role in cell and neuronal communication, regulation of blood pressure, and in immune activation. However, overproduction of NO by the neuronal isoform of nitric oxide synthase (nNOS) is one of the fundamental causes underlying neurodegenerative disorders and neuropathic pain. Therefore, developing small molecules for selective inhibition of nNOS over related isoforms (eNOS and iNOS) is therapeutically desirable. The aims of this review focus on the regulation and dysregulation of NO signaling, the role of NO in neurodegeneration and pain, the structure and mechanism of nNOS, and the use of this information to design selective inhibitors of this enzyme. Structure-based drug design, the bioavailability and pharmacokinetics of these inhibitors, and extensive target validation through animal studies are addressed.
Collapse
Affiliation(s)
- Paramita Mukherjee
- Department of Chemistry, Department of Molecular Biosciences, Chemistry of Life Processes Institute, Center for Molecular Innovation and Drug Discovery, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208-3113, USA.
| | | | | | | |
Collapse
|
15
|
Feng C, Chen L, Li W, Elmore BO, Fan W, Sun X. Dissecting regulation mechanism of the FMN to heme interdomain electron transfer in nitric oxide synthases. J Inorg Biochem 2013; 130:130-40. [PMID: 24084585 DOI: 10.1016/j.jinorgbio.2013.09.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2013] [Revised: 08/12/2013] [Accepted: 09/05/2013] [Indexed: 11/25/2022]
Abstract
Nitric oxide synthase (NOS), a flavo-hemoprotein, is responsible for biosynthesis of nitric oxide (NO) in mammals. Three NOS isoforms, iNOS, eNOS and nNOS (inducible, endothelial, and neuronal NOS), achieve their biological functions by tight control of interdomain electron transfer (IET) process through interdomain interactions. In particular, the FMN-heme IET is essential in coupling electron transfer in the reductase domain with NO synthesis in the heme domain by delivery of electrons required for O2 activation at the catalytic heme site. Emerging evidence indicates that calmodulin (CaM) activates NO synthesis in eNOS and nNOS by a conformational change of the FMN domain from its shielded electron-accepting (input) state to a new electron-donating (output) state, and that CaM is also required for proper alignment of the FMN and heme domains in the three NOS isoforms. In the absence of a structure of full-length NOS, an integrated approach of spectroscopic, rapid kinetic and mutagenesis methods is required to unravel regulation mechanism of the FMN-heme IET process. This is to investigate the roles of the FMN domain motions and the docking between the primary functional FMN and heme domains in regulating NOS activity. The recent developments in this area that are driven by the combined approach are the focuses of this review. A better understanding of the roles of interdomain FMN/heme interactions and CaM binding may serve as a basis for the rational design of new selective modulators of the NOS enzymes.
Collapse
Affiliation(s)
- Changjian Feng
- Department of Pharmaceutical Sciences, University of New Mexico, Albuquerque, NM 87131, USA.
| | | | | | | | | | | |
Collapse
|
16
|
Parent M, Dupuis F, Maincent P, Vigneron C, Leroy P, Boudier A. [Which future in cardiovascular therapy for nitric oxide and its derivatives?]. ANNALES PHARMACEUTIQUES FRANÇAISES 2013; 71:84-94. [PMID: 23537409 DOI: 10.1016/j.pharma.2012.12.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2012] [Revised: 12/20/2012] [Accepted: 12/28/2012] [Indexed: 10/27/2022]
Abstract
Nitric oxide (NO) is involved in the regulation of several physiological processes such as vascular homeostasis. Exogenous NO supply offers major therapeutic interest, especially in the treatment of coronary artery disease, ischemic syndromes and other cardiovascular pathologies. Nevertheless, the administration of NO itself is limited by its short half-life. NO prodrugs have been marketed for decades, e.g. organic nitrates for angina pectoris. These prodrugs display undeniable advantages such as angina crisis relief and preconditioning effect. Nevertheless, they suffer from several drawbacks: toxicity, tolerance, endothelial dysfunction exacerbation. These negative effects are related to massive production of reactive species derived from oxygen or nitrogen, which trigger oxidative and nitrosative stress. New NO donors are under development to overcome those disadvantages, among which the S-nitrosothiols family seems especially promising.
Collapse
Affiliation(s)
- M Parent
- Cithéfor, EA 3452, faculté de pharmacie, université de Lorraine, BP 80403, 54001 Nancy cedex, France
| | | | | | | | | | | |
Collapse
|
17
|
Poulos TL, Li H. Structural basis for isoform-selective inhibition in nitric oxide synthase. Acc Chem Res 2013; 46:390-8. [PMID: 23030042 DOI: 10.1021/ar300175n] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Nitric oxide synthase (NOS) converts l-arginine into l-citrulline and releases the important signaling molecule nitric oxide (NO). In the cardiovascular system, NO produced by endothelial NOS (eNOS) relaxes smooth muscle which controls vascular tone and blood pressure. Neuronal NOS (nNOS) produces NO in the brain, where it influences a variety of neural functions such as neural transmitter release. NO can also support the immune system, serving as a cytotoxic agent during infections. Even with all of these important functions, NO is a free radical and, when overproduced, it can cause tissue damage. This mechanism can operate in many neurodegenerative diseases, and as a result the development of drugs targeting nNOS is a desirable therapeutic goal. However, the active sites of all three human isoforms are very similar, and designing inhibitors specific for nNOS is a challenging problem. It is critically important, for example, not to inhibit eNOS owing to its central role in controlling blood pressure. In this Account, we summarize our efforts in collaboration with Rick Silverman at Northwestern University to develop drug candidates that specifically target NOS using crystallography, computational chemistry, and organic synthesis. As a result, we have developed aminopyridine compounds that are 3800-fold more selective for nNOS than eNOS, some of which show excellent neuroprotective effects in animal models. Our group has solved approximately 130 NOS-inhibitor crystal structures which have provided the structural basis for our design efforts. Initial crystal structures of nNOS and eNOS bound to selective dipeptide inhibitors showed that a single amino acid difference (Asp in nNOS and Asn in eNOS) results in much tighter binding to nNOS. The NOS active site is open and rigid, which produces few large structural changes when inhibitors bind. However, we have found that relatively small changes in the active site and inhibitor chirality can account for large differences in isoform-selectivity. For example, we expected that the aminopyridine group on our inhibitors would form a hydrogen bond with a conserved Glu inside the NOS active site. Instead, in one group of inhibitors, the aminopyridine group extends outside of the active site where it interacts with a heme propionate. For this orientation to occur, a conserved Tyr side chain must swing out of the way. This unanticipated observation taught us about the importance of inhibitor chirality and active site dynamics. We also successfully used computational methods to gain insights into the contribution of the state of protonation of the inhibitors to their selectivity. Employing the lessons learned from the aminopyridine inhibitors, the Silverman lab designed and synthesized symmetric double-headed inhibitors with an aminopyridine at each end, taking advantage of their ability to make contacts both inside and outside of the active site. Crystal structures provided yet another unexpected surprise. Two of the double-headed inhibitor molecules bound to each enzyme subunit, and one molecule participated in the generation of a novel Zn(2+) site that required some side chains to adopt alternate conformations. Therefore, in addition to achieving our specific goal, the development of nNOS selective compounds, we have learned how subtle differences in dynamics and structure can control protein-ligand interactions and often in unexpected ways.
Collapse
Affiliation(s)
- Thomas L. Poulos
- Departments of Molecular Biology & Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| | - Huiying Li
- Departments of Molecular Biology & Biochemistry, Pharmaceutical Sciences, and Chemistry, University of California, Irvine, Irvine, California 92697-3900, United States
| |
Collapse
|