1
|
Hassan AHE, Choi Y, Kim R, Kim HJ, Almatary AM, El-Sayed SM, Lee Y, Lee JK, Park KD, Lee YS. Synthesis and biological evaluation of O 4'-benzyl-hispidol derivatives and analogs as dual monoamine oxidase-B inhibitors and anti-neuroinflammatory agents. Bioorg Med Chem 2024; 110:117826. [PMID: 39004050 DOI: 10.1016/j.bmc.2024.117826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/25/2024] [Accepted: 06/28/2024] [Indexed: 07/16/2024]
Abstract
Design, synthesis, and biological evaluation of two series of O4'-benzyl-hispidol derivatives and the analogous corresponding O3'-benzyl derivatives aiming to develop selective monoamine oxidase-B inhibitors endowed with anti-neuroinflammatory activity is reported herein. The first O4'-benzyl-hispidol derivatives series afforded several more potentially active and MAO-B inhibitors than the O3'-benzyl derivatives series. The most potential compound 2e of O4'-benzyl derivatives elicited sub-micromolar MAO-B IC50 of 0.38 µM with a selectivity index >264 whereas most potential compound 3b of O3'-benzyl derivatives showed only 0.95 MAO-B IC50 and a selectivity index >105. Advancement of the most active compounds showing sub-micromolar activities to further cellular evaluations of viability and induced production of pro-neuroinflammatory mediators confirmed compound 2e as a potential lead compound inhibiting the production of the neuroinflammatory mediator nitric oxide significantly by microglial BV2 cells at 3 µM concentration without significant cytotoxicity up to 30 µM. In silico molecular docking study predicted plausible binding modes with MAO enzymes and provided insights at the molecular level. Overall, this report presents compound 2e as a potential lead compound to develop potential multifunctional compounds.
Collapse
Affiliation(s)
- Ahmed H E Hassan
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea
| | - Yeonwoo Choi
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Rium Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Hyeon Jeong Kim
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea
| | - Aya M Almatary
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Horus University-Egypt, New Damietta 34518, Egypt
| | - Selwan M El-Sayed
- Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura University, Mansoura 35516, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Mansoura National University, Gamasa 7731168, Egypt
| | - Yeongae Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Jong Kil Lee
- Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Ki Duk Park
- Center for Brain Disorders, Brain Science Institute, Korea Institute of Science & Technology (KIST), Seoul 02792, Republic of Korea; Division of Bio-Medical Science & Technology, KIST School, Korea University of Science and Technology, Seoul 02792, Republic of Korea.
| | - Yong Sup Lee
- Medicinal Chemistry Laboratory, Department of Pharmacy, College of Pharmacy, Kyung Hee University, 26 Kyungheedae-ro, Seoul 02447, Republic of Korea; Department of Fundamental Pharmaceutical Science, Graduate School, Kyung Hee University, 26 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea.
| |
Collapse
|
2
|
Khamitova А, Berillo D, Lozynskyi A, Konechnyi Y, Mural D, Georgiyants V, Lesyk R. Thiadiazole and Thiazole Derivatives as Potential Antimicrobial Agents. Mini Rev Med Chem 2024; 24:531-545. [PMID: 37448365 DOI: 10.2174/1389557523666230713115947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 05/17/2023] [Accepted: 06/09/2023] [Indexed: 07/15/2023]
Abstract
BACKGROUND This review summarizes data on heterocyclic systems with thiadiazole and thiazole fragments in molecules as promising antimicrobial agents. INTRODUCTION Thiadiazole and thiazole backbones are the most favored and well-known heterocycles, a common and essential feature of various drugs. These scaffolds occupy a central position and are the main structural components of numerous drugs with a wide spectrum of action. These include antimicrobial, antituberculous, anti-inflammatory, analgesic, antiepileptic, antiviral, and anticancer agents. METHOD The research is based on bibliosemantic and analytical methods using bibliographic and abstract databases, as well as databases of chemical compounds. RESULT This review reports on thiadiazole and thiazole derivatives, which have important pharmacological properties. We are reviewing the structural modifications of various thiadiazole and thiazole derivatives, more specifically, the antimicrobial activity reported over the last years, as we have taken this as our main research area. 80 compounds were illustrated, and various derivatives containing hydrazone bridged thiazole and pyrrole rings, 2-pyridine and 4-pyridine substituted thiazole derivatives, compounds containing di-, tri- and tetrathiazole moieties, spiro-substituted 4- thiazolidinone-imidazoline-pyridines were analyzed. Derivatives of 5-heteroarylidene-2,4- thiazolidinediones, fluoroquinolone-thiadiazole hybrids, and others. CONCLUSION 1,3,4-thiadiazoles and thiazoles are valuable resource for researchers engaged in rational drug design and development in this area.
Collapse
Affiliation(s)
- Аkzhonas Khamitova
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, NJSC «Asfendiyarov Kazakh National Medical University», 94 Tole Bi, Almaty, 050000, Kazakhstan
| | - Dmitriy Berillo
- Department of Pharmaceutical and Toxicological Chemistry, Pharmacognosy and Botany, NJSC «Asfendiyarov Kazakh National Medical University», 94 Tole Bi, Almaty, 050000, Kazakhstan
- Department of Chemistry and Biochemical Engineering, Institute of Chemical and Biological Technologies (IHBT), Satbayev University 22 Satbaev, Almaty, 050013, Kazakhstan
| | - Andrii Lozynskyi
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
| | - Yulian Konechnyi
- Department of Microbiology, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
| | - Dmytro Mural
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4 Valentynivska, Kharkiv, 61168, Ukraine
| | - Victoriya Georgiyants
- Department of Pharmaceutical Chemistry, National University of Pharmacy, 4 Valentynivska, Kharkiv, 61168, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, 69 Pekarska, Lviv, 79010, Ukraine
- Department of Biotechnology and Cell Biology, University of Information Technology and Management in Rzeszow, 2 Sucharskiego, Rzeszow, 35-225, Poland
| |
Collapse
|
3
|
Li X, Yin L, Liao J, Yang J, Cai B, Yu Y, Su S, Du Z, Li X, Zhou Y, Chen P, Cho WJ, Chattipakorn N, Samorodov AV, Pavlov VN, Zhang F, Liang G, Tang Q. Novel O-benzylcinnamic acid derivative L26 treats acute lung injury in mice by MD-2. Eur J Med Chem 2023; 252:115289. [PMID: 36963290 DOI: 10.1016/j.ejmech.2023.115289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 03/07/2023] [Accepted: 03/14/2023] [Indexed: 03/19/2023]
Abstract
Acute lung injury (ALI) is an inflammation-mediated respiratory disease that is associated with a high mortality rate. In this study, a series of novel O-benzylcinnamic acid derivatives were designed and synthesized using cinnamic acid as the lead compound. We tested the preliminary anti-inflammatory activity of the compounds by evaluating their effect on inhibiting the activity of alkaline phosphatase (ALP) in Hek-Blue-TLR4 cells, in which compound L26 showed the best activity and 7-fold more active than CIN. ELISA, immunoprecipitation, and molecular docking indicated that L26 targeted MD-2 protein and competed with LPS to bind to MD-2, which resulted in the inhibition of inflammation. In the LPS-induced mouse model of ALI, L26 was found to decrease ALP activity and inflammatory cytokine TNF-α release to reduce lung injury by inhibiting the NF-κB signaling pathway. Acute toxicity experiments showed that high doses of L26 did not cause adverse reactions in mice, and it was safe in vivo. Also, the preliminary pharmacokinetic parameters of L26 were investigated in SD rats (T1/2 = 4.246 h). In summary, L26 exhibited optimal pharmacodynamic and pharmacokinetic characteristics, which suggested that L26 could serve as a potential agent for the development of ALI treatment.
Collapse
Affiliation(s)
- Xiang Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325024, Zhejiang, China
| | - Lina Yin
- School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China
| | - Jing Liao
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Jun Yang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Binhao Cai
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Yiming Yu
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Sijia Su
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Zhiteng Du
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Xiaobo Li
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Ying Zhou
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Won-Jea Cho
- College of Pharmacy, Chonnam National University, Gwangju, 61186, South Korea
| | - Nipon Chattipakorn
- Cardiac Electrophysiology Research and Training Center, Faculty of Medicine, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Aleksandr V Samorodov
- Department of Pharmacology, Bashkir State Medical University, Ufa City, 450005, Russia
| | - Valentin N Pavlov
- Department of Pharmacology, Bashkir State Medical University, Ufa City, 450005, Russia
| | - Fengzhi Zhang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China.
| | - Guang Liang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325024, Zhejiang, China; School of Pharmacy, Hangzhou Medical College, Hangzhou, 311399, Zhejiang, China.
| | - Qidong Tang
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, 325035, Zhejiang, China; Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325024, Zhejiang, China.
| |
Collapse
|
4
|
Chaurasyia A, Chawla P, Monga V, Singh G. Rhodanine derivatives: An insight into the synthetic and medicinal perspectives as antimicrobial and antiviral agents. Chem Biol Drug Des 2023; 101:500-549. [PMID: 36447391 DOI: 10.1111/cbdd.14163] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 12/02/2022]
Abstract
Rhodanine or 2-Thioxothiazolidin-4-one is a privileged heterocyclic compound offering a wide opportunity for structural modification, lead development, and modification. It is one of the highly decorated scaffolds in the drug discovery process. Rhodanine derivatives possess a plethora of biological activities due to their ability to interact with a diverse range of protein targets, which provide tremendous opportunities to discover new drugs with different modes of action. The most common strategy for developing novel rhodanine derivatives is the introduction of structurally diverse substituents at the C-5 or N-3, or both positions. Since the inception of Epralestat into the market in 1992, the exploration of rhodanine-3-acetic acids has led to the development of novel leads against different biological targets such as MRSA, HHV-6, Mycobacterial tuberculosis, dengue, etc. In the current pandemic era, some rhodanine compounds have been explored against SARS-CoV-2. In recent years, rhodanine and its derivatives have witnessed significant progress in developing new drug leads as potential antimicrobial and antiviral agents. Different synthetic methodologies and recent developments in the medicinal chemistry of rhodanine derivatives, including biological activities, their mechanistic aspects, structure-activity relationships, and in silico findings, have been compiled in the present review. This article will benefit the scientific community and offer perspectives on how these scaffolds as privileged structures might be exploited in the future for rational design and discovery of rhodanine-based bio-active molecules.
Collapse
Affiliation(s)
- Abhishek Chaurasyia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Pooja Chawla
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India
| | - Vikramdeep Monga
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, India
| | - Gurpreet Singh
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Moga, Punjab, India.,Research Scholar, IK Gujral Punjab Technical University, Kapurthala, Punjab, India
| |
Collapse
|
5
|
Konečná K, Diepoltová A, Holmanová P, Jand’ourek O, Vejsová M, Voxová B, Bárta P, Maixnerová J, Trejtnar F, Kučerová-Chlupáčová M. Comprehensive insight into anti-staphylococcal and anti-enterococcal action of brominated and chlorinated pyrazine-based chalcones. Front Microbiol 2022; 13:912467. [PMID: 36060765 PMCID: PMC9428509 DOI: 10.3389/fmicb.2022.912467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 07/15/2022] [Indexed: 12/03/2022] Open
Abstract
The greatest threat and medicinal impact within gram-positive pathogens are posed by two bacterial genera, Staphylococcus and Enterococcus. Chalcones have a wide range of biological activities and are recognized as effective templates in medicinal chemistry. This study provides comprehensive insight into the anti-staphylococcal and anti-enterococcal activities of two recently published brominated and chlorinated pyrazine-based chalcones, CH-0y and CH-0w. Their effects against 4 reference and 12 staphylococcal and enterococcal clinical isolates were evaluated. Bactericidal action, the activity in combination with selected conventional antibiotics, the study of post-antimicrobial effect (PAE, PAE/SME), and in vitro and in vivo toxicity, were included. In CH-0y, anti-staphylococcal activity ranging from MIC = 15.625 to 62.5 μM, and activity against E. faecium from 31.25 to 62.5 μM was determined. In CH-0w, anti-staphylococcal activity ranging from 31.25 to 125 μM, and activity against E. faecium and E. faecalis (62.5 μM) was revealed. Both CH-0y and CH-0w showed bactericidal action, beneficial impact on bacterial growth delay within PAE and PAE/SME studies, and non/low toxicity in vivo. Compared to CH-0w, CH-0y seems to have higher anti-staphylococcal and less toxic potential. In conclusion, chalcones CH-0y and CH-0w could be considered as structural pattern for future adjuvants to selected antibiotic drugs.
Collapse
Affiliation(s)
- Klára Konečná
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czechia
- *Correspondence: Klára Konečná,
| | - Adéla Diepoltová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czechia
| | - Pavlína Holmanová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czechia
| | - Ondřej Jand’ourek
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czechia
| | - Marcela Vejsová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czechia
| | - Barbora Voxová
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czechia
| | - Pavel Bárta
- Department of Biophysics and Physical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czechia
| | - Jana Maixnerová
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czechia
| | - František Trejtnar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czechia
| | - Marta Kučerová-Chlupáčová
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czechia
- Marta Kučerová-Chlupáčová,
| |
Collapse
|
6
|
Kakavand R, Azimi SC, Gholi Jolodar O, Shirini F, Tajik H. Morpholine Stabilized on Nano Silica Sulfuric Acid: A Reusable Catalyst for the Synthesis of Two Important Derivatives (Thio) Barbituric Acid. Polycycl Aromat Compd 2022. [DOI: 10.1080/10406638.2022.2092879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
Affiliation(s)
- Rodabeh Kakavand
- Department of Chemistry, College of Sciences, University of Guilan, Rasht, Iran
| | - Seyyedeh Cobra Azimi
- Department of Chemistry, College of Sciences, University of Guilan, Rasht, Iran
- Department of Water and Environmental Engineering, Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| | - Omid Gholi Jolodar
- Department of Chemistry, College of Sciences, University of Guilan, Rasht, Iran
| | - Farhad Shirini
- Department of Chemistry, College of Sciences, University of Guilan, Rasht, Iran
| | - Hassan Tajik
- Department of Water and Environmental Engineering, Caspian Sea Basin Research Center, University of Guilan, Rasht, Iran
| |
Collapse
|
7
|
Synthesis, Biological Evaluation and Molecular Docking Studies of 5-indolylmethylen-4-oxo-2-thioxothiazolidine Derivatives. Molecules 2022; 27:molecules27031068. [PMID: 35164333 PMCID: PMC8839324 DOI: 10.3390/molecules27031068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/31/2022] [Accepted: 01/31/2022] [Indexed: 11/17/2022] Open
Abstract
Background: Infectious diseases represent a significant global strain on public health security and impact on socio-economic stability all over the world. The increasing resistance to the current antimicrobial treatment has resulted in the crucial need for the discovery and development of novel entities for the infectious treatment with different modes of action that could target both sensitive and resistant strains. Methods: Compounds were synthesized using the classical organic chemistry methods. Prediction of biological activity spectra was carried out using PASS and PASS-based web applications. Pharmacophore modeling in LigandScout software was used for quantitative modeling of the antibacterial activity. Antimicrobial activity was evaluated using the microdilution method. AutoDock 4.2® software was used to elucidate probable bacterial and fungal molecular targets of the studied compounds. Results: All compounds exhibited better antibacterial potency than ampicillin against all bacteria tested. Three compounds were tested against resistant strains MRSA, P.aeruginosa and E.coli and were found to be more potent than MRSA than reference drugs. All compounds demonstrated a higher degree of antifungal activity than the reference drugs bifonazole (6–17-fold) and ketoconazole (13–52-fold). Three of the most active compounds could be considered for further development of the new, more potent antimicrobial agents. Conclusion: Compounds 5b (Z)-3-(3-hydroxyphenyl)-5-((1-methyl-1H-indol-3-yl)methylene)-2-thioxothiazolidin-4-one and 5g (Z)-3-[5-(1H-Indol-3-ylmethylene)-4-oxo-2-thioxo-thiazolidin-3-yl]-benzoic acid as well as 5h (Z)-3-(5-((5-methoxy-1H-indol-3-yl)methylene)-4-oxo-2-thioxothiazolidin-3-yl)benzoic acid can be considered as lead compounds for further development of more potent and safe antibacterial and antifungal agents.
Collapse
|
8
|
Vitiu A, Coropceanu E, Bourosh P. Coordination Compounds of Transition Metals with Rhodanine-3-Acetic Acid. RUSS J COORD CHEM+ 2021. [DOI: 10.1134/s1070328421110063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
9
|
Xu Q, Deng H, Li X, Quan ZS. Application of Amino Acids in the Structural Modification of Natural Products: A Review. Front Chem 2021; 9:650569. [PMID: 33996749 PMCID: PMC8118163 DOI: 10.3389/fchem.2021.650569] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 03/02/2021] [Indexed: 01/11/2023] Open
Abstract
Natural products and their derivatives are important sources for drug discovery; however, they usually have poor solubility and low activity and require structural modification. Amino acids are highly soluble in water and have a wide range of activities. The introduction of amino acids into natural products is expected to improve the performance of these products and minimize their adverse effects. Therefore, this review summarizes the application of amino acids in the structural modification of natural products and provides a theoretical basis for the structural modification of natural products in the future. The articles were divided into six types based on the backbone structures of the natural products, and the related applications of amino acids in the structural modification of natural products were discussed in detail.
Collapse
Affiliation(s)
- Qian Xu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Hao Deng
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| | - Xiaoting Li
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
- Department of Pharmaceutical Analysis, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, China
| | - Zhe-Shan Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Jilin, China
| |
Collapse
|
10
|
Kamala L, Kumar BS, Lakshmi PVA. Synthesis and Docking Studies of Novel Carbazole-Thiazolidinedione Hybrid Derivatives as Antibacterial Agents. RUSSIAN JOURNAL OF BIOORGANIC CHEMISTRY 2021. [DOI: 10.1134/s106816202101009x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Mirzaei-Mosbat M, Ghorbani-Vaghei R. Condensation–cyclization reaction for one-pot synthesis of 1,3-thiazolidin-4-one derivatives by poly(p-phenylenediamine) grafted on LDHs as a catalyst with green tool. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1812611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Maryam Mirzaei-Mosbat
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| | - Ramin Ghorbani-Vaghei
- Department of Organic Chemistry, Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
| |
Collapse
|
12
|
Synthesis and anti-leukemic activity of pyrrolidinedione-thiazolidinone hybrids. UKRAINIAN BIOCHEMICAL JOURNAL 2020. [DOI: 10.15407/ubj92.02.108] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
13
|
Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur J Med Chem 2020; 187:111980. [DOI: 10.1016/j.ejmech.2019.111980] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022]
|
14
|
Ayyash AN. Synthesis and Antimicrobial Screening of Novel Azetidin-2-ones Derived from Pyromellitic Diimide via [2+2]-Cycloaddition Reaction. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2020. [DOI: 10.1134/s1070428019120261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Bai XQ, Li CS, Cui MY, Song ZW, Zhou XY, Zhang C, Zhao Y, Zhang TY, Jiang TY. Synthesis and molecular docking studies of novel pyrimidine derivatives as potential antibacterial agents. Mol Divers 2019; 24:1165-1176. [PMID: 31792660 DOI: 10.1007/s11030-019-10019-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2019] [Accepted: 11/21/2019] [Indexed: 10/25/2022]
Abstract
The present work describes the in vitro antibacterial evaluation of some new pyrimidine derivatives. Twenty-two target compounds were designed, synthesized and preliminarily explored for their antimicrobial activities. The antimicrobial assay revealed that some target compounds exhibited significantly inhibitory efficiencies toward bacteria and fungal including drug-resistant pathogens. Compound 7c presented the most potent inhibitory activities against Gram-positive bacteria (e.g., Staphylococcus aureus 4220), Gram-negative bacteria (e.g., Escherichia coli 1924) and the fungus Candida albicans 7535, with an MIC of 2.4 μmol/L. Compound 7c was also the most potent, with MICs of 2.4 or 4.8 μmol/L against four multidrug-resistant, Gram-positive bacterial strains. The toxicity evaluation of the compounds 7c, 10a, 19d and 26b was assessed in human normal liver cells (L02 cells). Molecular docking simulation and analysis suggested that compound 7c has a good interaction with the active cavities of dihydrofolate reductase (DHFR). In vitro enzyme study implied that compound 7c also displayed DHFR inhibition.
Collapse
Affiliation(s)
- Xue-Qian Bai
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Chun-Shi Li
- The Third People's Hospital of Dalian, Dalian, 116000, People's Republic of China
| | - Ming-Yue Cui
- The Third People's Hospital of Dalian, Dalian, 116000, People's Republic of China
| | - Ze-Wen Song
- Jilin Medical University, Jilin, 132013, People's Republic of China.,Department of Pharmary, Yanbian University, Yanji, 133002, People's Republic of China
| | - Xing-Yu Zhou
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Chao Zhang
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Yang Zhao
- Jilin Medical University, Jilin, 132013, People's Republic of China
| | - Tian-Yi Zhang
- Jilin Medical University, Jilin, 132013, People's Republic of China.
| | - Tie-Yan Jiang
- Changning Branch of Shanghai Municipal Public Security Bureau, Shanghai, 200336, People's Republic of China.
| |
Collapse
|
16
|
Maddila S, Gorle S, Jonnalagadda SB. Drug screening of rhodanine derivatives for antibacterial activity. Expert Opin Drug Discov 2019; 15:203-229. [PMID: 31777321 DOI: 10.1080/17460441.2020.1696768] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Introduction: Bacteriological infections are a major risk to human health. These include all hospital and public-acquired infections. In drug discovery, rhodanines are privileged heterocyclic frameworks. Their derivatives possess strong anti-bacterial activity and some of them have shown potent activity against multidrug-resistant pathogens, both under in vitro and in vivo conditions. To treat multi-drug resistant pathogens, the development of novel potent drugs, with superior anti-bacterial efficacy, is paramount. One avenue which shows promise is the design and development of novel rhodanines.Areas covered: This review summarizes the status on rhodanine-based derivatives and their anti-bacterial activity, based on published research over the past six years. Furthermore, to facilitate the design of novel derivatives with improved functions, their structure-activity relationships are assessed with reference to their efficacy as anti-bacterial agents and their toxicity.Expert opinion: The pharmacological activity of molecules bearing a rhodanine scaffold needs to be very critically assessed in spite of considerable information available from various biological evaluations. Although, some data on structure-activity relationship frameworks is available, information is not adequate to optimize the efficacy of rhodanine derivatives for different applications.
Collapse
Affiliation(s)
- Suresh Maddila
- School of Chemistry & Physics, University of KwaZulu-Natal, Westville Campus, Durban, South Africa.,Department of Chemistry, GITAM Institute of Sciences, GITAM University, Visakhapatnam, India
| | - Sridevi Gorle
- Department of Microbiology and Food Science & Technology, GITAM Institute of Sciences, GITAM University, Visakhapatnam, India
| | | |
Collapse
|
17
|
Mermer A, Demirbas N, Cakmak U, Colak A, Demirbas A, Alagumuthu M, Arumugam S. Discovery of Novel Sulfonamide‐Based 5‐Arylidenerhodanines as Effective Carbonic Anhydrase (II) Inhibitors: Microwave‐Assisted and Ultrasound‐Assisted One‐Pot Four‐Component Synthesis, Molecular Docking, and Anti‐CA II Screening Studies. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3635] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Arif Mermer
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Neslihan Demirbas
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Ummuhan Cakmak
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Ahmet Colak
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | - Ahmet Demirbas
- Department of ChemistryKaradeniz Technical University Trabzon Turkey
| | | | - Sivakumar Arumugam
- Department of Biotechnology, School of Bio‐Science and TechnologyVIT Vellore India
| |
Collapse
|
18
|
Xu M, Wu P, Shen F, Ji J, Rakesh KP. Chalcone derivatives and their antibacterial activities: Current development. Bioorg Chem 2019; 91:103133. [PMID: 31374524 DOI: 10.1016/j.bioorg.2019.103133] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/27/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
The increase in antibiotic resistance due to various factors has encouraged the look for novel compounds which are active against multidrug-resistant pathogens. In this framework, chalcone-based compounds showed a diversity of pharmacological properties, and its derivatives possess a high degree of structural diversity, and it is helpful for the discovery of new therapeutic agents. The growing resistance to antibiotics worldwide has endangered their efficacy. This has led to a surging interest in the discovery of new antibacterial agents. Thus, there is an urgent need for new antibacterial drug candidates with increased strength, new targets, low cost, superior pharmacokinetic properties, and minimum side effects. The present review concluded and focuses on the recent developments in the area of medicinal chemistry to explore the diverse chemical structures of potent antibacterial agents and also describes its structure-activity relationships studies. The various synthetic structures leading to this class of neutral protective compound is common and additional structural optimization is promising for potential drug discovery and development.
Collapse
Affiliation(s)
- Man Xu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Piye Wu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Fan Shen
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Jiayou Ji
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - K P Rakesh
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China.
| |
Collapse
|
19
|
Parvaneh Shafieyoon, Mehdipour E, Michalski J. Synthesis, Characterization, and Biological Investigation of Alanine-Based Sulfonamide Derivative: FT-IR, 1H NMR Spectra: MEP, HOMO–LUMO Analysis, and Molecular Docking. RUSSIAN JOURNAL OF PHYSICAL CHEMISTRY A 2019. [DOI: 10.1134/s0036024419070215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
20
|
Discovery of 1,3-diphenyl-1H-pyrazole derivatives containing rhodanine-3-alkanoic acid groups as potential PTP1B inhibitors. Bioorg Med Chem Lett 2019; 29:1187-1193. [DOI: 10.1016/j.bmcl.2019.03.023] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Revised: 03/14/2019] [Accepted: 03/19/2019] [Indexed: 11/19/2022]
|
21
|
Mousavi SM, Zarei M, Hashemi SA, Babapoor A, Amani AM. A conceptual review of rhodanine: current applications of antiviral drugs, anticancer and antimicrobial activities. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:1132-1148. [DOI: 10.1080/21691401.2019.1573824] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Seyyed Mojtaba Mousavi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Zarei
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyyed Alireza Hashemi
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Aziz Babapoor
- Department of Chemical Engineering, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Ali Mohammad Amani
- Department of Medical Nanotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
- Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
22
|
Tejchman W, Orwat B, Korona-Głowniak I, Barbasz A, Kownacki I, Latacz G, Handzlik J, Żesławska E, Malm A. Highly efficient microwave synthesis of rhodanine and 2-thiohydantoin derivatives and determination of relationships between their chemical structures and antibacterial activity. RSC Adv 2019; 9:39367-39380. [PMID: 35540630 PMCID: PMC9076067 DOI: 10.1039/c9ra08690k] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Accepted: 11/15/2019] [Indexed: 11/21/2022] Open
Abstract
Here we report studies on the synthesis of 12 new heterocyclic derivatives that differ in three structural motifs and the simultaneous evaluation of the impact of these three variables on the biological properties. The examined compounds are based on rhodanine and 2-thiohydantoin cores equipped with hydrogen or carboxymethyl substituents at the N-3 position and linked to a triphenylamine moiety through 1,4-phenylene, 1,4-naphthalenylene and 1,9-anthracenylene spacers at the C-5 position of the heterocycles. All the compounds were synthesized very quickly, selectively and in high yields according to the developed microwave-assisted Knoevenagel condensation protocol, and they were characterized thoroughly with NMR, FT-IR and ESI-HRMS techniques. The derivatives were tested for their activity against selected strains of Gram-positive and Gram-negative bacteria and yeast. Two compounds showed good activity against Gram-positive bacteria, and all of them showed low cytotoxicity against three cell lines of the human immune system. Based on membrane permeability assays it was demonstrated that the active compounds do not penetrate the cell membrane, and thus they must act on the bacterial cell surface. Finally, we proved that the evaluated structure modifications had a synergistic effect and the simultaneous presence of a 1,4-phenylene spacer and carboxymethyl group at N-3 caused the highest boost in antimicrobial activity. An efficient microwave-assisted synthesis of rhodanine and 2-thiohydantoin derivatives, and the correlation between their chemical structure and biological properties is reported.![]()
Collapse
Affiliation(s)
- Waldemar Tejchman
- Department of Chemistry
- Institute of Biology
- Pedagogical University of Cracow
- 30-084 Kraków
- Poland
| | - Bartosz Orwat
- Faculty of Chemistry
- Adam Mickiewicz University
- 61-614 Poznań
- Poland
- Centre for Advanced Technology
| | | | - Anna Barbasz
- Department of Chemistry
- Institute of Biology
- Pedagogical University of Cracow
- 30-084 Kraków
- Poland
| | - Ireneusz Kownacki
- Faculty of Chemistry
- Adam Mickiewicz University
- 61-614 Poznań
- Poland
- Centre for Advanced Technology
| | - Gniewomir Latacz
- Department of Technology and Biotechnology of Drugs
- Jagiellonian University Medical College
- 30-688 Kraków
- Poland
| | - Jadwiga Handzlik
- Department of Technology and Biotechnology of Drugs
- Jagiellonian University Medical College
- 30-688 Kraków
- Poland
| | - Ewa Żesławska
- Department of Chemistry
- Institute of Biology
- Pedagogical University of Cracow
- 30-084 Kraków
- Poland
| | - Anna Malm
- Department of Pharmaceutical Microbiology
- Medical University of Lublin
- 20-093 Lublin
- Poland
| |
Collapse
|
23
|
Wang G, Peng Z, Zhang J, Qiu J, Xie Z, Gong Z. Synthesis, biological evaluation and molecular docking studies of aminochalcone derivatives as potential anticancer agents by targeting tubulin colchicine binding site. Bioorg Chem 2018; 78:332-340. [DOI: 10.1016/j.bioorg.2018.03.028] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 03/29/2018] [Accepted: 03/31/2018] [Indexed: 12/13/2022]
|
24
|
Zhang TY, Yu ZK, Jin XJ, Li MY, Sun LP, Zheng CJ, Piao HR. Synthesis and evaluation of the antibacterial activities of aryl substituted dihydrotriazine derivatives. Bioorg Med Chem Lett 2018; 28:1657-1662. [DOI: 10.1016/j.bmcl.2018.03.037] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2017] [Revised: 01/25/2018] [Accepted: 03/15/2018] [Indexed: 10/17/2022]
|
25
|
Shabeer M, Barbosa LCA, Karak M, Coelho ACS, Takahashi JA. Thiobarbiturates as potential antifungal agents to control human infections caused by Candida and Cryptococcus species. Med Chem Res 2018. [DOI: 10.1007/s00044-017-2126-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
26
|
Satish S, Srivastava A, Yadav P, Varshney S, Choudhary R, Balaramnavar VM, Narender T, Gaikwad AN. Aegeline inspired synthesis of novel amino alcohol and thiazolidinedione hybrids with antiadipogenic activity in 3T3-L1 cells. Eur J Med Chem 2018; 143:780-791. [DOI: 10.1016/j.ejmech.2017.11.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
|
27
|
Thillainayagam M, Malathi K, Ramaiah S. In-Silico molecular docking and simulation studies on novel chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage as vital inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. J Biomol Struct Dyn 2017; 36:3993-4009. [DOI: 10.1080/07391102.2017.1404935] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mahalakshmi Thillainayagam
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, TamilNadu, India
| | - Kullappan Malathi
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, TamilNadu, India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, TamilNadu, India
| |
Collapse
|
28
|
Kaminskyy D, Kryshchyshyn A, Lesyk R. 5-Ene-4-thiazolidinones - An efficient tool in medicinal chemistry. Eur J Med Chem 2017; 140:542-594. [PMID: 28987611 PMCID: PMC7111298 DOI: 10.1016/j.ejmech.2017.09.031] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/14/2017] [Accepted: 09/17/2017] [Indexed: 02/02/2023]
Abstract
The presented review is an attempt to summarize a huge volume of data on 5-ene-4-thiazolidinones being a widely studied class of small molecules used in modern organic and medicinal chemistry. The manuscript covers approaches to the synthesis of 5-ene-4-thiazolidinone derivatives: modification of the C5 position of the basic core; synthesis of the target compounds in the one-pot or multistage reactions or transformation of other related heterocycles. The most prominent pharmacological profiles of 5-ene derivatives of different 4-thiazolidinone subtypes belonging to hit-, lead-compounds, drug-candidates and drugs as well as the most studied targets have been discussed. Currently target compounds (especially 5-en-rhodanines) are assigned as frequent hitters or pan-assay interference compounds (PAINS) within high-throughput screening campaigns. Nevertheless, the crucial impact of the presence/nature of C5 substituent (namely 5-ene) on the pharmacological effects of 5-ene-4-thiazolidinones was confirmed by the numerous listed findings from the original articles. The main directions for active 5-ene-4-thiazolidinones optimization have been shown: i) complication of the fragment in the C5 position; ii) introduction of the substituents in the N3 position (especially fragments with carboxylic group or its derivatives); iii) annealing in complex heterocyclic systems; iv) combination with other pharmacologically attractive fragments within hybrid pharmacophore approach. Moreover, the utilization of 5-ene-4-thiazolidinones in the synthesis of complex compounds with potent pharmacological application is described. The chemical transformations cover mainly the reactions which involve the exocyclic double bond in C5 position of the main core and correspond to the abovementioned direction of the 5-ene-4-thiazolidinone modification.
Collapse
Affiliation(s)
- Danylo Kaminskyy
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine
| | - Anna Kryshchyshyn
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine
| | - Roman Lesyk
- Department of Pharmaceutical, Organic and Bioorganic Chemistry, Danylo Halytsky Lviv National Medical University, Pekarska 69, Lviv-10, 79010, Ukraine.
| |
Collapse
|
29
|
Kaminskyy D, Kryshchyshyn A, Lesyk R. Recent developments with rhodanine as a scaffold for drug discovery. Expert Opin Drug Discov 2017; 12:1233-1252. [PMID: 29019278 DOI: 10.1080/17460441.2017.1388370] [Citation(s) in RCA: 69] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
INTRODUCTION Rhodanines, as one of the 4-thiazolidinones subtypes, are recognized as privileged heterocycles in medicinal chemistry. The main achievements include the development of drug-like molecules with numerous biological activities as well as approved drugs. Among rhodanines, 5-ene-rhodanines are of special interest, and are often claimed as pan assay interference compounds due to Michael acceptor functionality. Areas covered: Herein, the synthetic protocols for rhodanines and their transformation are reviewed. Biological activity is briefly discussed as well as biotargets, mode of actions and optimization directions. Furthermore, the utilization of 5-ene-rhodanines in Michael additions are discussed while both pro and contra arguments have been outlined within medicinal chemistry application. Expert opinion: Rhodanines remain privileged heterocycles in drug discovery. They are accessible building blocks for optimization and transformation into related heterocycles, simplified analogues and fused heterocycles with a thiazolidine framework. Michael acceptor functionality, as well as the thesis about low selectivity towards biotargets of rhodanines, must be confirmed experimentally and it cannot be based on just the presence of conjugated α,β-unsaturated carbonyl. Moreover, the positive aspects of Michael acceptors must be considered as well as their multitarget properties. New criteria for target affinity must be found. In conclusion, rhodanines are generally not problematic per se.
Collapse
Affiliation(s)
- Danylo Kaminskyy
- a Department of Pharmaceutical, Organic and Bioorganic Chemistry , Danylo Halytsky Lviv National Medical University , Lviv-10 , Ukraine
| | - Anna Kryshchyshyn
- a Department of Pharmaceutical, Organic and Bioorganic Chemistry , Danylo Halytsky Lviv National Medical University , Lviv-10 , Ukraine
| | - Roman Lesyk
- a Department of Pharmaceutical, Organic and Bioorganic Chemistry , Danylo Halytsky Lviv National Medical University , Lviv-10 , Ukraine
| |
Collapse
|
30
|
Synthesis and molecular docking studies of novel 1,2,3-triazole ring-containing 4-(1,4,5-triphenyl-1H-imidazol-2-yl)phenol derivatives as COX inhibitors. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-3113-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Synthesis and biological evaluation of dihydrotriazine derivatives as potential antibacterial agents. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2017.05.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
32
|
Pansare DN, Shelke RN, Shinde DB. A Facial Synthesis and Anticancer Activity of (Z)-2-((5-(4-nitrobenzylidene)-4-oxo-4,5-dihydrothiazol-2-yl)amino)-substituted Acid. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2919] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Dattatraya N. Pansare
- Department of Chemical Technology; Dr. Babasaheb Ambedkar Marathwada University; Aurangabad 431 004 MS India
| | - Rohini N. Shelke
- Department of Chemistry; Deogiri College; Station Road Aurangabad 431 005 MS India
| | | |
Collapse
|
33
|
Song MX, Li SH, Peng JY, Guo TT, Xu WH, Xiong SF, Deng XQ. Synthesis and Bioactivity Evaluation of N-Arylsulfonylindole Analogs Bearing a Rhodanine Moiety as Antibacterial Agents. Molecules 2017; 22:molecules22060970. [PMID: 28613234 PMCID: PMC6152656 DOI: 10.3390/molecules22060970] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/06/2017] [Accepted: 06/09/2017] [Indexed: 12/18/2022] Open
Abstract
Due to the rapidly growing bacterial resistance to antibiotics and the scarcity of novel agents under development, bacterial infections are still a pressing global problem, making new types of antibacterial agents, which are effective both alone and in combination with traditional antibiotics, urgently needed. In this paper, seven series of N-arylsulfonylindole analogs 5–11 bearing rhodanine moieties were synthesized, characterized, and evaluated for antibacterial activity. According to the in vitro antimicrobial results, half of the synthesized compounds showed potent inhibition against four Gram-positive bacteria, with MIC values in the range of 0.5–8 µg/mL. For multidrug-resistant strains, compounds 6a and 6c were the most potent, with MIC values of 0.5 µg/mL, having comparable activity to gatifloxacin, moxiflocaxin and norfloxacin and being 128-fold more potent than oxacillin (MIC = 64 µg/mL) and 64-fold more active than penicillin (MIC = 32 µg/mL) against Staphylococcus aureusATCC 43300.
Collapse
Affiliation(s)
- Ming-Xia Song
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Song-Hui Li
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Jiao-Yang Peng
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Ting-Ting Guo
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Wen-Hui Xu
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Shao-Feng Xiong
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| | - Xian-Qing Deng
- Basic Medical and Pharmacy College, Jinggangshan University, Ji'an 343009, Jiangxi, China.
| |
Collapse
|
34
|
Kucerova-Chlupacova M, Vyskovska-Tyllova V, Richterova-Finkova L, Kunes J, Buchta V, Vejsova M, Paterova P, Semelkova L, Jandourek O, Opletalova V. Novel Halogenated Pyrazine-Based Chalcones as Potential Antimicrobial Drugs. Molecules 2016; 21:molecules21111421. [PMID: 27801810 PMCID: PMC6273737 DOI: 10.3390/molecules21111421] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/14/2016] [Accepted: 10/14/2016] [Indexed: 12/04/2022] Open
Abstract
Chalcones, i.e., compounds with the chemical pattern of 1,3-diphenylprop-2-en-1-ones, exert a wide range of bio-activities, e.g., antioxidant, anti-inflammatory, anticancer, anti-infective etc. Our research group has been focused on pyrazine analogues of chalcones; several series have been synthesized and tested in vitro on antifungal and antimycobacterial activity. The highest potency was exhibited by derivatives with electron withdrawing groups (EWG) in positions 2 and 4 of the ring B. As halogens also have electron withdrawing properties, novel halogenated derivatives were prepared by Claisen-Schmidt condensation. All compounds were submitted for evaluation of their antifungal and antibacterial activity, including their antimycobacterial effect. In the antifungal assay against eight strains of selected fungi, growth inhibition of Candida glabrata and Trichophyton interdigitale (formerly T. mentagrophytes) was shown by non-alkylated derivatives with 2-bromo or 2-chloro substitution. In the panel of selected bacteria, 2-chloro derivatives showed the highest inhibitory effect on Staphylococcus sp. In addition, all products were also screened for their antimycobacterial activity against Mycobacterium tuberculosis H37RV My 331/88, M. kansasii My 235/80, M. avium 152/80 and M. smegmatis CCM 4622. Some of the examined compounds, inhibited growth of M. kansasii and M. smegmatis with minimum inhibitory concentrations (MICs) comparable with those of isoniazid.
Collapse
Affiliation(s)
- Marta Kucerova-Chlupacova
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Veronika Vyskovska-Tyllova
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Lenka Richterova-Finkova
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Jiri Kunes
- Department of Inorganic and Organic Chemistry, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Vladimir Buchta
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
- Department of Clinical Microbiology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Marcela Vejsova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
- Department of Clinical Microbiology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Pavla Paterova
- Department of Biological and Medical Sciences, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
- Department of Clinical Microbiology, University Hospital Hradec Kralove, Sokolska 581, 500 05 Hradec Kralove, Czech Republic.
| | - Lucia Semelkova
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Ondrej Jandourek
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| | - Veronika Opletalova
- Department of Pharmaceutical Chemistry and Pharmaceutical Analysis, Faculty of Pharmacy in Hradec Kralove, Charles University in Prague, Heyrovskeho 1203, 500 05 Hradec Kralove, Czech Republic.
| |
Collapse
|
35
|
Antidepressant-like effects and mechanisms of flavonoids and related analogues. Eur J Med Chem 2016; 121:47-57. [DOI: 10.1016/j.ejmech.2016.05.026] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/08/2016] [Accepted: 05/10/2016] [Indexed: 01/25/2023]
|
36
|
Synthesis, characterization, and biological study of phenylalanine amide derivatives. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1700-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
37
|
Synthesis and antimicrobial evaluation of 5-aryl-1,2,4-triazole-3-thione derivatives containing a rhodanine moiety. Bioorg Med Chem Lett 2015; 25:3052-6. [DOI: 10.1016/j.bmcl.2015.04.081] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 04/11/2015] [Accepted: 04/23/2015] [Indexed: 11/24/2022]
|
38
|
Synthesis of novel 5-arylidene (thio)barbituric acid and evaluation of their urease inhibitory activity. JOURNAL OF THE IRANIAN CHEMICAL SOCIETY 2015. [DOI: 10.1007/s13738-015-0617-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
39
|
Insuasty B, Ramírez J, Becerra D, Echeverry C, Quiroga J, Abonia R, Robledo SM, Vélez ID, Upegui Y, Muñoz JA, Ospina V, Nogueras M, Cobo J. An efficient synthesis of new caffeine-based chalcones, pyrazolines and pyrazolo[3,4-b][1,4]diazepines as potential antimalarial, antitrypanosomal and antileishmanial agents. Eur J Med Chem 2015; 93:401-13. [PMID: 25725376 DOI: 10.1016/j.ejmech.2015.02.040] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 02/19/2015] [Accepted: 02/20/2015] [Indexed: 12/15/2022]
Abstract
A new series of chalcones 5a-f were synthesized from caffeine-based aldehyde 3 and substituted acetophenones 4a-f. Treatment of compounds 5a-f with hydrazine hydrate led to pyrazolines 6a-f, and their subsequent reaction with acetic anhydride or formic acid afforded the corresponding N-substituted pyrazolines 7a-f and 8a-f respectively. Additionally, the regioselective cyclocondensation reaction of chalcones 5a-f with 4,5-diaminopyrazole 9 afforded the diazepine derivatives 10a-f. Synthesis of the above novel compounds was carried out through a simple procedure involving an easy work-up and mild reaction conditions. In vitro antimalarial activity against Plasmodium falciparum was evaluated for the obtained compounds. Among of them, just pirazoline 6a showed an outstanding growth inhibition percentage 85.2 ± 5.4%, while diazepines 10a-f showed remarkable growth inhibitions in the range of 80.3 ± 13.5 to 94.2 ± 0.2% when were tested at 20 μg/mL. Compounds 5b, 5e, 7c and 7f showed remarkable activities against Leishmania panamensis with growth inhibition of 88.3 ± 1.5, 82.6 ± 2.2, 82.8 ± 1.7 and 87.6 ± 0.5% respectively, at 20 μg/mL. In vitro assays against Trypanozoma cruzi showed that pyrazoline 6d displayed a growth inhibition of 61.9 ± 7.8% at 20 μg/mL while chalcone 5f was considered especially active with a growth inhibition of 9.7 ± 1.5% for a very low concentration of 1.0 μg/mL.
Collapse
Affiliation(s)
- Braulio Insuasty
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, A. A. 25360 Cali, Colombia.
| | - Juan Ramírez
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, A. A. 25360 Cali, Colombia
| | - Diana Becerra
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, A. A. 25360 Cali, Colombia
| | - Carlos Echeverry
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, A. A. 25360 Cali, Colombia
| | - Jairo Quiroga
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, A. A. 25360 Cali, Colombia
| | - Rodrigo Abonia
- Grupo de Investigación de Compuestos Heterocíclicos, Departamento de Química, Universidad del Valle, A. A. 25360 Cali, Colombia
| | - Sara M Robledo
- PECET, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, PO Box 1226, Medellín, Colombia
| | - Iván Darío Vélez
- PECET, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, PO Box 1226, Medellín, Colombia
| | - Yulieth Upegui
- PECET, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, PO Box 1226, Medellín, Colombia
| | - July A Muñoz
- PECET, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, PO Box 1226, Medellín, Colombia
| | - Victoria Ospina
- PECET, Instituto de Investigaciones Médicas, Facultad de Medicina, Universidad de Antioquia, PO Box 1226, Medellín, Colombia
| | - Manuel Nogueras
- Department of Inorganic and Organic Chemistry, Universidad de Jaén, 23071 Jaén, Spain
| | - Justo Cobo
- Department of Inorganic and Organic Chemistry, Universidad de Jaén, 23071 Jaén, Spain
| |
Collapse
|
40
|
|
41
|
Ghorab MM, Ragab FA, Heiba HI, El-Gazzar MG, Zahran SS. Synthesis, anticancer and radiosensitizing evaluation of some novel sulfonamide derivatives. Eur J Med Chem 2015; 92:682-92. [PMID: 25618015 DOI: 10.1016/j.ejmech.2015.01.036] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 01/02/2015] [Accepted: 01/19/2015] [Indexed: 11/18/2022]
Abstract
In this study, novel series of sulfonamide derivatives were synthesized starting from 2-cyanoacetyl)hydrazono)ethyl)phenyl)benzenesulfonamide 4a and 2-cyanoacetyl)hydrazono)ethyl)phenyl)-4-methylbenzenesulfonamide 4b. Different biologically active moieties as pyrazol, thiophene, pyridine and pyrimidines were introduced in order to investigate their in-vitro anticancer activity, in addition to a novel series of sulfonamide chalcones were synthesized from the reported 4-acetyl-N-(P-tolyl) benzenesulfonamide 3b. The newly synthesized sulfonamide derivatives were characterized by FT-IR, (1)H NMR, (13)C NMR, mass spectroscopy and elemental analyses and were tested for their in-vitro anticancer activity against human tumor liver cell line (HEPG-2). The most potent compounds in this study were compounds 4a, 4b, 5a, 6a, 6b, 8, 9, 11, 13, 18 and 19 which showed higher activity than doxorubicin with IC50 ranging from 11.0 to 31.8 μM. Additionally, eight compounds among the most potent were evaluated for their ability to enhance the cell killing effect of γ-radiation.
Collapse
Affiliation(s)
- Mostafa M Ghorab
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Nasr City, Cairo, Egypt; Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia.
| | - Fatma A Ragab
- Department of Pharmaceutical and Medicinal Chemistry, Faculty of Pharmacy, Cairo University, Egypt
| | - Helmy I Heiba
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Nasr City, Cairo, Egypt
| | - Marwa G El-Gazzar
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Nasr City, Cairo, Egypt
| | - Sally S Zahran
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Nasr City, Cairo, Egypt
| |
Collapse
|
42
|
Ionic liquid immobilized on FeNi3 as catalysts for efficient, green, and one-pot synthesis of 1,3-thiazolidin-4-one. J Mol Liq 2014. [DOI: 10.1016/j.molliq.2014.07.039] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
43
|
Singh P, Anand A, Kumar V. Recent developments in biological activities of chalcones: a mini review. Eur J Med Chem 2014; 85:758-77. [PMID: 25137491 DOI: 10.1016/j.ejmech.2014.08.033] [Citation(s) in RCA: 474] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2014] [Revised: 08/07/2014] [Accepted: 08/08/2014] [Indexed: 12/18/2022]
Abstract
Chalcones represent key structural motif in the plethora of biologically active molecules including synthetic and natural products. Synthetic manipulations of chalcones or their isolation from natural sources are being investigated worldwide for the development of more potent and efficient drugs for the treatment of several dreadful diseases such as cancer, diabetes, HIV, tuberculosis, malaria etc. Over the past few years, a large volume of research papers and review articles highlighting the significance of chalcone derivatives has been compiled in the literature. The present review article focuses on the recent developments (2010-2014) on various pharmacological and medicinal aspects of chalcones and their analogues.
Collapse
Affiliation(s)
- Parvesh Singh
- School of Chemistry and Physics, University of KwaZulu Natal, P/Bag X54001, Westville, Durban 4000, South Africa
| | - Amit Anand
- Department of Chemistry, Khalsa College, Amritsar 143005, India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar 143005, India.
| |
Collapse
|
44
|
Synthesis, pharmacophore modeling, and cytotoxic activity of 2-thioxothiazolidin-4-one derivatives. Med Chem Res 2014. [DOI: 10.1007/s00044-014-1087-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
45
|
Zhou XW, Ma HL, Zhang X, Jing SY, Miao JY, Zhao BX. Synthesis of 6-cinnamoyl-2H-benzo[b][1,4]oxazin-3(4H)-ones and their effects on A549 lung cancer cell growth. Eur J Med Chem 2014; 79:95-101. [DOI: 10.1016/j.ejmech.2014.03.087] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Revised: 03/28/2014] [Accepted: 03/31/2014] [Indexed: 01/26/2023]
|
46
|
Synthesis and evaluation of the antimicrobial activities of 3-((5-phenyl-1,3,4-oxadiazol-2-yl)methyl)-2-thioxothiazolidin-4-one derivatives. Eur J Med Chem 2014; 74:405-10. [DOI: 10.1016/j.ejmech.2013.12.054] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 11/15/2013] [Accepted: 12/24/2013] [Indexed: 11/21/2022]
|
47
|
Demirci S, Demirbas A, Ulker S, Alpay-Karaoglu S, Demirbas N. Synthesis of Some Heterofunctionalized Penicillanic Acid Derivatives and Investigation of Their Biological Activities. Arch Pharm (Weinheim) 2013; 347:200-20. [DOI: 10.1002/ardp.201300280] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Revised: 09/12/2013] [Accepted: 09/17/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Serpil Demirci
- Department of Chemistry; Karadeniz Technical University; Trabzon Turkey
| | - Ahmet Demirbas
- Department of Chemistry; Karadeniz Technical University; Trabzon Turkey
| | - Serdar Ulker
- Department of Biology; Recep Tayyip Erdoğan University; Rize Turkey
| | | | - Neslihan Demirbas
- Department of Chemistry; Karadeniz Technical University; Trabzon Turkey
| |
Collapse
|
48
|
Karpaviciene I, Cikotiene I, Padrón JM. Synthesis and antiproliferative activity of α-branched α,β-unsaturated ketones. Eur J Med Chem 2013; 70:568-78. [PMID: 24211632 DOI: 10.1016/j.ejmech.2013.10.041] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 08/27/2013] [Accepted: 10/13/2013] [Indexed: 10/26/2022]
|
49
|
Yin BT, Yan CY, Peng XM, Zhang SL, Rasheed S, Geng RX, Zhou CH. Synthesis and biological evaluation of α-triazolyl chalcones as a new type of potential antimicrobial agents and their interaction with calf thymus DNA and human serum albumin. Eur J Med Chem 2013; 71:148-59. [PMID: 24291568 DOI: 10.1016/j.ejmech.2013.11.003] [Citation(s) in RCA: 115] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 10/29/2013] [Accepted: 11/02/2013] [Indexed: 11/17/2022]
Abstract
A series of α-triazolyl chalcones were efficiently synthesized. Most of the prepared compounds showed effective antibacterial and antifungal activities. Noticeably, α-triazolyl derivative 9a exhibited low MIC value of 4 μg/mL against MRSA and Micrococcus luteus, which was comparable or even superior to reference drugs. The further research revealed that compound 9a could effectively intercalate into Calf Thymus DNA to form 9a-DNA complex which might block DNA replication to exert their powerful antimicrobial activities. Competitive interactions between 9a and metal ions to Human Serum Albumin (HSA) suggested the participation of Fe(3+), K(+) and Mg(2+) ions in 9a-HSA system could increase the concentration of free 9a, shorten its storage time and half-life in the blood, thus improving its antimicrobial efficacy.
Collapse
Affiliation(s)
- Ben-Tao Yin
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Cong-Yan Yan
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Xin-Mei Peng
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Shao-Lin Zhang
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Syed Rasheed
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China
| | - Rong-Xia Geng
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| | - Cheng-He Zhou
- Laboratory of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, People's Republic of China.
| |
Collapse
|
50
|
Song MX, Deng XQ, Li YR, Zheng CJ, Hong L, Piao HR. Synthesis and biological evaluation of (E)-1-(substituted)-3-phenylprop-2-en-1-ones bearing rhodanines as potent anti-microbial agents. J Enzyme Inhib Med Chem 2013; 29:647-53. [PMID: 24102526 DOI: 10.3109/14756366.2013.837899] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Herein, we report the design, syntheses and in vitro anti-microbial activity of two series of rhodanines with chalcone moiety. Anti-microbial tests showed that some of the synthesized compounds exhibited good inhibition (MIC = 1-8 µg/mL) against multi-drug-resistant Gram-positive organisms, including methicillin resistant and quinolone-resistant Staphylococcus aureus, in which the compound 4g was found to be the most potent with minimum inhibitory concentration (MIC) value of 1 µg/mL against two methicillin-resistant S. aureus.
Collapse
Affiliation(s)
- Ming-Xia Song
- Department of Pharmacy, Jing Gangshan University College of Medicine , Ji'an , People's Republic of China
| | | | | | | | | | | |
Collapse
|