1
|
Karaküçük-İyidoğan A, Başaran E, Tatar-Yılmaz G, Oruç-Emre EE. Development of new chiral 1,2,4-triazole-3-thiones and 1,3,4-thiadiazoles with promising in vivo anticonvulsant activity targeting GABAergic system and voltage-gated sodium channels (VGSCs). Bioorg Chem 2024; 151:107662. [PMID: 39079390 DOI: 10.1016/j.bioorg.2024.107662] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 07/06/2024] [Accepted: 07/17/2024] [Indexed: 08/30/2024]
Abstract
Antiepileptic drugs (AEDs) are used in the treatment of epilepsy, a neurodegenerative disease characterized by recurrent and untriggered seizures that aim to prevent seizures as a symptomatic treatment. However, they still have significant side effects as well as drug resistance. In recent years, especially 1,3,4-thiadiazoles and 1,2,4-triazoles have attracted attention in preclinical and clinical studies as important drug candidates owing to their anticonvulsant properties. Therefore, in this study, which was conducted to discover AED candidate molecules with reduced side effects at low doses, a series of chiral 2,5-disubstituted-1,3,4-thiadiazoles (4a-d) and 4,5-disubstituted-1,2,4-triazole-3 thiones (5a-d) were designed and synthesized starting from l-phenylalanine ethyl ester hydrochloride. The anticonvulsant activities of the new chiral compounds were assessed in several animal seizure models in mice and rats for initial (phase I) screening after their chemical structures including the configuration of the chiral center were elucidated using spectroscopic methods and elemental analysis. First, all chiral compounds were pre-screened using acute seizure tests induced electrically (maximal electroshock test, 6 Hz psychomotor seizure model) and induced chemically (subcutaneous metrazol seizure model) in mice and also their neurotoxicity (TOX) was determined in the rotorad assay. Two of the tested compounds were used for quantitative testing, and (S)-(+)5-[1-(4-fluorobenzamido)-2-phenylethyl]-4-(4-fluorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (5b) and (S)-(+)-(5-[1-(4-fluorobenzamido)-2-phenylethyl]-4-(4-methoxyphenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione (5c) emerged as the most promising anticonvulsant drug candidates and also showed low neurotoxicity. The antiepileptogenic potential of these compounds was determined using a chronic seizure induced electrically corneal kindled mouse model. Furthermore, all chiral compounds were tested for their neuroprotective effect against excitotoxic kainic acid (KA) and N-methyl-d-aspartate (NMDA) induced in vitro neuroprotection assay using an organotypic hippocampal slice culture. The KA-induced neuroprotection assay results revealed that compounds 5b and 5c, which are the leading compounds for anticonvulsant activity, also had the strongest neuroprotective effects with IC50 values of 103.30 ± 1.14 and 113.40 ± 1.20 μM respectively. Molecular docking studies conducted to investigate the molecular binding mechanism of the tested compounds on the GABAA receptor showed that compound 5b exhibits a strong affinity to the benzodiazepine (BZD) binding site on GABA. It also revealed that the NaV1.3 binding interactions were consistent with the experimental data and the reported binding mode of the ICA121431 inhibitor. This suggests that compound 5b has a high affinity for these specific binding sites, indicating its potential as a ligand for modulating GABAA and NaV1.3 receptor activity. Furthermore, the ADME properties displayed that all the physicochemical and pharmacological parameters of the compounds stayed within the specified limits and revealed a high bioavailability profile.
Collapse
Affiliation(s)
| | - Eyüp Başaran
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, 27310 Gaziantep, Turkey; Department of Chemistry and Chemical Processing Technologies, Vocational School of Technical Sciences, Batman University, 72060 Batman, Turkey
| | - Gizem Tatar-Yılmaz
- Department of Biostatistics and Medical Informatics, Faculty of Medicine, Karadeniz Technical University, 61080 Trabzon, Turkey; Department of Bioinformatics, Institue of Health Science, Karadeniz Technical University, 61080 Trabzon, Turkey
| | - Emine Elçin Oruç-Emre
- Department of Chemistry, Faculty of Arts and Sciences, Gaziantep University, 27310 Gaziantep, Turkey
| |
Collapse
|
2
|
Yang CS, Wu MC, Lai MC, Wu SN, Huang CW. Identification of New Antiseizure Medication Candidates in Preclinical Animal Studies. Int J Mol Sci 2023; 24:13143. [PMID: 37685950 PMCID: PMC10487685 DOI: 10.3390/ijms241713143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/10/2023] Open
Abstract
Epilepsy is a multifactorial neurologic disease that often leads to many devastating disabilities and an enormous burden on the healthcare system. Until now, drug-resistant epilepsy has presented a major challenge for approximately 30% of the epileptic population. The present article summarizes the validated rodent models of seizures employed in pharmacological researches and comprehensively reviews updated advances of novel antiseizure candidates in the preclinical phase. Newly discovered compounds that demonstrate antiseizure efficacy in preclinical trials will be discussed in the review. It is inspiring that several candidates exert promising antiseizure activities in drug-resistant seizure models. The representative compounds consist of derivatives of hybrid compounds that integrate multiple approved antiseizure medications, novel positive allosteric modulators targeting subtype-selective γ-Aminobutyric acid type A receptors, and a derivative of cinnamamide. Although the precise molecular mechanism, pharmacokinetic properties, and safety are not yet fully clear in every novel antiseizure candidate, the adapted approaches to design novel antiseizure medications provide new insights to overcome drug-resistant epilepsy.
Collapse
Affiliation(s)
- Chih-Sheng Yang
- Department of Neurology, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 42743, Taiwan;
- School of Post-Baccalaureate Chinese Medicine, Tzu Chi University, Hualien City 97004, Taiwan
| | - Man-Chun Wu
- Department of Family Medicine and Preventive Medicine Center, Taichung Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Taichung City 42743, Taiwan
| | - Ming-Chi Lai
- Department of Pediatrics, Chi-Mei Medical Center, Tainan City 71004, Taiwan;
| | - Sheng-Nan Wu
- Department of Physiology, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan;
- Institute of Basic Medical Sciences, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| | - Chin-Wei Huang
- Department of Neurology, National Cheng Kung University Hospital, College of Medicine, National Cheng Kung University, Tainan City 70101, Taiwan
| |
Collapse
|
3
|
Paruch K, Kaproń B, Łuszczki JJ, Paneth A, Plech T. Effect of Linker Elongation on the VGSC Affinity and Anticonvulsant Activity among 4-Alkyl-5-aryl-1,2,4-triazole-3-thione Derivatives. Molecules 2023; 28:5287. [PMID: 37446948 DOI: 10.3390/molecules28135287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/04/2023] [Accepted: 07/05/2023] [Indexed: 07/15/2023] Open
Abstract
The main aim of the current project was to investigate the effect of the linker size in 4-alkyl-5-aryl-1,2,4-triazole-3-thione derivatives, known as a group of antiepileptic drug candidates, on their affinity towards voltage-gated sodium channels (VGSCs). The rationale of the study was based both on the SAR observations and docking simulations of the interactions between the designed ligands and the binding site of human VGSC. HYDE docking scores, which describe hydrogen bonding, desolvation, and hydrophobic effects, obtained for 5-[(3-chlorophenyl)ethyl]-4-butyl/hexyl-1,2,4-triazole-3-thiones, justified their beneficial sodium channel blocking activity. The results of docking simulations were verified using a radioligand binding assay with [3H]batrachotoxin. Unexpectedly, although the investigated triazole-based compounds acted as VGSC ligands, their affinities were lower than those of the respective analogs containing shorter alkyl linkers. Since numerous sodium channel blockers are recognized as antiepileptic agents, the obtained 1,2,4-triazole derivatives were examined for antiepileptic potential using an experimental model of tonic-clonic seizures in mice. Median effective doses (ED50) of the compounds examined in MES test reached 96.6 ± 14.8 mg/kg, while their median toxic doses (TD50), obtained in the rotarod test, were even as high as 710.5 ± 47.4 mg/kg.
Collapse
Affiliation(s)
- Kinga Paruch
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Barbara Kaproń
- Department of Clinical Genetics, Faculty of Medicine, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| | - Jarogniew J Łuszczki
- Department of Occupational Medicine, Faculty of Medical Sciences, Medical University of Lublin, Jaczewskiego 8B, 20-090 Lublin, Poland
| | - Agata Paneth
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University of Lublin, Chodźki 4A, 20-059 Lublin, Poland
| | - Tomasz Plech
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, Radziwiłłowska 11, 20-080 Lublin, Poland
| |
Collapse
|
4
|
Zhao KX, Zhang MY, Yang D, Zhu RS, Zhang ZF, Hu YH, Kannan K. Screening of pesticides in serum, urine and cerebrospinal fluid collected from an urban population in China. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131002. [PMID: 36801718 DOI: 10.1016/j.jhazmat.2023.131002] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/03/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Human exposure to pesticides is a topic of public health concern for decades. Pesticide exposures have been assessed through the analysis of urine or blood matrices, but little is known on the accumulation of these chemicals in cerebrospinal fluid (CSF). CSF plays an important role in maintaining physical and chemical balance of the brain and central nervous system and any perturbation can have adverse effects on health. In this study, we investigated the occurrence of 222 pesticides in CSF from 91 individuals using gas chromatography-tandem mass spectrometry (GC-MS/MS). Measured pesticide concentrations in CSF were compared with those in 100 serum and urine specimens from individuals living in the same urban location. Twenty pesticides were found in CSF, serum and urine, at levels above the limit of detection. Three most frequently detected pesticides in CSF were biphenyl (100%), diphenylamine (75%), and hexachlorobenzene (63%). Median concentrations of biphenyl in CSF, serum and urine were 1.11, 10.6, and 1.10 ng/mL, respectively. Six triazole fungicides were found only in CSF, but not in other matrices. To our knowledge, this is the first study to report pesticide concentrations in CSF in a general urban population.
Collapse
Affiliation(s)
- Ke-Xin Zhao
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China
| | - Ming-Yan Zhang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Dan Yang
- Department of Clinical Laboratory, Harbin Medical University Cancer Hospital, Harbin 150081, China
| | - Rong-Shu Zhu
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil and Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zi-Feng Zhang
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), State Key Laboratory of Urban Water Resource and Environment/School of Environment, Harbin Institute of Technology (HIT), Harbin 150090, China.
| | - Ying-Hua Hu
- International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Heilongjiang Institute of Labor Hygiene and Occupational Diseases/The Second Hospital of Heilongjiang Province, Harbin 150028, China
| | - Kurunthachalam Kannan
- Department of Pediatrics and Department of Environmental Medicine, New York University Grossman School of Medicine, New York, NY 10016, USA
| |
Collapse
|
5
|
Emami L, Sadeghian S, Mojaddami A, khabnadideh S, Sakhteman A, Sadeghpour H, Faghih Z, Fereidoonnezhad M, Rezaei Z. Design, synthesis and evaluation of novel 1,2,4-triazole derivatives as promising anticancer agents. BMC Chem 2022; 16:91. [DOI: 10.1186/s13065-022-00887-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2022] [Accepted: 10/29/2022] [Indexed: 11/15/2022] Open
Abstract
AbstractHerein, we reported the synthesis of nineteen novel 1,2,4-triazole derivatives including 1,3-diphenyl-2-(1H-1,2,4-triazol-1-yl) propan-1-ones (7a-e), 1-(1,3-diphenylpropan-2-yl)-1H-1,2,4-triazole (8a-c) and 1,4-diphenyl-2-(1H-1,2,4-triazol-1-yl) butane-1,4-diones (10a-k). The structures of these derivatives were confirmed by spectroscopic techniques like IR, 1H-NMR, Mass spectroscopy and Elemental analysis. The cytotoxic activities of the synthesized compounds were evaluated against three human cancer cell lines including MCF-7, Hela and A549 using MTT assay. Compounds 7d, 7e, 10a and 10d showed a promising cytotoxic activity lower than 12 μM against Hela cell line. The safety of these compounds was also, evaluated on MRC-5 as a normal cell line and relieved that most of the synthesized compounds have proper selectivity against normal and cytotoxic cancerous cell lines. Finally, molecular docking studies were also, done to understand the mechanism and binding modes of these derivatives in the binding pocket of aromatase enzyme as a possible target.
Collapse
|
6
|
Chawla G, Pradhan T, Gupta O, Manaithiya A, Jha DK. An updated review on diverse range of biological activities of 1,2,4-triazole derivatives: Insight into structure activity relationship. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
7
|
1,2,4-Triazole Derivatives as Novel and Potent Antifungal Agents: Design, Synthesis and Biological Evaluation. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
8
|
Krysa M, Makuch-Kocka A, Susniak K, Plech T, Andres-Mach M, Zagaja M, Sroka-Bartnicka A. Spectroscopic Evaluation of the Potential Neurotoxic Effects of a New Candidate for Anti-Seizure Medication-TP-315 during Chronic Administration (In Vivo). Int J Mol Sci 2022; 23:ijms23094607. [PMID: 35562996 PMCID: PMC9101731 DOI: 10.3390/ijms23094607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/12/2022] [Accepted: 04/18/2022] [Indexed: 11/16/2022] Open
Abstract
The aim of this study was to investigate the potential neurotoxic effect of the new anti-seizure medication candidate—5-(3-chlorophenyl)-4-hexyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (TP-315), after chronic administration to mice. TP-315 was administered to mice intraperitoneally for 14 days. At 24 h post the last injection, animals were decapitated, their brains were acquired, flash-frozen in liquid nitrogen and cut into 10 µm slices. The FT-IR chemical imaging technique was used for the investigation of the potential neurotoxic effect in the cerebral cortex and hippocampus. The effect on the lipidomic and proteomic profile and on oxidative stress was investigated. The results showed no statistically significant changes in the above-mentioned parameters. TP-315 seems to pose no neurotoxic effect on the mouse brain after chronic use, therefore, its use should be safe.
Collapse
Affiliation(s)
- Mikolaj Krysa
- Independent Unit of Spectroscopy and Chemical Imaging, Faculty of Biomedical Sciences, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland;
| | - Anna Makuch-Kocka
- Department of Pharmacology, Chair of Pharmacology and Biology, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence: (A.M.-K.); (A.S.-B.); Tel.: +48-81448-6772 (A.M.-K.); +48-81448-7225 (A.S.-B.)
| | - Katarzyna Susniak
- Department of Genetics and Microbiology, Institute of Biology and Biotechnology, Maria Curie-Sklodowska University, 20-033 Lublin, Poland;
- Chair and Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland
| | - Tomasz Plech
- Department of Pharmacology, Chair of Pharmacology and Biology, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, 20-090 Lublin, Poland; (M.A.-M.); (M.Z.)
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, 20-090 Lublin, Poland; (M.A.-M.); (M.Z.)
| | - Anna Sroka-Bartnicka
- Independent Unit of Spectroscopy and Chemical Imaging, Faculty of Biomedical Sciences, Medical University of Lublin, Chodzki 4a, 20-093 Lublin, Poland;
- Correspondence: (A.M.-K.); (A.S.-B.); Tel.: +48-81448-6772 (A.M.-K.); +48-81448-7225 (A.S.-B.)
| |
Collapse
|
9
|
Başaran E, Demircioğlu Z, Tarı GÖ, Ceylan Ü, Karaküçük-İyidoğan A, Oruç-Emre EE, Aygün M. Experimental, spectroscopic and theoretical investigation of (+)-(R)-5-[1-(Benzenesulfonamido)-2-phenylethyl]-4-phenethyl-2,4-dihydro-3H-1,2,4-triazole-3-thione. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131996] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
10
|
Wu J, Hou Z, Wang Y, Chen L, Lian C, Meng Q, Zhang C, Li X, Huang L, Yu H. Discovery of 7-alkyloxy- [1,2,4] triazolo[1,5-a] pyrimidine derivatives as selective positive modulators of GABA A1 and GABA A4 receptors with potent antiepileptic activity. Bioorg Chem 2021; 119:105565. [PMID: 34929519 DOI: 10.1016/j.bioorg.2021.105565] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 12/09/2021] [Accepted: 12/13/2021] [Indexed: 12/28/2022]
Abstract
A series of 7-alkoxy - [1,2,4] triazolo [1, 5-a] pyrimidine derivatives were designed and synthesized. Maximal electroshock (MES) and pentylenetetrazole (PTZ) tests were utilized to access their anticonvulsant activity. Most of the series of compounds exhibited significant anti-seizure effects. Further studies demonstrated that the anticonvulsant activity of these compounds mainly depended on their allosteric potentiation of GABAA receptors. Among them, compound 10c was picked for the mechanism study due to its potent activity. The compound is more sensitive to subunit configurations of synaptic α1β2γ2 and extrasynaptic α4β3δ GABAA receptors, but there were no effects on NMDA receptors and Nav1.2 sodium channels. Meanwhile, 10c acted on the sites of GABAA receptors distinct from commonly used anticonvulsants benzodiazepines and barbiturates. Furthermore, studies from native neurons demonstrated that compound 10c also potentiated the activity of native GABAA receptors and reduced action potential firings in cultured cortical neurons. Such structural compounds may lay a foundation for further designing novel antiepileptic molecules.
Collapse
Affiliation(s)
- Jun Wu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Xicheng district, Beijing 100050, China
| | - Zhipeng Hou
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Yan Wang
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Liping Chen
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Chengxi Lian
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Qingfei Meng
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Chaoying Zhang
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Xiufen Li
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China
| | - Longjiang Huang
- College of Chemical Engineering, Qingdao University of Science and Technology, 53 Zhengzhou Road, Qingdao 266042, China; State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Xicheng district, Beijing 100050, China.
| | - Haibo Yu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Xiannongtan Street, Xicheng district, Beijing 100050, China.
| |
Collapse
|
11
|
(±)-2-{[4-(4-Bromophenyl)-5-phenyl-4H-1,2,4-triazol-3-yl]sulfanyl}-1-phenyl-1-ethanol. MOLBANK 2021. [DOI: 10.3390/m1268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The novel racemic secondary alcohol (±)-2-{[4-(4-bromophenyl)-5-phenyl-4H-1,2,4-triazol-3-yl]sulfanyl}-1-phenyl-1-ethanol (12) has been successfully synthesized through S-alkylation of 4-(4-bromophenyl)-5-phenyl-4H-1,2,4-triazole-3-thiol (10) in alkaline medium with 2-bromo-1-phenylethanone followed by reduction of the corresponding ketone 11. All the synthesized compounds were characterized by IR, 1D (1H, 13C, DEPT135) and 2D (1H-1H, 1H-13C and 1H-15N) NMR spectroscopy, elemental analysis and HRMS spectrometry.
Collapse
|
12
|
Jilloju PC, Persoons L, Kurapati SK, Schols D, De Jonghe S, Daelemans D, Vedula RR. Discovery of ( ±)-3-(1H-pyrazol-1-yl)-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4] thiadiazine derivatives with promising in vitro anticoronavirus and antitumoral activity. Mol Divers 2021; 26:1357-1371. [PMID: 34165689 PMCID: PMC8223195 DOI: 10.1007/s11030-021-10258-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/15/2021] [Indexed: 11/25/2022]
Abstract
A new series of ( ±)-(3-(3,5-dimethyl-1H-pyrazol-1-yl)-6-phenyl-6,7-dihydro-5H-[1,2,4]triazolo[3,4-b][1,3,4]thiadiazin-7-yl)(phenyl)methanones were efficiently synthesized starting from 4-amino-5-hydrazinyl-4H-1,2,4-triazole-3-thiol 1, acetyl acetone 2, various aromatic and heterocyclic aldehydes 3 and phenacyl bromides 4. All the newly synthesized compounds were tested for their antiviral and antitumoral activity. It was shown that subtle structural variations on the phenyl moiety allowed to tune biological properties toward antiviral or antitumoral activity. Mode-of-action studies revealed that the antitumoral activity was due to inhibition of tubulin polymerization.
Collapse
Affiliation(s)
| | - Leentje Persoons
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Leuven, Belgium
| | - Sathish Kumar Kurapati
- Department of Chemistry, National Institute of Technology, Andhra Pradesh, 534101, India.,Department of Chemistry, Chaithanya Bharati Institute of Technology, Hyderabad, Telangana, 500075, India
| | - Dominique Schols
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Leuven, Belgium
| | - Steven De Jonghe
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Leuven, Belgium
| | - Dirk Daelemans
- Department of Microbiology, Immunology and Transplantation, Laboratory of Virology and Chemotherapy, KU Leuven, Rega Institute for Medical Research, Herestraat 49, Leuven, Belgium
| | - Rajeswar Rao Vedula
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, 506004, India.
| |
Collapse
|
13
|
Makuch-Kocka A, Andres-Mach M, Zagaja M, Śmiech A, Pizoń M, Flieger J, Cielecka-Piontek J, Plech T. Effect of Chronic Administration of 5-(3-chlorophenyl)-4-Hexyl-2,4 -Dihydro-3 H-1,2,4-Triazole-3-Thione (TP-315)-A New Anticonvulsant Drug Candidate-On Living Organisms. Int J Mol Sci 2021; 22:ijms22073358. [PMID: 33805962 PMCID: PMC8037910 DOI: 10.3390/ijms22073358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/20/2021] [Accepted: 03/22/2021] [Indexed: 12/12/2022] Open
Abstract
About 70 million people suffer from epilepsy—a chronic neurodegenerative disease. In most cases, the cause of the disease is unknown, but epilepsy can also develop as the result of a stroke, trauma to the brain, or the use of psychotropic substances. The treatment of epilepsy is mainly based on the administration of anticonvulsants, which the patient must most often use throughout their life. Despite significant progress in research on antiepileptic drugs, about 30% of patients still have drug-resistant epilepsy, which is insensitive to pharmacotherapy used so far. In our recent studies, we have shown that 4-alkyl-5-aryl-1,2,4-triazole-3-thiones act on the voltage-gated sodium channels and exhibit anticonvulsant activity in an MES (maximal electroshock-induced seizure) and 6Hz test in mice. Previous studies have shown their beneficial toxic and pharmacological profile, but their effect on a living organism during chronic use is still unknown. In the presented study, on the basis of the previously conducted tests and the PAMPA (parallel artificial membrane permeability assay) BBB (blood–brain barrier) test, we selected one 1,2,4-triazole-3-thione derivative—TP-315—for further studies aimed at assessing the impact of its chronic use on a living organism. After long-term administration of TP-315 to Albino Swiss mice, its effect on the functional parameters of internal organs was assessed by performing biochemical, morphological, and histopathological examinations. It was also determined whether the tested compound inhibits selected isoforms of the CYP450 enzyme system. On the basis of the conducted tests, it was found that TP-315 does not show nephrotoxic nor hepatotoxic effects and does not cause changes in hematological parameters. In vitro tests showed that TP-315 did not inhibit CYP2B6, CYP2D6, CYP3A4, or CYP3A5 enzymes at the concentration found in the serum of mice subjected to long-term exposure to this compound.
Collapse
Affiliation(s)
- Anna Makuch-Kocka
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
- Correspondence:
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, 20-090 Lublin, Poland; (M.A.-M.); (M.Z.)
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, 20-090 Lublin, Poland; (M.A.-M.); (M.Z.)
| | - Anna Śmiech
- Sub-Department of Pathomorphology and Forensic Veterinary Medicine, Department and Clinic of Animal Internal Diseases, University of Life Sciences in Lublin, 20-612 Lublin, Poland;
| | - Magdalena Pizoń
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (M.P.); (J.F.)
| | - Jolanta Flieger
- Department of Analytical Chemistry, Faculty of Pharmacy, Medical University of Lublin, 20-093 Lublin, Poland; (M.P.); (J.F.)
| | - Judyta Cielecka-Piontek
- Department of Pharmacognosy, Faculty of Pharmacy, Poznan University of Medical Sciences, 61-781 Poznań, Poland;
| | - Tomasz Plech
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, 20-093 Lublin, Poland;
| |
Collapse
|
14
|
Archana A. Synthesis of Novel Triazolyl/Oxadiazolyl/Thiadiazolyl-Piperazine as Potential Anticonvulsant Agents. Drug Res (Stuttg) 2021; 71:199-203. [PMID: 33434934 DOI: 10.1055/a-1291-7554] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
Reaction of piperazine with chloroacetylchloride in dry acetone yield compound 1: , which on reaction with hydrazine hydrate yielded compound 2: , which was further reacted with various substituted phenylisothiocyanates in absolute alcohol to afford compounds 3-8: i. e. 2-(carbazolylacetyl)-N-(substitutedphenyl)-hydrazinepiperazinothioamides. Compounds 3-8: on reaction with aqueous NaOH, ethanolic NaOH and conc. H2SO4 afford triazoles 9-14: , oxadiazoles 15-20: and thiadiazoles 21-26: respectively. Twenty four newly synthesized compounds were evaluated for their anticonvulsant activity and acute toxicity. The structures of these compounds were established on the basis of analytical and spectral data.
Collapse
Affiliation(s)
- Archana Archana
- Medicinal Chemistry Laboratory, Department of Chemistry, Meerut College, Meerut, Uttar Pradesh, India
| |
Collapse
|
15
|
Kaproń B, Czarnomysy R, Wysokiński M, Andrys R, Musilek K, Angeli A, Supuran CT, Plech T. 1,2,4-Triazole-based anticonvulsant agents with additional ROS scavenging activity are effective in a model of pharmacoresistant epilepsy. J Enzyme Inhib Med Chem 2020; 35:993-1002. [PMID: 32253957 PMCID: PMC7178883 DOI: 10.1080/14756366.2020.1748026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 03/20/2020] [Accepted: 03/23/2020] [Indexed: 12/16/2022] Open
Abstract
There are numerous studies supporting the contribution of oxidative stress to the pathogenesis of epilepsy. Prolonged oxidative stress is associated with the overexpression of ATP-binding cassette transporters, which results in antiepileptic drugs resistance. During our studies, three 1,2,4-triazole-3-thione derivatives were evaluated for the antioxidant activity and anticonvulsant effect in the 6 Hz model of pharmacoresistant epilepsy. The investigated compounds exhibited 2-3 times more potent anticonvulsant activity than valproic acid in 6 Hz test in mice, which is well-established preclinical model of pharmacoresistant epilepsy. The antioxidant/ROS scavenging activity was confirmed in both single-electron transfer-based methods (DPPH and CUPRAC) and during flow cytometric analysis of total ROS activity in U-87 MG cells. Based on the enzymatic studies on human carbonic anhydrases (CAs), acetylcholinesterase (AChE) and butyrylcholinesterase (BChE), one can assume that the herein investigated drug candidates will not impair the cognitive processes mediated by CAs and will have minimal off-target cholinergic effects.
Collapse
Affiliation(s)
- Barbara Kaproń
- Department of Clinical Genetics, I Faculty of Medicine with Dentistry Division, Medical University of Lublin, Lublin, Poland
| | - Robert Czarnomysy
- Department of Synthesis and Technology of Drugs, Faculty of Pharmacy, Medical University of Białystok, Bialystok, Poland
| | - Mariusz Wysokiński
- Department of Basic Nursing and Medical Teaching, Chair of Development in Nursing, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| | - Rudolf Andrys
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Kamil Musilek
- Department of Chemistry, Faculty of Science, University of Hradec Kralove, Hradec Kralove, Czech Republic
| | - Andrea Angeli
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Claudiu T. Supuran
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmaceutical and Nutraceutical Sciences, University of Florence, Firenze, Italy
| | - Tomasz Plech
- Department of Pharmacology, Faculty of Health Sciences, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
16
|
Anticonvulsant Effectiveness and Neurotoxicity Profile of 4-butyl-5-[(4-chloro-2-methylphenoxy)methyl]-2,4-dihydro-3H-1,2,4-triazole-3-thione (TPL-16) in Mice. Neurochem Res 2020; 46:396-410. [PMID: 33206316 PMCID: PMC7854423 DOI: 10.1007/s11064-020-03175-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 10/11/2020] [Accepted: 11/10/2020] [Indexed: 01/03/2023]
Abstract
Protective (antiseizure) effects of 4-butyl-5-[(4-chloro-2-methylphenoxy)-methyl]-2,4-dihydro-3H-1,2,4-triazole-3-thione (TPL-16) and acute neurotoxic effects were determined in the tonic-clonic seizure model and rotarod test in mice. The interaction profile of four classic antiepileptic drugs (carbamazepine, phenobarbital, phenytoin and valproate) with TPL-16 was also determined in the tonic-clonic seizure model in mice. The protective effects of TPL-16 from tonic-clonic seizures (as ED50 values) and acute neurotoxic effects of TPL-16 (as TD50 values) were determined in 4 pretreatment times (15, 30, 60 and 120 min after its i.p. administration), in adult male albino Swiss mice. The interaction profile of TPL-16 with carbamazepine, phenobarbital, phenytoin and valproate in the tonic-clonic seizure model was determined with isobolographic analysis. Total concentrations of carbamazepine, phenobarbital, phenytoin and valproate were measured in the mouse brain homogenates. The candidate for novel antiepileptic drug (TPL-16) administered separately 15 min before experiments, has a beneficial profile with protective index (as ratio of TD50 and ED50 values) amounting to 5.58. The combination of TPL-16 with valproate produced synergistic interaction in the tonic-clonic seizure model in mice. The combinations of TPL-16 with carbamazepine, phenobarbital and phenytoin produced additive interaction in terms of protection from tonic-clonic seizures in mice. None of the total brain concentrations of classic AEDs were changed significantly after TPL-16 administration in mice. Synergistic interaction for TPL-16 with valproate and the additive interaction for TPL-16 with carbamazepine, phenobarbital and phenytoin in the tonic-clonic seizures in mice allows for recommending TPL-16 as the promising drug for further experimental and clinical testing.
Collapse
|
17
|
Aggarwal R, Sumran G. An insight on medicinal attributes of 1,2,4-triazoles. Eur J Med Chem 2020; 205:112652. [PMID: 32771798 PMCID: PMC7384432 DOI: 10.1016/j.ejmech.2020.112652] [Citation(s) in RCA: 147] [Impact Index Per Article: 29.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/01/2023]
Abstract
The present review aims to summarize the pharmacological profile of 1,2,4-triazole, one of the emerging privileged scaffold, as antifungal, antibacterial, anticancer, anticonvulsant, antituberculosis, antiviral, antiparasitic, analgesic and anti-inflammatory agents, etc. along with structure-activity relationship. The comprehensive compilation of work carried out in the last decade on 1,2,4-triazole nucleus will provide inevitable scope for researchers for the advancement of novel potential drug candidates having better efficacy and selectivity.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India; CSIR-National Institute of Science Technology and Development Studies, New Delhi, India.
| | - Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, 134 003, Haryana, India.
| |
Collapse
|
18
|
Flieger J, Orzeł A, Kowalska-Kępczyńska A, Pizoń M, Trębacz H, Majerek D, Plech T, Płaziński W. Teicoplanin-Modified HPLC Column as a Source of Experimental Parameters for Prediction of the Anticonvulsant Activity of 1,2,4-Triazole-3-Thiones by the Regression Models. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E2650. [PMID: 32532041 PMCID: PMC7321613 DOI: 10.3390/ma13112650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2020] [Revised: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 11/16/2022]
Abstract
The cell membrane is a complex system that consists of lipids, proteins, polysaccharides, and amphiphilic phospholipids. It plays an important role in ADME processes that are responsible for the final pharmaceutical effects of xenobiotics (bioavailability, activity). To study drug-membrane interaction at the molecular level, several high-performance liquid chromatography (HPLC) membrane model systems have been proposed which are mimicking mainly its lipid character. The aim of this work was to study interactions of new synthesized antiepileptic compounds of 4-alkyl-5-(3-chlorophenyl)-2,4-dihydro-3H-1,2,4-triazole-3-thione derivatives with Chirobiotic column containing glycoprotein ligand attached to the silica matrix. The affinity of the analytes to immobilized glycoprotein ligand was examined chromatographically in reversed-phase mode. The thermodynamics of interactions between bioactive compounds and teicoplanin was studied in terms of the van't Hoff linear relationship ln k vs. 1/T in the range of 5-45 °C. Change in enthalpy (ΔH°), change in entropy (ΔS°) and change in Gibbs free energy (ΔG°) were estimated utilizing graphical extrapolation and interpolation methods. The density functional theory (DFT) approach and docking simulations were used to get the molecular interpretation and prove the obtained experimental results. Cross-correlations of chromatographic and thermodynamic parameters with non-empirical topological and quantum chemical indices suggest that the polarizability of analytes appears to be responsible for the interactions of the tested molecules with teicoplanin and, ultimately, their retention on the column. Experimental and theoretical parameters were subjected to statistical analysis using regression models. Partial least squares (PLS) regression model showed the usefulness of the experimentally measured parameter φ0 (MeOH) to discriminate between anticonvulsant active and inactive 1,2,4-triazole-3-thione derivatives. Obtained results point out the usefulness of interaction of potential anticonvulsants with glycoprotein class of compounds to anticipate their activity.
Collapse
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Anna Orzeł
- Faculty of Medicine, Medical University of Lublin, Aleje Racławickie 1, 20-059 Lublin, Poland;
| | - Anna Kowalska-Kępczyńska
- Department of Biochemical Diagnostics, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland;
| | - Magdalena Pizoń
- Department of Analytical Chemistry, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Hanna Trębacz
- Chair and Department of Biophysics, Medical University of Lublin, Jaczewskiego 4, 20-090 Lublin, Poland;
| | - Dariusz Majerek
- Department of Applied Mathematics, University of Technology, Nadbystrzycka 38D, 20-618 Lublin, Poland;
| | - Tomasz Plech
- Department of Pharmacology, Faculty of Nursing and Health Sciences, Medical University of Lublin, Chodźki 4a, 20-093 Lublin, Poland;
| | - Wojciech Płaziński
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland;
| |
Collapse
|
19
|
Verma KK, Singh UK, Jain J. Design, Synthesis and Biological Activity of Some 4, 5-Disubstituted-2, 4- Dihydro-3H-1, 2, 4- Triazole-3-Thione Derivatives. Cent Nerv Syst Agents Med Chem 2020; 19:197-205. [PMID: 31749420 DOI: 10.2174/1871524919666190722144424] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 07/08/2019] [Accepted: 07/12/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND In the present study, 4, 5-disubstituted triazol-3-thione derivatives were synthesized and evaluated for anticonvulsant activity along with neurotoxicity determination. MATERIALS AND METHODS The synthesized compounds were characterized using FTIR, 1H-NMR and MS. The anticonvulsant activity was assessed by Maximal Electroshock (MES) test and subcutaneous Pentylenetetrazole (scPTZ) tests and neurotoxicity was assessed by rotarod test. Docking was also performed to study the interactions of compounds with LYS329 residue of gamma amino butyric acid aminotransferase (GABA-AT) using Autodock 4.2 software. RESULTS The compounds 7a and 9a with significant pharmacological activity were also found to interact with LYS329 residue of GABA-AT by H-bond with a docking score of -5.92 kcal/mol (Ki = 41.99 μM) and -5.87 kcal/mol (Ki = 49.83 μM) respectively. CONCLUSION Most of the compounds were found to be active in MES test but only seven showed protection in scPTZ test.
Collapse
Affiliation(s)
- Krishan Kumar Verma
- Department of Pharmacy, Ram-Eesh Institute of Vocational & Technical Education, Knowledge Park-I, Greater Noida, UP, India
| | - Umesh Kumar Singh
- Kherwal Department of Pharmacy, Swami Vivekanand Subharti University, Meerut Bypass, Meerut, UP, India
| | - Jainendra Jain
- Department of Pharmacy, Ram-Eesh Institute of Vocational & Technical Education, Knowledge Park-I, Greater Noida, UP, India
| |
Collapse
|
20
|
Khan G, Sreenivasa S, Govindaiah S, Chandramohan V, Shetty P R. Synthesis, biological screening, in silico study and fingerprint applications of novel 1, 2, 4‐triazole derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.3929] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Ghouse Khan
- Department of Studies and Research in Organic ChemistryTumkur University Tumakuru Karnataka India
| | - Swamy Sreenivasa
- Department of Studies and Research in Organic ChemistryTumkur University Tumakuru Karnataka India
| | - Shivaraja Govindaiah
- Department of Studies and Research in Organic ChemistryTumkur University Tumakuru Karnataka India
| | - Vivek Chandramohan
- Department of BiotechnologySiddaganga Institute of Technology Tumakuru Karnataka India
| | - Raghurama Shetty P
- Department of Studies and Research in Organic ChemistryTumkur University Tumakuru Karnataka India
| |
Collapse
|
21
|
Linciano P, Gianquinto E, Montanari M, Maso L, Bellio P, Cebrián-Sastre E, Celenza G, Blázquez J, Cendron L, Spyrakis F, Tondi D. 4-Amino-1,2,4-triazole-3-thione as a Promising Scaffold for the Inhibition of Serine and Metallo- β-Lactamases. Pharmaceuticals (Basel) 2020; 13:E52. [PMID: 32213902 PMCID: PMC7151704 DOI: 10.3390/ph13030052] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 03/05/2020] [Accepted: 03/21/2020] [Indexed: 02/04/2023] Open
Abstract
The emergence of bacteria that co-express serine- and metallo- carbapenemases is a threat to the efficacy of the available β-lactam antibiotic armamentarium. The 4-amino-1,2,4-triazole-3-thione scaffold has been selected as the starting chemical moiety in the design of a small library of β-Lactamase inhibitors (BLIs) with extended activity profiles. The synthesised compounds have been validated in vitro against class A serine β-Lactamase (SBLs) KPC-2 and class B1 metallo β-Lactamases (MBLs) VIM-1 and IMP-1. Of the synthesised derivatives, four compounds showed cross-class micromolar inhibition potency and therefore underwent in silico analyses to elucidate their binding mode within the catalytic pockets of serine- and metallo-BLs. Moreover, several members of the synthesised library have been evaluated, in combination with meropenem (MEM), against clinical strains that overexpress BLs for their ability to synergise carbapenems.
Collapse
Affiliation(s)
- Pasquale Linciano
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (P.L.); (M.M.)
| | - Eleonora Gianquinto
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
| | - Martina Montanari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (P.L.); (M.M.)
| | - Lorenzo Maso
- Department of Biology, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy; (L.M.); (L.C.)
| | - Pierangelo Bellio
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, via Vetoio 1, 67100 L’Aquila, Italy; (P.B.); (G.C.)
| | | | - Giuseppe Celenza
- Department of Biotechnological and Applied Clinical Sciences, University of L’Aquila, via Vetoio 1, 67100 L’Aquila, Italy; (P.B.); (G.C.)
| | - Jesús Blázquez
- National Center of Biotechnology-CSIC, Calle Darwin 3, 28049 Madrid, Spain; (E.C.-S.); (J.B.)
| | - Laura Cendron
- Department of Biology, University of Padua, Viale G. Colombo 3, 35121 Padua, Italy; (L.M.); (L.C.)
| | - Francesca Spyrakis
- Department of Drug Science and Technology, University of Turin, Via P. Giuria 9, 10125 Turin, Italy;
| | - Donatella Tondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via G. Campi 103, 41125 Modena, Italy; (P.L.); (M.M.)
| |
Collapse
|
22
|
|
23
|
Kaproń B, Łuszczki JJ, Siwek A, Karcz T, Nowak G, Zagaja M, Andres-Mach M, Stasiłowicz A, Cielecka-Piontek J, Kocki J, Plech T. Preclinical evaluation of 1,2,4-triazole-based compounds targeting voltage-gated sodium channels (VGSCs) as promising anticonvulsant drug candidates. Bioorg Chem 2019; 94:103355. [PMID: 31662213 DOI: 10.1016/j.bioorg.2019.103355] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/24/2019] [Accepted: 10/09/2019] [Indexed: 10/25/2022]
Abstract
Epilepsy is a chronic neurological disorder affecting nearly 65-70 million people worldwide. Despite the observed advances in the development of new antiepileptic drugs (AEDs), still about 30-40% of patients cannot achieve a satisfactory seizure control. In our current research, we aimed at using the combined results of radioligand binding experiments, PAMPA-BBB assay and animal experimentations in order to design a group of compounds that exhibit broad spectrum of anticonvulsant activity. The synthesized 4-alkyl-5-substituted-1,2,4-triazole-3-thione derivatives were primarily screened in the maximal electroshock-induced seizure (MES) test in mice. Next, the most promising compounds (17, 22) were investigated in 6 Hz (32 mA) psychomotor seizure model. Protective effect of compound 22 was almost similar to that of levetiracetam. Moreover, these compounds did not induce genotoxic and hemolytic changes in human cells as well as they were characterized by low cellular toxicity. Taking into account the structural requirements for good anticonvulsant activity of 4-alkyl-5-aryl-1,2,4-triazole-3-thiones, it is visible that small electron-withdrawing substituents attached to phenyl ring have beneficial effects both on affinity towards VGSCs and protective activity in the animal models of epilepsy.
Collapse
Affiliation(s)
- Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | | | - Agata Siwek
- Department of Pharmacobiology, Jagiellonian University Medical College, Cracow, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Cracow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Cracow, Poland
| | - Mirosław Zagaja
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - Marta Andres-Mach
- Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland
| | - Anna Stasiłowicz
- Department of Pharmacognosy, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Janusz Kocki
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
24
|
Intramolecular oxidative cyclization of N-(2,2,2-trifluoro-1-(phenylimino)ethyl)benzimidamide. Mol Divers 2019; 24:1301-1312. [PMID: 31555953 DOI: 10.1007/s11030-019-09995-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/16/2019] [Indexed: 10/26/2022]
Abstract
A fast and convenient method for synthesis of 1,3-diaryl-5-(trifluoromethyl)-1H-1,2,4-triazole compounds has been described via intramolecular oxidative cyclization of the N-(2,2,2-trifluoro-1-(arylimino)ethyl)benzimidamide intermediates by I2/KI in excellent yields without any purification. N-(2,2,2-Trifluoro-1-(arylimino)ethyl)benzimidamide intermediates which are used in this project have been synthesized from the reaction of N-aryl-2,2,2-trifluoroacetimidoyl chlorides and benzamide hydrochloride derivatives at room temperature for the first time.
Collapse
|
25
|
Saadaoui I, Krichen F, Ben Salah B, Ben Mansour R, Miled N, Bougatef A, Kossentini M. Design, synthesis and biological evaluation of Schiff bases of 4-amino-1,2,4-triazole derivatives as potent angiotensin converting enzyme inhibitors and antioxidant activities. J Mol Struct 2019. [DOI: 10.1016/j.molstruc.2018.12.008] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Łuszczki JJ, Marzeda P, Gut-Lepiech A, Kondrat-Wróbel MW, Wróblewska-Łuczka P, Karwan S, Plech T. New derivative of 1,2,4-triazole-3-thione (TP427) potentiates the anticonvulsant action of valproate, but not that of carbamazepine, phenytoin or phenobarbital in the mouse tonic-clonic seizure model. Pharmacol Rep 2019; 71:299-305. [PMID: 30826570 DOI: 10.1016/j.pharep.2019.01.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Revised: 11/08/2018] [Accepted: 01/04/2019] [Indexed: 01/15/2023]
Abstract
BACKGROUND To assess the effects of 5-(3-chlorobenzyl)-4-hexyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (TP427) on the protective anticonvulsant action of four classical antiepileptic drugs (carbamazepine, phenobarbital, phenytoin and valproate) in the tonic-clonic seizure model in mice, an isobolographic transformation of data was used. METHODS Electrically-induced tonic-clonic seizures were experimentally evoked in adult male albino Swiss mice. The anticonvulsant effects of TP427, when used singly, were determined by the calculation of the threshold increasing the dose by 20% (TID20 value). The influence of TP427 on the anticonvulsant potency of four various classical antiepileptic drugs was determined with a subthreshold method. Types of interactions between drugs were determined using the isobolographic transformation of data. Additionally, total brain antiepileptic drug concentrations were measured. RESULTS TP427, when administered separately, significantly increased the threshold for electroconvulsions. The experimentally determined TID20 value for TP427 was 11.71 mg/kg. Moreover, TP427 (10 mg/kg) significantly increased the anticonvulsant activity of valproate (p < 0.01), but not that of carbamazepine, phenobarbital or phenytoin in the mouse tonic-clonic seizure model. Isobolographic transformation of data confirmed that the interaction between TP427 and valproate was synergistic. Pharmacokinetic study revealed that TP427 increased total brain valproate concentrations, and had no impact on total brain concentrations of carbamazepine, phenobarbital or phenytoin in mice. CONCLUSION The synergistic interaction between TP427 and valproate in the mouse tonic-clonic seizure model might occur favorable for epilepsy patients in future. The combinations of TP427 with carbamazepine, phenobarbital and phenytoin were additive in the mouse tonic-clonic seizure model and also deserves clinical attention.
Collapse
Affiliation(s)
- Jarogniew J Łuszczki
- Department of Pathophysiology, Medical University, Lublin, Poland; Isobolographic Analysis Laboratory, Institute of Rural Health, Lublin, Poland.
| | - Paweł Marzeda
- Department of Pathophysiology, Medical University, Lublin, Poland
| | | | | | | | | | - Tomasz Plech
- Department of Pharmacology, Medical University, Lublin, Poland
| |
Collapse
|
27
|
Guo W, Zhao M, Tan W, Zheng L, Tao K, Fan X. Developments towards synthesis of N-heterocycles from amidines via C–N/C–C bond formation. Org Chem Front 2019. [DOI: 10.1039/c9qo00283a] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review focuses on the synthesis of N-heterocycles using amidines as starting materials, with an emphasis on the mechanisms of these reactions via C–N/C–C bond formation.
Collapse
Affiliation(s)
- Wei Guo
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Mingming Zhao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Wen Tan
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Lvyin Zheng
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Kailiang Tao
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| | - Xiaolin Fan
- Key Laboratory of Organo-pharmaceutical Chemistry of Jiangxi Province
- Gannan Normal University
- Ganzhou 341000
- China
| |
Collapse
|
28
|
Kaproń B, Łuszczki JJ, Płazińska A, Siwek A, Karcz T, Gryboś A, Nowak G, Makuch-Kocka A, Walczak K, Langner E, Szalast K, Marciniak S, Paczkowska M, Cielecka-Piontek J, Ciesla LM, Plech T. Development of the 1,2,4-triazole-based anticonvulsant drug candidates acting on the voltage-gated sodium channels. Insights from in-vivo, in-vitro, and in-silico studies. Eur J Pharm Sci 2018; 129:42-57. [PMID: 30594731 DOI: 10.1016/j.ejps.2018.12.018] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/26/2018] [Accepted: 12/24/2018] [Indexed: 01/17/2023]
Abstract
The treatment of epilepsy remains difficult mostly since almost 30% of patients suffer from pharmacoresistant forms of the disease. Therefore, there is an urgent need to search for new antiepileptic drug candidates. Previously, it has been shown that 4-alkyl-5-substituted-1,2,4-triazole-3-thione derivativatives possessed strong anticonvulsant activity in a maximal electroshock-induced seizure model of epilepsy. In this work, we examined the effect of the chemical structure of the 1,2,4-triazole-3-thione-based molecules on the anticonvulsant activity and the binding to voltage-gated sodium channels (VGSCs) and GABAA receptors. Docking simulations allowed us to determine the mode of interactions between the investigated compounds and binding cavity of the human VGSC. Selected compounds were also investigated in a panel of ADME-Tox assays, including parallel artificial membrane permeability assay (PAMPA), single cell gel electrophoresis (SCGE) and cytotoxicity evaluation in HepG2 cells. The obtained results indicated that unbranched alkyl chains, from butyl to hexyl, attached to 1,2,4-triazole core are essential both for good anticonvulsant activity and strong interactions with VGSCs. The combined in-vivo, in-vitro and in-silico studies emphasize 4-alkyl-5-substituted-1,2,4-triazole-3-thiones as promising agents in the development of new anticonvulsants.
Collapse
Affiliation(s)
- Barbara Kaproń
- Department of Clinical Genetics, Medical University of Lublin, Lublin, Poland
| | | | - Anita Płazińska
- Department of Biopharmacy, Medical University of Lublin, Lublin, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Jagiellonian University Medical College, Cracow, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Gryboś
- Department of Pharmacobiology, Jagiellonian University Medical College, Cracow, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Cracow, Poland
| | - Anna Makuch-Kocka
- Department of Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Walczak
- Department of Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Ewa Langner
- Department of Pharmacology, Medical University of Lublin, Lublin, Poland
| | - Karolina Szalast
- Department of Pharmacology, Medical University of Lublin, Lublin, Poland
| | | | - Magdalena Paczkowska
- Department of Pharmacognosy, Poznan University of Medical Sciences, Poznań, Poland
| | | | - Lukasz M Ciesla
- Department of Biological Sciences, The University of Alabama, Tuscaloosa, USA
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Lublin, Poland.
| |
Collapse
|
29
|
Levetiracetam combined with ACEA, highly selective cannabinoid CB1 receptor agonist changes neurogenesis in mouse brain. Neurosci Lett 2018; 696:79-86. [PMID: 30552944 DOI: 10.1016/j.neulet.2018.12.016] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Revised: 11/13/2018] [Accepted: 12/11/2018] [Indexed: 12/11/2022]
Abstract
The aim of the study was to evaluate the impact of second generation antiepileptic drug levetiracetam (LEV) with arachidonyl-2'-chloroethylamide (ACEA) on proliferating neural precursor cells in mouse brain. Additionally, we established the relationship between treatment with ACEA in combination with LEV and hippocampal neurogenesis in mouse brain. All experiments were performed on male CB57/BL mice injected i.p. with LEV (10 mg/kg), ACEA (10 mg/kg) and PMSF (30 mg/kg) for 10 days. Experiments were provided in two stages: stage 1- an acute response of proliferating neural precursor cells to ACEA and LEV administration (Ki-67 staining), stage 2 - a long term response to ACEA and LEV administration (BrDU, NeuN, GFAP staining). Results indicate that ACEA + PMSF and ACEA + PMSF + LEV significantly increased the total number of Ki-67 positive cells comparing to the control group. PMSF and LEV administered alone and in combination had no significant impact on cell proliferation compared to the control group. Results from neurogenesis study indicated that ACEA + PMSF administered alone and in combination with LEV increased the total number of BrDU cells compared to the control group, although LEV on its own decreased the number of BrDU cells. Moreover, the combination of ACEA + PMSF + LEV significantly increased the total number of newborn neurons compared to the control group. In turn, LEV significantly decreased the process of neurogenesis. Astrocytes were considerably reduced in all treated groups as compare to the control mice. These data provide substantial evidence that LEV administered chronically decreases the proliferation and differentiation of newly born cells while combination of LEV + ACEA significantly increases the level of newborn neurons in the dentate subgranular zone.
Collapse
|
30
|
Song MX, Deng XQ. Recent developments on triazole nucleus in anticonvulsant compounds: a review. J Enzyme Inhib Med Chem 2018; 33:453-478. [PMID: 29383949 PMCID: PMC6010125 DOI: 10.1080/14756366.2017.1423068] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 12/27/2017] [Accepted: 12/27/2017] [Indexed: 11/02/2022] Open
Abstract
Epilepsy is one of the common diseases seriously threatening life and health of human. More than 50 million people are suffering from this condition and anticonvulsant agents are the main treatment. However, side effects and intolerance, and a lack of efficacy limit the application of the current anticonvulsant agents. The search for new anticonvulsant agents with higher efficacy and lower toxicity continues to be the focus and task in medicinal chemistry. Numbers of triazole derivatives as clinical drugs or candidates have been frequently employed for the treatment of various types of diseases, which have proved the importance of this heterocyclic nucleus in drug design and discovery. Recently many endeavours were made to involve the triazole into the anticonvulsants design, which have brought lots of active compounds. This work is an attempt to systematically review the research of triazole derivatives in the design and development of anticonvulsant agents during the past two decades.
Collapse
Affiliation(s)
- Ming-Xia Song
- Medical College, Jinggangshan University, Ji’an, Jiangxi, China
| | - Xian-Qing Deng
- Medical College, Jinggangshan University, Ji’an, Jiangxi, China
| |
Collapse
|
31
|
Tratrat C, Haroun M, Paparisva A, Geronikaki A, Kamoutsis C, Ćirić A, Glamočlija J, Soković M, Fotakis C, Zoumpoulakis P, Bhunia SS, Saxena AK. Design, synthesis and biological evaluation of new substituted 5-benzylideno-2-adamantylthiazol[3,2-b][1,2,4]triazol-6(5 H )ones. Pharmacophore models for antifungal activity. ARAB J CHEM 2018. [DOI: 10.1016/j.arabjc.2016.06.007] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
|
32
|
Abuelhassan AH, Badran MM, Hassan HA, Abdelhamed D, Elnabtity S, Aly OM. Design, synthesis, anticonvulsant activity, and pharmacophore study of new 1,5-diaryl-1H-1,2,4-triazole-3-carboxamide derivatives. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2114-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Meena K, Khurana JM, Malik A. One-Pot Synthesis of Hydroxy Pyrazolo[1,2-a
][1,2,4]triazoles and Their Dehydration Using Recyclable Ionic Liquids as Reaction Media. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.3006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Affiliation(s)
- Kalawati Meena
- Department of Chemistry; University of Delhi; Delhi 110007 India
- Dyal Singh College; University of Delhi; Lodhi Road Delhi 110003 India
| | | | - Amita Malik
- Dyal Singh College; University of Delhi; Lodhi Road Delhi 110003 India
| |
Collapse
|
34
|
Flieger J, Trębacz H, Pizoń M, Kowalska A, Szczęsna A, Plech T. High-performance liquid chromatography thermodynamic study of new potential antiepileptic compounds on a cholesterol column using isocratic elution with methanol/water and acetonitrile/water eluent systems. J Sep Sci 2017; 40:4176-4190. [DOI: 10.1002/jssc.201700748] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 08/25/2017] [Accepted: 08/25/2017] [Indexed: 11/09/2022]
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry; Medical University of Lublin; Lublin Poland
| | - Hanna Trębacz
- Chair and Department of Biophysics; Medical University of Lublin; Lublin Poland
| | - Magdalena Pizoń
- Department of Analytical Chemistry; Medical University of Lublin; Lublin Poland
| | - Anna Kowalska
- Department of Analytical Chemistry; Medical University of Lublin; Lublin Poland
| | - Agnieszka Szczęsna
- Chair and Department of Biophysics; Medical University of Lublin; Lublin Poland
| | - Tomasz Plech
- Department of Pharmacology; Medical University of Lublin; Lublin Poland
| |
Collapse
|
35
|
Design and synthesis of 2,6-di(substituted phenyl)thiazolo[3,2-b]-1,2,4-triazoles as α-glucosidase and α-amylase inhibitors, co-relative Pharmacokinetics and 3D QSAR and risk analysis. Biomed Pharmacother 2017; 94:499-513. [PMID: 28780468 DOI: 10.1016/j.biopha.2017.07.139] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2017] [Revised: 07/19/2017] [Accepted: 07/27/2017] [Indexed: 02/01/2023] Open
Abstract
Ten fused heterocyclic derivatives bearing the 2,6-di(subsituted phenyl)thiazolo[3,2-b]-1,2,4-triazoles as central rings were synthesized and structures of the compounds were established by analytical and spectral data using FTIR, EI-MS, 1H NMR and 13C NMR techniques. In vitro inhibitory activities of synthesized compounds on α-amylase, α-glucosidase and α-burylcholinesterase (α-BuChE) were evaluated using a purified enzyme assays. Compound 5c demonstrated strong and selective α-amylase inhibitory activity (IC50=1.1μmol/g). 5g exhibited excellent inhibition against α-glucosidase (IC50=1.2μmol/g) when compared with acarbose (IC50=4.7μmol/g) as a positive reference. Compound 5i was found to be most potent derivative against α-BuChE with the IC50 of 1.5μmol/g which was comparable to the value obtained for (4.7μmol/g) positive control (i.e. galantamine hydrobromide). Molecular dockings of synthesized compounds into the binding sites of human pancreatic α-amylase, intestinal maltase-glucoamylase and neuronal α-butrylcholinesterase allowed to shed light on the affinity and binding mode of these novel inhibitors. Preliminary structure-activity relationship (SAR) studies were carried out to understand the relationship between molecular structural features and inhibition activities of synthesized derivatives. These data suggested that compounds 5c, 5g and 5i are promising candidates for hitto- lead follow-up in the drug-discovery process for the treatment of Alzheimer's disease and hyperinsulinamia.
Collapse
|
36
|
Quéméner A, Maillasson M, Arzel L, Sicard B, Vomiandry R, Mortier E, Dubreuil D, Jacques Y, Lebreton J, Mathé-Allainmat M. Discovery of a Small-Molecule Inhibitor of Interleukin 15: Pharmacophore-Based Virtual Screening and Hit Optimization. J Med Chem 2017; 60:6249-6272. [DOI: 10.1021/acs.jmedchem.7b00485] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Agnès Quéméner
- CRCINA,
INSERM, CNRS, University of Nantes, Nantes 44007, France
| | - Mike Maillasson
- CRCINA,
INSERM, CNRS, University of Nantes, Nantes 44007, France
| | - Laurence Arzel
- CEISAM,
CNRS, Faculty of Sciences, University of Nantes, Nantes 44322, France
| | - Benoit Sicard
- CEISAM,
CNRS, Faculty of Sciences, University of Nantes, Nantes 44322, France
| | - Romy Vomiandry
- CRCINA,
INSERM, CNRS, University of Nantes, Nantes 44007, France
- CEISAM,
CNRS, Faculty of Sciences, University of Nantes, Nantes 44322, France
| | - Erwan Mortier
- CRCINA,
INSERM, CNRS, University of Nantes, Nantes 44007, France
| | - Didier Dubreuil
- CEISAM,
CNRS, Faculty of Sciences, University of Nantes, Nantes 44322, France
| | - Yannick Jacques
- CRCINA,
INSERM, CNRS, University of Nantes, Nantes 44007, France
| | - Jacques Lebreton
- CEISAM,
CNRS, Faculty of Sciences, University of Nantes, Nantes 44322, France
| | | |
Collapse
|
37
|
Hassan RM, Ghabbour HA, Aboul-Enein MN, El-Azzouny AA, Saleh OA, Attia MI. Crystal structure of 2,3-diphenyl-1-[(dipropylamino)acetyl]-1,3-diazaspiro[4.5]decan-4-one, C 28H 37N 3O 2. Z KRIST-NEW CRYST ST 2017. [DOI: 10.1515/ncrs-2016-0304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
C28H37N3O2, monoclinic, P21/c (no. 14), a = 11.0454(4) Å, b = 21.9125(8) Å, c = 11.6544(4) Å, β = 111.783(1)°, V = 2619.33(16) Å3, Z = 4, Rgt(F) = 0.0658, wRref(F2) = 0.1940, T = 293(2) K.
Collapse
Affiliation(s)
- Rasha M. Hassan
- Medicinal and Pharmaceutical Chemistry Department , Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618) , El Bohooth Street, Dokki , Giza 12622 , Egypt
| | - Hazem A. Ghabbour
- Department of Pharmaceutical Chemistry, College of Pharmacy , King Saud University , P. O. Box 2457 , Riyadh 11451 , Saudi Arabia
- Department of Medicinal Chemistry, Faculty of Pharmacy , University of Mansoura , Mansoura 35516 , Egypt
| | - Mohamed N. Aboul-Enein
- Medicinal and Pharmaceutical Chemistry Department , Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618) , El Bohooth Street, Dokki , Giza 12622 , Egypt
| | - Aida A. El-Azzouny
- Medicinal and Pharmaceutical Chemistry Department , Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618) , El Bohooth Street, Dokki , Giza 12622 , Egypt
| | - Ola A. Saleh
- Medicinal and Pharmaceutical Chemistry Department , Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618) , El Bohooth Street, Dokki , Giza 12622 , Egypt
| | - Mohamed I. Attia
- Medicinal and Pharmaceutical Chemistry Department , Pharmaceutical and Drug Industries Research Division, National Research Centre (ID: 60014618) , El Bohooth Street, Dokki , Giza 12622 , Egypt
- Department of Pharmaceutical Chemistry, College of Pharmacy , King Saud University , P. O. Box 2457 , Riyadh 11451 , Saudi Arabia
| |
Collapse
|
38
|
Chelamalla R, Akena V, Manda S. Synthesis of N′-arylidene-2-(5-aryl-1H-1, 2, 4-triazol-3-ylthio) acetohydrazides as antidepressants. Med Chem Res 2017. [DOI: 10.1007/s00044-017-1854-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
39
|
Szulczyk D, Tomaszewski P, Jóźwiak M, Kozioł AE, Lis T, Collu D, Iuliano F, Struga M. Synthesis and Biological Activities of Ethyl 2-(2-pyridylacetate) Derivatives Containing Thiourea, 1,2,4-triazole, Thiadiazole and Oxadiazole Moieties. Molecules 2017; 22:molecules22030409. [PMID: 28272311 PMCID: PMC6155191 DOI: 10.3390/molecules22030409] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Revised: 02/16/2017] [Accepted: 03/01/2017] [Indexed: 11/24/2022] Open
Abstract
Thirty six novel heterocyclic derivatives of ethyl 2-(2-pyridylacetate) were efficiently synthesized. The new compounds involve the linkage of a 2-pyridyl ring with thiosemicarbazide (compounds 1–7), 1,2,4-triazole (compounds 1a–7a), 1,3,4-thiadiazole (compounds 1b–7b), and 1,3,4-oxadiazole (compounds 1f–7f) moieties. The last group of compounds 1e–7e involves the connection of a 2-pyridyl ring with 1,2,4-triazole and thiourea. 1H-NMR, 13C-NMR and MS methods were used to confirm the structures of the obtained derivatives. The molecular structures of 3, 3b, 7a and 7f were further confirmed by X-ray crystallography. All obtained compounds were tested in vitro against a number of microorganisms, including Gram-positive cocci, Gram-negative rods and Candida albicans. In addition, the obtained compounds were tested for cytotoxicity and antiviral activity against HIV-1.
Collapse
Affiliation(s)
- Daniel Szulczyk
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland.
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland.
| | - Piotr Tomaszewski
- Department of Biochemistry, Second Faculty of Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland.
| | - Michał Jóźwiak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland.
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland.
- Department of Biochemistry, Second Faculty of Medicine, Medical University of Warsaw, 02-097 Warsaw, Poland.
| | - Anna E Kozioł
- Faculty of Chemistry, Maria Curie-Sklodowska University, 20-031 Lublin, Poland.
| | - Tadeusz Lis
- Faculty of Chemistry, University of Wroclaw, 50-383 Wroclaw, Poland.
| | - David Collu
- Department of Life and Environmental Sciences, Section of Microbiology and Virology, University of Cagliari, 09042 Cittadella Universitaria Monserrato, Italy.
| | - Filippo Iuliano
- Department of Molecular Medicine, Institute of Virology, Slovak Academy of Sciences, Dubravska cesta 9, 845 05 Bratislava, Slovak.
| | - Marta Struga
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warsaw, Poland.
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland.
| |
Collapse
|
40
|
Kaproń B, Łuszczki J, Paneth A, Wujec M, Siwek A, Karcz T, Mordyl B, Głuch-Lutwin M, Gryboś A, Nowak G, Pająk K, Jóźwiak K, Tomczykowski A, Plech T. Molecular mechanism of action and safety of 5-(3-chlorophenyl)-4-hexyl-2,4-dihydro-3 H-1,2,4-triazole-3-thione - a novel anticonvulsant drug candidate. Int J Med Sci 2017; 14:741-749. [PMID: 28824309 PMCID: PMC5562128 DOI: 10.7150/ijms.20001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2017] [Accepted: 06/06/2017] [Indexed: 11/17/2022] Open
Abstract
Previously, it was found that 5-(3-chlorophenyl)-4-hexyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (TP-315) effectively protects mice from maximal electroshock-induced seizures. The aim of this study was to determine possible interactions between TP-315 and different molecular targets, i.e. GABAA receptors, voltage-gated sodium channels, and human neuronal α7 and α4β2 nicotinic acetylcholine receptors. The influence of TP-315 on the viability of human hepatic HepG2 cells was also established using PrestoBlue and ToxiLight assays. It was found that the anticonvulsant activity of TP-315 results (at least partially) from its influence on voltage-gated sodium channels (VGSCs). Moreover, the title compound slightly affected the viability of human hepatic cells.
Collapse
Affiliation(s)
- Barbara Kaproń
- Department of Organic Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Jarogniew Łuszczki
- Department of Pathophysiology, Medical University of Lublin, Jaczewskiego 8, Lublin 20-090, Poland.,Isobolographic Analysis Laboratory, Institute of Rural Health, Jaczewskiego 2, Lublin 20-950, Poland
| | - Agata Paneth
- Department of Organic Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Agata Siwek
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Tadeusz Karcz
- Department of Technology and Biotechnology of Drugs, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Barbara Mordyl
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Monika Głuch-Lutwin
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Anna Gryboś
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Gabriel Nowak
- Department of Pharmacobiology, Jagiellonian University Medical College, Medyczna 9, 30-688 Kraków, Poland
| | - Karolina Pająk
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Krzysztof Jóźwiak
- Department of Biopharmacy, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Adam Tomczykowski
- Department of Organic Chemistry, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| | - Tomasz Plech
- Department of Pharmacology, Medical University of Lublin, Chodzki 4A, 20-093 Lublin, Poland
| |
Collapse
|
41
|
Damião MCFCB, Galaverna R, Kozikowski AP, Eubanks J, Pastre JC. Telescoped continuous flow generation of a library of highly substituted 3-thio-1,2,4-triazoles. REACT CHEM ENG 2017. [DOI: 10.1039/c7re00125h] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An integrated continuous flow process for the synthesis of 3-thio-1,2,4-triazoles is reported. A small library of 18 compounds was prepared in just 48 minutes of residence time in moderate to excellent yields.
Collapse
Affiliation(s)
| | - Renan Galaverna
- Institute of Chemistry
- University of Campinas - UNICAMP
- Campinas
- Brazil
| | | | - James Eubanks
- Division of Genetics and Development
- Krembil Research Institute
- Toronto
- Canada
| | - Julio C. Pastre
- Institute of Chemistry
- University of Campinas - UNICAMP
- Campinas
- Brazil
| |
Collapse
|
42
|
Mroczek T, Plech T, Wujec M. Novel Concept of Discrimination of 1,2,4-Triazole-3-thione and 3-Thiol Tautomers. J Chromatogr Sci 2016; 55:117-129. [PMID: 27777224 DOI: 10.1093/chromsci/bmw151] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 04/19/2016] [Accepted: 09/08/2016] [Indexed: 11/14/2022]
Abstract
Till now, three major spectroscopic techniques, fourier transform infrared (FT-IR), nuclear magnetic resonance (NMR) spectroscopy and X-ray crystallography, have been used for determination of thiol-thione tautomeric forms. Therefore, a novel analytical concept of discrimination of 1,2,4-triazole-3-thione and 3-thiol tautomers using two high-resolution mass spectrometers has been proposed. It comprises the high-performance liquid chromatography (HPLC) hyphenated with electrospray ionization (ESI)-time-of-flight mass spectrometry (ESI-TOF-MS, positive ion mode) followed by in-source collision-induced dissociation (CID) and low-energy CID-tandem mass spectrometry (MS/MS) analysis measured with a Quadruple-TOF-MS instrument. The HPLC column was a Zorbax Stable Bond RP-18 and a rapid isocratic elution. Selected 3-thione and 3-thiol tautomers were rapidly separated, within 6 min and detected both by in-source CID ESI(+)-TOF-MS and CID ESI(+)-QTOF-MS with a high mass accuracy and high sensitivity. The method limits of detection were of 2.8-5.6 pg/μl (at S/N 3:1) for ESI-TOF-MS and 0.25-0.55 pg/μl for ESI-QTOF-MS. The tautomeric form could be easily discriminated by both methods and by the different gas-phase fragmentation patterns. Differences and similarities between in-source CID MS and CID MS/MS spectra have also been presented. These findings were also supported by recorded FT-IR spectra in solid state. The developed methodology using both the high-resolution MS systems is considerably the most sensitive among the others.
Collapse
Affiliation(s)
- Tomasz Mroczek
- Department of Pharmacognosy with Medicinal Plants Laboratory, Medical University, 1 Chodzki St., 20-093 Lublin, Poland
| | - Tomasz Plech
- Department of Organic Chemistry, Medical University, 4a Chodzki St., 20-093 Lublin, Poland
| | - Monika Wujec
- Department of Organic Chemistry, Medical University, 4a Chodzki St., 20-093 Lublin, Poland
| |
Collapse
|
43
|
Başaran E, Karaküçük-Iyidoğan A, Schols D, Oruç-Emre EE. Synthesis of Novel Chiral Sulfonamide-Bearing 1,2,4-Triazole-3-thione Analogs Derived fromD-andL-Phenylalanine Esters as Potential Anti-Influenza Agents. Chirality 2016; 28:495-513. [DOI: 10.1002/chir.22607] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Revised: 04/08/2016] [Accepted: 04/17/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Eyüp Başaran
- Gaziantep University, Faculty of Science and Arts; Department of Chemistry; Gaziantep Turkey
| | | | | | - Emine Elçin Oruç-Emre
- Gaziantep University, Faculty of Science and Arts; Department of Chemistry; Gaziantep Turkey
| |
Collapse
|
44
|
Zhang HJ, Wang SB, Wen X, Li JZ, Quan ZS. Design, synthesis, and evaluation of the anticonvulsant and antidepressant activities of pyrido[2,3-d]pyrimidine derivatives. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1559-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
45
|
Inturi SB, Kalita B, Ahamed AJ. I2 mediated one-pot synthesis of 1,2,4-triazoles from amidines and imidates. Tetrahedron Lett 2016. [DOI: 10.1016/j.tetlet.2016.04.015] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
46
|
Ayati A, Emami S, Foroumadi A. The importance of triazole scaffold in the development of anticonvulsant agents. Eur J Med Chem 2016; 109:380-92. [PMID: 26826582 DOI: 10.1016/j.ejmech.2016.01.009] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/24/2015] [Accepted: 01/09/2016] [Indexed: 11/17/2022]
Abstract
Epilepsy is one of the most important neurological disorders with high prevalence worldwide. Many epileptic patients are not completely treated with available drugs and need multiple therapies. Also, many antiepileptic drugs have shown unwanted side effects and drug interactions. Therefore there are continuing interests to find new anticonvulsant drugs. Triazole ring has been found in the structure of many compounds with diverse biological effects. Due to the success of several triazole-containing drugs that entered the pharmaceutical market as CNS-active drugs, this class of heterocyclic compounds has great importance for discovery and development of new anticonvulsant drugs. In this article, we have tried to summarize the latest efforts which have been made in the design and development of triazole-derived anticonvulsant agents.
Collapse
Affiliation(s)
- Adile Ayati
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saeed Emami
- Department of Medicinal Chemistry and Pharmaceutical Sciences Research Center, Faculty of Pharmacy, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Alireza Foroumadi
- Department of Medicinal Chemistry, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Büyükadalı NN, Seven S, Aslan N, Yenidede D, Gümüş A. Chemoenzymatic synthesis of novel 1,4-disubstituted 1,2,3-triazole derivatives from 2-heteroaryl substituted homopropargyl alcohols. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.tetasy.2015.10.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
48
|
Wei CX, Bian M, Gong GH. Current Research on Antiepileptic Compounds. Molecules 2015; 20:20741-76. [PMID: 26610448 PMCID: PMC6332177 DOI: 10.3390/molecules201119714] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 11/03/2015] [Accepted: 11/06/2015] [Indexed: 02/02/2023] Open
Abstract
Epilepsy affects about 1% of the world’s population. Due to the fact all antiepileptic drugs (AEDs) have some undesirable side effects and about 30% of epileptic patients are not seizure-free with the existing AEDs, there is still an urgent need for the development of more effective and safer AEDs. Based on our research work on antiepileptic compounds and other references in recent years, this review covers the reported work on antiepileptic compounds which are classified according to their structures. This review summarized 244 significant anticonvulsant compounds which are classified by functional groups according to the animal model data, although there are some limitations in the data. This review highlights the properties of new compounds endowed with promising antiepileptic properties, which may be proven to be more effective and selective, and possibly free of unwanted side effects. The reviewed compounds represent an interesting possibility to overcome refractory seizures and to reduce the percentage of patients with a poor response to drug therapy.
Collapse
Affiliation(s)
- Cheng-Xi Wei
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, China.
| | - Ming Bian
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, China.
| | - Guo-Hua Gong
- Medicinal Chemistry and Pharmacology Institute, Inner Mongolia University for the Nationalities, Tongliao 028000, China.
- Affiliated Hospital of Inner Mongolia University for Nationalities, Tongliao 028000, Inner Mongolia, China.
| |
Collapse
|
49
|
Ain Q, Pandey SK, Pandey OP, Sengupta SK. Synthesis, structural characterization and biological studies of neodymium(III) and samarium(III) complexes with mercaptotriazole Schiff bases. Appl Organomet Chem 2015. [DOI: 10.1002/aoc.3405] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Qurratul Ain
- Chemistry Department; DDU Gorakhpur University; Gorakhpur - 273009 India
| | | | - Om Prakash Pandey
- Chemistry Department; DDU Gorakhpur University; Gorakhpur - 273009 India
| | | |
Collapse
|
50
|
Flieger J, Kowalska A, Pizoń M, Plech T, Łuszczki J. Comparison of mouse plasma and brain tissue homogenate sample pretreatment methods prior to high-performance liquid chromatography for a new 1,2,4-triazole derivative with anticonvulsant activity. J Sep Sci 2015; 38:2149-57. [DOI: 10.1002/jssc.201500221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2015] [Revised: 03/26/2015] [Accepted: 03/27/2015] [Indexed: 11/09/2022]
Affiliation(s)
- Jolanta Flieger
- Department of Analytical Chemistry; Medical University of Lublin; Lublin Poland
| | - Anna Kowalska
- Department of Analytical Chemistry; Medical University of Lublin; Lublin Poland
| | - Magdalena Pizoń
- Department of Analytical Chemistry; Medical University of Lublin; Lublin Poland
| | - Tomasz Plech
- Department of Organic Chemistry; Medical University of Lublin; Lublin Poland
| | - Jarogniew Łuszczki
- Department of Pathophysiology; Medical University of Lublin; Lublin Poland
| |
Collapse
|