1
|
Keshk RM, Salama ZA, Elsaedany SK, ElRehim EMA, Beltagy DM. Synthesis, antimicrobial, anti-inflammatory, antioxidant and cytotoxicity of new pyrimidine and pyrimidopyrimidine derivatives. Sci Rep 2025; 15:9328. [PMID: 40102434 PMCID: PMC11920053 DOI: 10.1038/s41598-025-92066-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 02/25/2025] [Indexed: 03/20/2025] Open
Abstract
A series of novel pyrimidine and pyrimidopyrimidine analogs were synthesized in good yield from 6-amino-4-aryl-2-oxo-pyrimidine-5-carbonitrile (1a-d). The synthesized compounds were characterized using various spectral studies, including FT-IR, 1H NMR, 13C NMR, mass spectrometry, and elemental analysis. Newly synthesized pyrimidopyrimidines and 2-(substituted-pyrazolyl)pyrimidine derivatives were assessed in vitro for their cytotoxic activities against three cancerous cell lines: colorectal carcinoma (HCT-116), mammary gland breast cancer (MCF-7), and hepatocellular carcinoma (HEPG-2), as well as normal fibroblasts (W138). The results indicated that compounds 3b, 10b, and 10c exhibited the highest cytotoxic activities, with IC50 values very close to those of the reference drug (doxorubicin) across all studied cancerous cell lines, while also demonstrating good safety effects on the normal human lung fibroblast cell line. Furthermore, all the synthesized compounds were examined for their antimicrobial activity against two Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis), one Gram negative bacterium (Escherichia coli) and two fungal species (Candida albicans and Aspergillus flavus). The antimicrobial results of the synthesized compounds, when compared with the reference drugs ampicillin and clotrimazole, revealed that compounds 3a, 3b, 3d, 4a-d, 9c and 10b exhibited excellent antimicrobial activities. Moreover, membrane stabilization or anti-hemolytic activity was employed as a method to study the in vitro anti-inflammatory activity of the prepared heterocyclic compounds. Antioxidant activities were also assessed by measuring the percentage of free radical scavenging. Compounds 4b, 10c and 11a-c demonstrated strong anti-hemolytic and antioxidant effects, which can be attributed to their ability to protect red blood cells from hemolysis.
Collapse
Affiliation(s)
- Reda Mohammed Keshk
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt.
| | - Zeinab Ahmed Salama
- Chemistry Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| | - Samir Kamel Elsaedany
- Chemistry Department, Faculty of Science, Alexandaria University, Alexandaria, Egypt
| | | | - Doha Mohammad Beltagy
- Biochemistry Department, Faculty of Science, Damanhour University, Damanhour, 22511, Egypt
| |
Collapse
|
2
|
Gupta JK, Singh K, Bhatt A, Porwal P, Rani R, Dubey A, Jain D, Rai SN. Recent advances in the synthesis of antidepressant derivatives: pharmacologic insights for mood disorders. 3 Biotech 2024; 14:260. [PMID: 39376479 PMCID: PMC11456089 DOI: 10.1007/s13205-024-04104-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 09/22/2024] [Indexed: 10/09/2024] Open
Abstract
Mood disorders, including depression, remain a significant global health concern, necessitating continuous efforts to develop novel and more effective antidepressant therapies. Although there have been significant advancements in comprehending the biology of Major Depressive Disorder (MDD), a considerable number of people suffering from depression do not exhibit positive responses to the pharmacologic treatments now available. This study specifically examines emerging targets and potential future approaches for pharmaceutical interventions in the treatment of MDD. The discussion revolves around novel therapeutic agents and their effectiveness in treating depression. The focus is on the specific pathophysiological pathways targeted by these agents and the amount of evidence supporting their use. While conventional antidepressants are anticipated to continue being the primary treatment for MDD in the foreseeable future, there is currently extensive research being conducted on numerous new compounds to determine their effectiveness in treating MDD. Many of these compounds have shown encouraging results. This review highlighted the recent advances in the synthesis of antidepressant derivatives and explores their pharmacologic insights for the treatment of mood disorders.
Collapse
Affiliation(s)
- Jeetendra Kumar Gupta
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh India
| | - Kuldeep Singh
- Department of Pharmacology, Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh India
| | - Alok Bhatt
- School of Pharmacy, Graphic Era Hill University, Bell Road, Clement Town, Dehradun, Uttarakhand India
| | - Prateek Porwal
- FS College of Pharmacy and Research Centre, FS University, Near Balaji Mandir, ShikohabadFirozabad, Uttar Pradesh India
| | - Rekha Rani
- Department of Chemistry, School of Pharmacy, ITM University, Gwalior, Madhya Pradesh India
| | - Anubhav Dubey
- Department of Pharmacology, Maharana Pratap College of Pharmacy, Kanpur, Uttar Pradesh India
| | - Divya Jain
- Department of Microbiology, School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand 248007 India
| | - Sachchida Nand Rai
- Centre of Experimental Medicine and Surgery, Banaras Hindu University, Varanasi, Uttar Pradesh 221005 India
| |
Collapse
|
3
|
Jaiswal S, Verma K, Dwivedi J, Sharma S. Tetrazole derivatives in the management of neurological disorders: Recent advances on synthesis and pharmacological aspects. Eur J Med Chem 2024; 271:116388. [PMID: 38614062 DOI: 10.1016/j.ejmech.2024.116388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/16/2024] [Accepted: 04/02/2024] [Indexed: 04/15/2024]
Abstract
Neurological disorders are the leading cause of a large number of mortalities and morbidities. Nitrogen heterocyclic compounds have been pivotal in exhibiting wide array of therapeutic applications. Among them, tetrazole is a ubiquitous class of organic heterocyclic compounds that have attracted much attention because of its unique structural and chemical properties, and a wide range of pharmacological activities comprising anti-convulsant effect, antibiotic, anti-allergic, anti-hypertensive to name a few. Owing to significant chemical and biological properties, the present review aimed at highlighting the recent advances in tetrazole derivatives with special emphasis on their role in the management of neurological diseases. Besides, in-depth structure-activity relationships, molecular docking studies, and associated modes of action of tetrazole derivatives evident in in vitro, in vivo preclinical, and clinical studies have been discussed.
Collapse
Affiliation(s)
- Shivangi Jaiswal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, India.
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, India.
| |
Collapse
|
4
|
Mughal EU, Amjid S, Sadiq A, Naeem N, Nazir Y, Alrafai HA, Hassan AA, Al-Nami SY, Abdel Hafez AA, Ali Shah SW, Ghias M. Design and synthesis of 2-amino-4,6-diarylpyrimidine derivatives as potent α-glucosidase and α-amylase inhibitors: structure-activity relationship, in vitro, QSAR, molecular docking, MD simulations and drug-likeness studies. J Biomol Struct Dyn 2024; 42:244-260. [PMID: 37096830 DOI: 10.1080/07391102.2023.2198609] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 03/10/2023] [Indexed: 04/26/2023]
Abstract
In the present study, a series of 2-amino-4,6-diarylpyrimidine derivatives was designed, synthesized, characterized and evaluated for their in vitro α-glucosidase and α-amylase enzyme inhibition assays. The outcomes proved that this class of compounds exhibit considerable inhibitory activity against both enzymes. Among the target compounds, compounds 4p and 6p demonstrated the most potent dual inhibition with IC50 = 0.087 ± 0.01 μM for α-glucosidase; 0.189 ± 0.02 μM for α-amylase and IC50 = 0.095 ± 0.03 μM for α-glucosidase; 0.214 ± 0.03 μM for α-amylase, respectively as compared to the standard rutin (IC50 = 0.192 ± 0.02 μM for α-glucosidase and 0.224 ± 0.02 μM for α-amylase). Remarkably, the enzyme inhibition results indicate that test compounds have stronger inhibitory effect on the target enzymes than the positive control, with a significantly lower IC50 value. Moreover, these series of compounds were found to inhibit α-glucosidase activity in a reversible mixed-type manner with IC50 between 0.087 ± 0.01 μM to 1.952 ± 0.26 μM. Furthermore, molecular docking studies were performed to affirm the binding interactions of this scaffold to the active sites of α-glucosidase and α-amylase enzymes. The quantitative structure-activity relationship (QSAR) investigations showed a strong association between 1p-15p structures and their inhibitory actions (IC50) with a correlation value (R2) of 0.999916. Finally, molecular dynamic (MD) simulations were carried out to assess the dynamic behavior, stability of the protein-ligand complex, and binding affinity of the most active inhibitor 4p. The experimental and theoretical results therefore exposed a very good compatibility. Additionally, the drug-likeness assay revealed that some compounds exhibit a linear association with Lipinski's rule of five, indicating good drug-likeness and bioactivity scores for pharmacological targets.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | - Samreen Amjid
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Amina Sadiq
- Department of Chemistry, Govt. College Women University, Sialkot, Pakistan
| | - Nafeesa Naeem
- Department of Chemistry, University of Gujrat, Gujrat, Pakistan
| | - Yasir Nazir
- Department of Chemistry, Allama Iqbal Open University, Islamabad, Pakistan
| | - H A Alrafai
- Department of Chemistry, Faculty of Science, King Khalid University, Abraham, Saudi Arabia
| | - Abeer A Hassan
- Department of Chemistry, Faculty of Science, King Khalid University, Abraham, Saudi Arabia
| | - Samar Y Al-Nami
- Department of Chemistry, Faculty of Science, King Khalid University, Abraham, Saudi Arabia
| | - Amal A Abdel Hafez
- Department of Chemistry, Faculty of Science, King Khalid University, Abraham, Saudi Arabia
| | - Syed Wadood Ali Shah
- Department of Pharmacy, University of Malakand, Chakdara Dir, Khyber Pakhtunkhwa, Pakistan
| | - Mehreen Ghias
- Department of Pharmacy, University of Malakand, Chakdara Dir, Khyber Pakhtunkhwa, Pakistan
| |
Collapse
|
5
|
Osman NA, El-Sayed NS, Abdel Fattah HA, Almalki AJ, Kammoun AK, Ibrahim TS, Alharbi AS, Al-Mahmoudy AM. Design, Synthesis and Anticancer Evaluation of New 1-allyl-4-oxo-6-(3,4,5- trimethoxyphenyl)-1,4-dihydropyrimidine-5-carbonitrile Bearing Pyrazole Moieties. Curr Org Synth 2023; 20:897-909. [PMID: 36941818 DOI: 10.2174/1570179420666230320153649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 01/09/2023] [Accepted: 01/17/2023] [Indexed: 03/23/2023]
Abstract
AIM pyrimidine and pyrazole have various biological and pharmaceutical applications such as antibacterial, antifungal, antileishmanial, anti-inflammatory, antitumor, and anti-cancer. INTRODUCTION In this search, the goal is to prepare pyrimidine-pyrazoles and study their anticancer activity. METHODS 1-allyl-4-oxo-6-(3,4,5-trimethoxyphenyl)-1,4-dihydropyrimidine-5-carbonitrile bearing pyrazoles (4,6-8) have been synthesized. Firstly, the reaction of 1-allyl-2-(methylthio)-4-oxo-6- (3,4,5-trimethoxyphenyl)-1,4-dihydropyrimidine-5-carbonitrile (1) with chalcones 2a-b produced the intermediates 3a-b. The latter was reacted with hydrazine hydrate to give the targets 4a-b. On the other hand, hydrazinolysis of compound 1 yielded the hydrazino derivative 5 which upon reaction with chalcones 2c-i or 1,3-bicarbonyl compounds afforded the compounds 6-8. Finally, the new compounds were characterized by spectral data (IR, 1H NMR, 13C NMR) and elemental analysis. Moreover, they were evaluated for Panc-1, MCF-7, HT-29, A-549, and HPDE cell lines as anticancer activity. RESULTS All the tested compounds 3,4,6-8 showed IC50 values > 50 μg/mL against the HPDE cell line. Compounds 6a and 6e exhibited potent anticancer activity where the IC50 values in the range of 1.7- 1.9, 1.4-182, 1.75-1.8, and 1.5-1.9 μg/mL against Panc-1, MCF-7, HT-29, and A-549 cell lines. CONCLUSION New pyrimidine-pyrazole derivatives were simply synthesized, in addition, some of them showed potential anticancer activity.
Collapse
Affiliation(s)
- Nermine A Osman
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig, University, Zagazig, 44519, Egypt
| | - Nermine S El-Sayed
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig, University, Zagazig, 44519, Egypt
- Mansoura University Hospital, Mansoura University, Mansoura, Egypt
| | - Hanan A Abdel Fattah
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig, University, Zagazig, 44519, Egypt
| | - Ahmad J Almalki
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Ahmed K Kammoun
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Tarek S Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Abdulrahman S Alharbi
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Amany M Al-Mahmoudy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Zagazig, University, Zagazig, 44519, Egypt
| |
Collapse
|
6
|
Synthesis and antifungal activities of novel trifluoroethane derivatives with coumarin, indole and thiophene. JOURNAL OF SAUDI CHEMICAL SOCIETY 2022. [DOI: 10.1016/j.jscs.2022.101572] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
7
|
[DBU][OAc]-mediated synthesis and anthelmintic activity of triazole–tetrazole conjugates. RESEARCH ON CHEMICAL INTERMEDIATES 2022. [DOI: 10.1007/s11164-022-04842-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
8
|
Wang T, Wu F, Luo L, Zhang Y, Ma J, Hu Y. Efficient synthesis and cytotoxic activity of polysubstituted thieno[2,3-d]pyrimidine derivatives. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
9
|
Eze CC, Ezeokonkwo AM, Ugwu ID, Eze UF, Onyeyilim EL, Attah IS, Okonkwo IV. Azole-pyrimidine Hybrid Anticancer Agents: A Review of Molecular Structure, Structure Activity Relationship and Molecular Docking. Anticancer Agents Med Chem 2022; 22:2822-2851. [PMID: 35306990 DOI: 10.2174/1871520622666220318090147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/07/2021] [Accepted: 01/18/2022] [Indexed: 11/22/2022]
Abstract
Cancer has emerged as one of the leading causes of deaths globally partly due to the steady rise in anticancer drug resistance. Pyrimidine and pyrimidine-fused heterocycles are some of the privileged scaffolds in medicine, as they possess diverse biological properties. Pyrimidines containing azole nucleus possesses inestimable anticancer potency and has enormous potential to conduct the regulation of cellular pathways for selective anticancer activity. The present review outlines the molecular structure of pyrimidine-fused azoles with significant anticancer activity. The structure activity relationship and molecular docking studies have also been discussed. The current review is the first complete compilation of significant literature on the proposed topic from 2016 to 2020. The information contained in this review offers a useful insight to chemists in the design of new and potent anticancer azole-pyrimidine analogues.
Collapse
Affiliation(s)
- Chinweike Cosmas Eze
- Natural Science Unit, School of General Studies, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | | | - Izuchukwu David Ugwu
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Uchenna Florence Eze
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Ebuka Leonard Onyeyilim
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Izuchi Solomon Attah
- Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| | - Ifeoma Vivian Okonkwo
- Department of Science Laboratory Technology, University of Nigeria, Nsukka, Enugu State, 410001, Nigeria
| |
Collapse
|
10
|
Datta K, Mitra B, Sharma BS, Ghosh P. One‐pot Three‐component Solvent‐free Tandem Annulations for Synthesis of Tetrazolo[1,2‐
a
]pyrimidine and [1,2,4]triazolo[1,5‐
a
]pyrimidine. ChemistrySelect 2022. [DOI: 10.1002/slct.202103602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Kumaresh Datta
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| | - Bijeta Mitra
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| | - Biswajit Shil Sharma
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| | - Pranab Ghosh
- Department of Chemistry University of North Bengal Dist. Darjeeling West Bengal India
| |
Collapse
|
11
|
Kökbudak Z, Akkoç S, Karataş H, Tüzün B, Aslan G. In Silico
and
In Vitro
Antiproliferative Activity Assessment of New Schiff Bases. ChemistrySelect 2022. [DOI: 10.1002/slct.202103679] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | - Senem Akkoç
- Department of Basic Pharmaceutical Science Suleyman Demirel University Isparta Turkey
| | - Halis Karataş
- Department of Chemistry Erciyes University Kayseri Turkey
| | - Burak Tüzün
- Plant and Animal Production Department Sivas Cumhuriyet University Sivas Turkey
| | - Güzin Aslan
- Department of Chemistry Erciyes University Kayseri Turkey
| |
Collapse
|
12
|
Zhang MM, Zhan ZZ, Wang M, Wang HS, Huang GS. Direct Synthesis of 2,4,6‐Trisubstituted Pyrimidines
via
Base‐Mediated One‐Pot Multicomponent Reaction. ChemistrySelect 2021. [DOI: 10.1002/slct.202103621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Ming M. Zhang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Zhen Z. Zhan
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Meng Wang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - He S. Wang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| | - Guo S. Huang
- State Key Laboratory of Applied Organic Chemistry Key Laboratory of Nonferrous Metal Chemistry and Resources Utilization of Gansu Province Department of Chemistry Lanzhou University Lanzhou P. R. China
| |
Collapse
|
13
|
Das A, Ashraf MW, Banik BK. Thione Derivatives as Medicinally Important Compounds. ChemistrySelect 2021. [DOI: 10.1002/slct.202102398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Aparna Das
- Department of Mathematics and Natural Sciences College of Sciences and Human Studies Prince Mohammad Bin Fahd University Al Khobar 31952, Kingdom of Saudi Arabia
| | - Muhammad Waqar Ashraf
- Department of Mathematics and Natural Sciences College of Sciences and Human Studies Prince Mohammad Bin Fahd University Al Khobar 31952, Kingdom of Saudi Arabia
| | - Bimal Krishna Banik
- Department of Mathematics and Natural Sciences College of Sciences and Human Studies Prince Mohammad Bin Fahd University Al Khobar 31952, Kingdom of Saudi Arabia
| |
Collapse
|
14
|
Singh K, Pal R, Khan SA, Kumar B, Akhtar MJ. Insights into the structure activity relationship of nitrogen-containing heterocyclics for the development of antidepressant compounds: An updated review. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130369] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
|
15
|
Lalpara JN, Vachhani MD, Hadiyal SD, Goswami S, Dubal GG. Synthesis and in vitro Antidiabetic Screening of Novel Dihydropyrimidine Derivatives. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2021. [DOI: 10.1134/s1070428021020159] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
16
|
García-Raso A, Terrón A, Fiol JJ, López-Zafra A, Massanet B, Frontera A, Barceló-Oliver M. Modified-amino acid/peptide pyrimidine analogs: synthesis, structural characterization and DFT studies of N-(pyrimidyl)gabapentine and N-(pyrimidyl)baclofen. NEW J CHEM 2021. [DOI: 10.1039/d1nj04639j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
H-Bonding networks and π–π and halogen bonding interactions in the crystal structures of N-modified amino acid pyrimidine analogs are investigated using DFT calculations and X-ray crystallography analysis.
Collapse
Affiliation(s)
- Angel García-Raso
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Angel Terrón
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Juan J. Fiol
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Adela López-Zafra
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Bárbara Massanet
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| | - Miquel Barceló-Oliver
- Departament de Química, Universitat de les Illes Balears, Crta. de Valldemossa km 7.5, 07122 Palma, Baleares, Spain
| |
Collapse
|
17
|
Grover G, Nath R, Bhatia R, Akhtar MJ. Synthetic and therapeutic perspectives of nitrogen containing heterocycles as anti-convulsants. Bioorg Med Chem 2020; 28:115585. [PMID: 32631563 DOI: 10.1016/j.bmc.2020.115585] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 05/31/2020] [Accepted: 06/02/2020] [Indexed: 02/07/2023]
Abstract
Epilepsy is one of the commonly prevailing neurological disorders. According to the reports, it is evident that about 80% of the epileptic cases have been observed in developing countries. Although there are many drugs with significant potency available in the market; still there is an issue of selectivity and toxicity. Therefore, continuous attempts have been made by the researchers to develop newer therapeutic agents against epilepsy. Many synthetic strategies have been available in the literature to synthesize various classes of anticonvulsants with promising activity. In the presented review, authors have summarized some newer synthetic routes being used for the synthesis of nitrogen-containing anticonvulsants taking a cue from the reported established anticonvulsant drugs viz. vigabatrin, sodium valproate, oxcarbazepine, felbamate, retigabine, and gabapentin. Various derivatives with the substitution for better anticonvulsant profile have been described in the figures for easy comparative study. The structure-activity relationship (SAR) of compounds with maximum potency has also been discussed. This article may serve as a boost for the researchers to modify the pre-existing synthetic routes as well as to improve potency and yield of the compounds.
Collapse
Affiliation(s)
- Gourav Grover
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA-142001, Punjab, India
| | - Rajarshi Nath
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA-142001, Punjab, India
| | - Rohit Bhatia
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA-142001, Punjab, India.
| | - Md Jawaid Akhtar
- Department of Pharmaceutical Chemistry, ISF College of Pharmacy, Ghal Kalan, Ferozpur G.T. Road MOGA-142001, Punjab, India.
| |
Collapse
|
18
|
Sohbati H, Alipour M, Hosseinkhani S, Balalaie S, Hamdan F. Design, Synthesis and Biological Evaluation of Triptorelin Analogs Containing Tetrazole Moiety. ChemistrySelect 2020. [DOI: 10.1002/slct.201903722] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Hamidreza Sohbati
- Peptide Chemistry Research CenterK. N. Toosi University of Technology P. O. Box 15875–4416 Tehran Iran
| | - Mohsen Alipour
- Department of Advanced Medical Sciences & Technologies, School of MedicineJahrom, University of Medical Sciences, Jahrom Iran
| | - Saman Hosseinkhani
- Department of Nano Biotechnology, Faculty of Biological SciencesTarbiat Modares University, Tehran Iran
| | - Saeed Balalaie
- Peptide Chemistry Research CenterK. N. Toosi University of Technology P. O. Box 15875–4416 Tehran Iran
- e Medical Biology Research CenterKermanshah University of Medical Sciences, Kermanshah Iran
| | - Fatima Hamdan
- Peptide Chemistry Research CenterK. N. Toosi University of Technology P. O. Box 15875–4416 Tehran Iran
| |
Collapse
|
19
|
Anticancer activities of various new metal complexes prepared from a Schiff base on A549 cell line. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2019.107645] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
20
|
Synthesis, cytotoxicity, and antitubercular studies of novel thiophene containing 2-methyl-3-methyl/ethyl acrylates from Baylis–Hillman adducts. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02489-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
21
|
Firoj Basha S, Prasad TN, Gudise VB, Kumar VS, Mulakayala N, Anwar S. An efficient, multicomponent, green protocol to access 4, 7-dihydrotetrazolo [1, 5-a] pyrimidines and 5,6,7,9-tetrahydrotetrazolo[5,1-b]quinazolin-8(4H)-ones using PEG-400 under microwave irradiation. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1659973] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Shaik Firoj Basha
- Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research – VFSTR (Deemed to be University), Guntur, India
| | - Tangella Nagendra Prasad
- Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research – VFSTR (Deemed to be University), Guntur, India
| | - Veera Babu Gudise
- Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research – VFSTR (Deemed to be University), Guntur, India
| | - Vadiga Shanthi Kumar
- Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research – VFSTR (Deemed to be University), Guntur, India
| | - Naveen Mulakayala
- Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research – VFSTR (Deemed to be University), Guntur, India
| | - Shaik Anwar
- Division of Chemistry, Department of Sciences and Humanities, Vignan’s Foundation for Science, Technology and Research – VFSTR (Deemed to be University), Guntur, India
| |
Collapse
|
22
|
Shehta W, Abdel Hamid AM. Synthesis and Antibacterial Acivity of Some Novel Pyrimidine-Based Heterocycles. RUSS J GEN CHEM+ 2019. [DOI: 10.1134/s1070363219040273] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Reznikov AN, Ostrovskii VA, Klimochkin YN. Synthesis of Nonracemic Tetrazole GABA Analogs. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428018110155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
24
|
Ermiş E. Synthesis, spectroscopic characterization and DFT calculations of novel Schiff base containing thiophene ring. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.11.089] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
25
|
Sahu M, Siddiqui N, Sharma V, Wakode S. 5,6-Dihydropyrimidine-1(2H)-carbothioamides: Synthesis, in vitro GABA-AT screening, anticonvulsant activity and molecular modelling study. Bioorg Chem 2018; 77:56-67. [PMID: 29331765 DOI: 10.1016/j.bioorg.2017.12.031] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 12/26/2017] [Accepted: 12/30/2017] [Indexed: 12/12/2022]
Abstract
Even after considerable advances in the field of epilepsy treatment, convulsions are inefficiently controlled by standard drug therapy. Herein, a series of pyrimidine-carbothioamide derivatives 4(a-t) was designed as anticonvulsant agents by doing some important structural modifications in well-known anticonvulsant drugs. Two classical animal models were used for the in vivo anticonvulsant screening, maximum electroshock seizure (MES) and subcutaneous pentylenetetrazole (scPTZ) models; followed by motor impairment study by rotarod method. The most active compound 4g effectively suppressed seizure effect in both the animal models with median doses of 15.6 mg/kg (MES ED50), 278.4 mg/kg (scPTZ ED50) and 534.4 mg/kg (TD50) with no sign of neurotoxicity. Furthermore, in vitro GABA-AT enzyme activity assay of 4g showed inhibitory potency (IC50) of 12.23 μM. The docking study also favored the animal studies.
Collapse
Affiliation(s)
- Meeta Sahu
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research (Formerly, Faculty of Pharmacy), Jamia Hamdard, New Delhi 110062, India
| | - Nadeem Siddiqui
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education & Research (Formerly, Faculty of Pharmacy), Jamia Hamdard, New Delhi 110062, India.
| | - Vidushi Sharma
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Mehrauli-Badarpur Road, Pushp Vihar, Sector-3, New Delhi 110017, India
| | - Sharad Wakode
- Department of Pharmaceutical Chemistry, Delhi Institute of Pharmaceutical Sciences and Research (DIPSAR), Mehrauli-Badarpur Road, Pushp Vihar, Sector-3, New Delhi 110017, India
| |
Collapse
|
26
|
Gong Z, Xie Z, Qiu J, Wang G. Synthesis, Biological Evaluation and Molecular Docking Study of 2-Substituted-4,6-Diarylpyrimidines as α-Glucosidase Inhibitors. Molecules 2017; 22:molecules22111865. [PMID: 29084182 PMCID: PMC6150375 DOI: 10.3390/molecules22111865] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 11/24/2022] Open
Abstract
A novel series of 2-substituted-4,6-diarylpyrimidines 6a–6t has been synthesized, characterized by 1H-NMR, 13C-NMR and HRMS, and screened for in vitro α-glucosidase inhibitory activity. The majority of the screened compounds possessed significant α-glucosidase inhibitory activity with IC50 values ranging from 19.6 ± 0.21 to 38.9 ± 0.35 μM, which is more potent than the positive control α-glucosidase inhibitor acarbose (IC50 = 817.38 ± 6.27 μM). Among them, 6j was found to be the most active compound against α-glucosidase with an IC50 of 19.6 ± 0.21 μM. In addition, molecular docking studies were carried out to explore the binding interactions of 2-substituted-4,6-diarylpyrimidine derivatives with α-glucosidase.
Collapse
Affiliation(s)
- Zipeng Gong
- Provincial Key Laboratory of Pharmaceutics in Guizhou Province, Guizhou Medical University, Beijing Road, Guiyang 550004, China.
- School of Pharmacy, Guizhou Medical University, 4 Beijing Road, Guiyang 550004, China.
- National Engineering Research Center of Miao's Medicines, 4 Beijing Road, Guiyang 550004, China.
| | - Zhenzhen Xie
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China.
| | - Jie Qiu
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China.
| | - Guangcheng Wang
- College of Chemistry and Chemical Engineering, Jishou University, Jishou 416000, China.
| |
Collapse
|
27
|
Design, synthesis and evaluation of newer 5,6-dihydropyrimidine-2(1 H )-thiones as GABA-AT inhibitors for anticonvulsant potential. Bioorg Chem 2017; 74:166-178. [DOI: 10.1016/j.bioorg.2017.07.017] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Revised: 07/25/2017] [Accepted: 07/27/2017] [Indexed: 10/19/2022]
|
28
|
Harit T, Bellaouchi R, Asehraou A, Rahal M, Bouabdallah I, Malek F. Synthesis, characterization, antimicrobial activity and theoretical studies of new thiophene-based tripodal ligands. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2016.11.051] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
29
|
Magesh Selva Kumar A, Vijaya Pandiyan B, Mohana Roopan S, Rajendran S. Efficient synthesis, fluorescence and DFT studies of different substituted 2-chloroquinoline-4-amines and benzo[g][1,8]naphthyridine derivatives. J Photochem Photobiol A Chem 2017. [DOI: 10.1016/j.jphotochem.2016.08.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
30
|
Seenaiah D, Rekha T, Padmaja A, Padmavathi V. Synthesis and antimicrobial activity of pyrimidinyl bis(benzazoles). Med Chem Res 2016. [DOI: 10.1007/s00044-016-1758-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
31
|
An efficient one-pot synthesis of thiochromeno[3,4-d]pyrimidines derivatives: Inducing ROS dependent antibacterial and anti-biofilm activities. Bioorg Chem 2016; 68:159-65. [PMID: 27522461 DOI: 10.1016/j.bioorg.2016.08.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 08/04/2016] [Accepted: 08/08/2016] [Indexed: 11/22/2022]
Abstract
An efficient synthesis of thiochromeno[3,4-d]pyrimidine derivatives has been achieved successfully via a one-pot three-component reaction of thiochrome-4-one, aromatic aldehyde and thiourea in the presence of 1-butyl-3-methyl imidazolium hydrogen sulphate [Bmim]HSO4. This new protocol has the advantages of environmental friendliness, high yields, short reaction times, and convenient operation. Furthermore, among all the tested derivatives, compounds 4b and 4c exhibited promising antibacterial, minimum bactericidal concentration and anti-biofilm activities against Staphylococcus aureus MTCC 96, Staphylococcus aureus MLS16 MTCC 2940 and Bacillus subtilis MTCC 121. The compound 4c also showed promising intracellular ROS accumulation in Staphylococcus aureus MLS16 MTCC 2940 comparable to that of ciprofloxacin resulting in apoptotic cell death of the bacterium.
Collapse
|
32
|
Ionic liquid-promoted multicomponent synthesis of fused tetrazolo[1,5-a]pyrimidines as α-glucosidase inhibitors. Bioorg Med Chem Lett 2016; 26:4007-14. [DOI: 10.1016/j.bmcl.2016.06.086] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Revised: 06/27/2016] [Accepted: 06/29/2016] [Indexed: 02/07/2023]
|
33
|
Ahmed K, Dubey B, Nadeem S, Shrivastava B, Sharma P. p-TSA-catalyzed one-pot synthesis and docking studies of some 5H-indeno[1,2-b]quinoline-9,11(6H,10H)-dione derivatives as anticonvulsant agents. CHINESE CHEM LETT 2016. [DOI: 10.1016/j.cclet.2016.01.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
34
|
Wang SB, Piao GC, Zhang HJ, Quan ZS. Synthesis of 5-alkoxythieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidine derivatives and evaluation of their anticonvulsant activities. Molecules 2015; 20:6827-43. [PMID: 25884556 PMCID: PMC6272708 DOI: 10.3390/molecules20046827] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 04/02/2015] [Accepted: 04/08/2015] [Indexed: 11/23/2022] Open
Abstract
This work concerns the design and synthesis of novel, substituted 5-alkoxythieno[2,3-e][1,2,4]triazolo[4,3-c]pyrimidine derivatives 5a-p prepared from 3-amino-2-thiophenecarboxylic acid methyl ester. The final compounds were screened for their in vivo anticonvulsant activity using maximal electroshock (MES) and subcutaneous pentylenetetrazole (scPTZ) tests. Neurotoxicity (NT) was tested using a rotarod test. The structure-anticonvulsant activity relationship analysis revealed that the most effective structural motif involves a substituted phenol, especially when substituted with a single chlorine, fluorine or trifluoromethyl group (at the meta-position), or two chlorine atoms. These molecules possessed high activity according to the MES and scPTZ models. Quantitative assessment of the compounds after intraperitoneal administration in mice showed that the most active compound was 5-[3-(trifluoromethyl)phenoxy]thieno[2,3-e] [1,2,4]triazolo[4,3-c]pyrimidine (5o) with ED50 values of 11.5 mg/kg (MES) and 58.9 mg/kg (scPTZ). Furthermore, compound 5o was more effective in the MES and scPTZ tests than the well-known anticonvulsant drugs carbamazepine and ethosuximide.
Collapse
Affiliation(s)
- Shi-Ben Wang
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133000, China.
| | - Guang-Chun Piao
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133000, China.
| | - Hong-Jian Zhang
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133000, China.
| | - Zhe-Shan Quan
- Key Laboratory of Natural Resources and Functional Molecules of the Changbai Mountain, Affiliated Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133000, China.
| |
Collapse
|
35
|
Wei CX, Bian M, Gong GH. Tetrazolium compounds: synthesis and applications in medicine. Molecules 2015; 20:5528-53. [PMID: 25826789 PMCID: PMC6272207 DOI: 10.3390/molecules20045528] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2014] [Revised: 03/03/2015] [Accepted: 03/04/2015] [Indexed: 01/26/2023] Open
Abstract
Tetrazoles represent a class of five-membered heterocyclic compounds with polynitrogen electron-rich planar structural features. This special structure makes tetrazole derivatives useful drugs, explosives, and other functional materials with a wide range of applications in many fields of medicine, agriculture, material science, etc. Based on our research works on azoles and other references in recent years, this review covers reported work on the synthesis and biological activities of tetrazole derivatives.
Collapse
Affiliation(s)
- Cheng-Xi Wei
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, Inner Mongolia, China.
| | - Ming Bian
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, Inner Mongolia, China.
| | - Guo-Hua Gong
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, Inner Mongolia, China.
- Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia, China.
| |
Collapse
|
36
|
Kamal R, Kumar V, Bhardwaj V, Kumar V, Aneja KR. Synthesis, characterization and in vitro antimicrobial evaluation of some novel hydrazone derivatives bearing pyrimidinyl and pyrazolyl moieties as a promising heterocycles. Med Chem Res 2015. [DOI: 10.1007/s00044-014-1313-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
37
|
Bozorov K, Ma HR, Zhao JY, Zhao HQ, Chen H, Bobakulov K, Xin XL, Elmuradov B, Shakhidoyatov K, Aisa HA. Discovery of diethyl 2,5-diaminothiophene-3,4-dicarboxylate derivatives as potent anticancer and antimicrobial agents and screening of anti-diabetic activity: Synthesis and in vitro biological evaluation. Part 1. Eur J Med Chem 2014; 84:739-45. [DOI: 10.1016/j.ejmech.2014.07.065] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2014] [Revised: 07/18/2014] [Accepted: 07/19/2014] [Indexed: 11/29/2022]
|
38
|
El Azab IH, Elkanzi NAA. Synthesis of Fused Isolated Azoles and N-Heteroaryl Derivatives Based on 2-Methyl-3,4-dihydrothieno[3,4-d]pyrimidin-5-amine. SYNTHETIC COMMUN 2014. [DOI: 10.1080/00397911.2014.916301] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Affiliation(s)
- Islam Helmy El Azab
- a Chemistry Department , Faculty of Science, Aswan University , Aswan , Egypt
- b Chemistry Department , Faculty of Science, Taif University , Al-Haweiah , Taif , Saudi Arabia
| | | |
Collapse
|