1
|
Adam MSS, Al-Ateya ZHA, Makhlouf MM, Abdel-Rahman OS, Shtaiwi A, Khalil A. Substituent effect on the chemical and biological properties of diisatin dihydrazone Schiff bases: DFT and docking studies. Comput Biol Chem 2024; 113:108190. [PMID: 39232258 DOI: 10.1016/j.compbiolchem.2024.108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
According to the considered role of lipophilicity-hydrophobicity on organic Schiff base hydrazones, different substituents of phenyl, ethyl, and methyl groups were inserted in the synthetic strategy of diisatin dihydrazones (L1-4). The biochemical enhancement was evaluated depending on their inhibitive potential of the growth power of three human tumor cells, fungi, and bacteria. The biochemical assays assigned the effected role of different substituents of phenyl, ethyl, and methyl groups on the effectiveness of their diisatin dihydrazone reagents. The interacting modes with calf thymus DNA (i.e. Ct-DNA) were studied via viscometric and spectrophotometric titration. The organo-reagent L1 with the oxalic derivative assigned a performed inhibitive action for the examined microbes and the human tumor cell lines growing up over the terephthalic (L4) > malonic (L2) > succinic (L3) ones. From Kb = binding constant, and ∆Gb≠ = Gibb's free energy values, the binding of interaction within Ct-DNA was evaluated for all compounds (L1-4), in which L1, L3, and L4 assigned the highest reactivity referring to the covalent/non-covalent modes of interaction, as given for (L1-4), 14.32, 13.28, 10.87, and 12.41 × 107 mol-1 dm3, and -45.17, -43.24, -43.75, and -44.05 kJ mol-1, respectively. DFT and docking studies were achieved to support the current work.
Collapse
Affiliation(s)
- Mohamed Shaker S Adam
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; Department of Chemistry, Faculty of Science, Sohag University, Sohag 82534, Egypt.
| | - Zahraa H A Al-Ateya
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed M Makhlouf
- Department of Science and Technology, Ranyah University College, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Obadah S Abdel-Rahman
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
| | - Amneh Shtaiwi
- Faculty of Pharmacy, Middle East University, Queen Alia Airport Street, Amman 11118, Jordan
| | - Ahmed Khalil
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia; Chemistry Department, Faculty of Science, Zagazig University, Zagazig 44519, Egypt.
| |
Collapse
|
2
|
Yuan C, Zhu C, Lv Q, Shi J, Wang J, Gao S, Qian J, Chen Y, Wu Q, Mei W. Discovery of Arene Ruthenium(II) Complexes as Potential VEGF Inhibitors for Glioblastoma Metastasis Suppression. J Med Chem 2024; 67:18724-18740. [PMID: 39433480 DOI: 10.1021/acs.jmedchem.4c00797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024]
Abstract
Developing drugs for treating glioblastoma has been a significant challenge. Herein, a series of arene ruthenium(II) complexes have been synthesized and investigated as potential candidates to suppress the proliferation and metastasis of glioblastoma. It is found that para-substituent-modified molecules, especially 6, exhibit higher antitumor activity than ortho-substituents. Further studies show that 6 can trigger tumor cell autophagy by regulating the PI3K/AKT/mTOR pathway. Moreover, it is also found that 6 can induce DNA damage in glioblastoma cells through binding and stabilizing VEGF G-quadruplex DNA. Furthermore, it is confirmed that 6 can inhibit the proliferation and metastasis of U87-MG glioblastoma cell in situ xenograft in the zebrafish model. Hence, arene ruthenium(II) complexes can be developed as promising therapeutic agents for glioblastoma treatment in the future.
Collapse
Affiliation(s)
- Chanling Yuan
- School of Pharmacy, Guangdong Province Engineering and Technology Centre for Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Chunguang Zhu
- School of Pharmacy, Guangdong Province Engineering and Technology Centre for Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qingshuang Lv
- School of Pharmacy, Guangdong Province Engineering and Technology Centre for Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiahui Shi
- School of Pharmacy, Guangdong Province Engineering and Technology Centre for Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiacheng Wang
- School of Pharmacy, Guangdong Province Engineering and Technology Centre for Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Shiqi Gao
- School of Pharmacy, Guangdong Province Engineering and Technology Centre for Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Jiayi Qian
- School of Pharmacy, Guangdong Province Engineering and Technology Centre for Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Yanhua Chen
- School of Pharmacy, Guangdong Province Engineering and Technology Centre for Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiong Wu
- Institute of Biological and Medical Engineering, Guangdong Academy of Sciences, Guangzhou 530316, China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Province Engineering and Technology Centre for Molecular Probe and Biomedicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
3
|
Santa Maria de la Parra L, Balsa LM, León IE. Metallocompounds as anticancer agents against osteosarcoma. Drug Discov Today 2024; 29:104100. [PMID: 39019429 DOI: 10.1016/j.drudis.2024.104100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/20/2024] [Accepted: 07/10/2024] [Indexed: 07/19/2024]
Abstract
Metallocompounds are a class of anticancer compounds largely used in the treatment of several types of solid tumors, including bone cancer. Osteosarcoma (OS) is a primary malignant bone tumor that frequently affects children, adolescents and young adults. It is a very invasive type of tumor, so ∼40% of patients develop distant metastases, showing elevated mortality rates. In this review, we present an outline of the chemistry and antitumor properties of metal-based compounds in preclinical (in vitro and in vivo) and clinical OS models, focusing on the relationship between structure-activity, molecular targets and the study of the mechanism of action involved in metallocompound anticancer activity.
Collapse
Affiliation(s)
- Lucía Santa Maria de la Parra
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Lucía M Balsa
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina
| | - Ignacio E León
- CEQUINOR (UNLP, CCT-CONICET La Plata, asociado a CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, Blvd. 120 N° 1465, La Plata 1900, Argentina; Cátedra de Fisiopatología, Departamento de Ciencias Biológicas, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, La Plata 1900, Argentina.
| |
Collapse
|
4
|
Bai Y, Aodeng G, Ga L, Hai W, Ai J. Research Progress of Metal Anticancer Drugs. Pharmaceutics 2023; 15:2750. [PMID: 38140091 PMCID: PMC10747151 DOI: 10.3390/pharmaceutics15122750] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/20/2023] [Accepted: 11/30/2023] [Indexed: 12/24/2023] Open
Abstract
Cancer treatments, including traditional chemotherapy, have failed to cure human malignancies. The main reasons for the failure of these treatments are the inevitable drug resistance and serious side effects. In clinical treatment, only 5 percent of the 50 percent of cancer patients who are able to receive conventional chemotherapy survive. Because of these factors, being able to develop a drug and treatment that can target only cancer cells without affecting normal cells remains a big challenge. Since the special properties of cisplatin in the treatment of malignant tumors were accidentally discovered in the last century, metal anticancer drugs have become a research hotspot. Metal anticancer drugs have unique pharmaceutical properties, such as ruthenium metal drugs with their high selectivity, low toxicity, easy absorption by tumor tissue, excretion, and so on. In recent years, efficient and low-toxicity metal antitumor complexes have been synthesized. In this paper, the scientific literature on platinum (Pt), ruthenium (Ru), iridium (Ir), gold (Au), and other anticancer complexes was reviewed by referring to a large amount of relevant literature at home and abroad.
Collapse
Affiliation(s)
- Yun Bai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| | - Gerile Aodeng
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| | - Lu Ga
- College of Pharmacy, Inner Mongolia Medical University, Jinchuankaifaqu, Hohhot 010110, China;
| | - Wenfeng Hai
- Inner Mongolia Key Laboratory of Carbon Nanomaterials, Nano Innovation Institute (NII), College of Chemistry and Materials Science, Inner Mongolia Minzu University, Tongliao 028000, China
| | - Jun Ai
- Inner Mongolia Key Laboratory of Environmental Chemistry, College of Chemistry and Enviromental Science, Inner Mongolia Normal University, 81 Zhaowudalu, Hohhot 010022, China; (Y.B.); (G.A.)
| |
Collapse
|
5
|
Rong P, Yanchu L, Nianchun G, Qi L, Xianyong L. Glyoxal-induced disruption of tumor cell progression in breast cancer. Mol Clin Oncol 2023; 18:26. [PMID: 36908974 PMCID: PMC9993443 DOI: 10.3892/mco.2023.2622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 10/08/2021] [Indexed: 02/17/2023] Open
Abstract
Breast cancer is the most common malignant tumor in women and remains a major global challenge, with ~1.4 million cases per year, worldwide. Numerous studies have shown that changes in cell metabolism are associated with the regulation of tumor progression. In the present study, the anti-cancer properties of glyoxal (GO), which is the smallest dialdehyde formed in the oxidation-reduction reaction and involved in electron transfer and energy metabolism, in breast cancer was investigated. The biological functions and molecular mechanisms of GO were investigated in breast cancer cell lines using MTT and crystal violet assays, flow cytometry, western blot analysis, 3D laser scanning confocal microscopy and transmission electron microscopy. The results showed that GO strongly inhibited cell proliferation, promoted cell apoptosis and cell cycle G2/M arrest, induced the disappearance of cellular microvilli, and enlarged mitochondria. In addition, the protein expression level of AKT, mTOR and p70-S6K decreased in the AKT-mTOR pathway, accompanied by an increase in p-ERK and p-MEK in the MAPK pathway. The results from the present study indicate that GO suppressed breast cancer progression via the MAPK and AKT-mTOR pathways. Taken together, these results provide the basis for a potential therapeutic strategy for breast cancer.
Collapse
Affiliation(s)
- Pu Rong
- Department of Oncology, Chengdu Fuxing Hospital, Chengdu, Sichuan 610037, P.R. China.,Department of Research, Chengdu Fuxing Hospital, Chengdu, Sichuan 610037, P.R. China
| | - Li Yanchu
- Department of Head and Neck Oncology, West China Hospital of Sichuan University, Chengdu, Sichuan 610041, P.R. China
| | - Guo Nianchun
- Department of Research, Chengdu Fuxing Hospital, Chengdu, Sichuan 610037, P.R. China
| | - Li Qi
- Department of Research, Chengdu Fuxing Hospital, Chengdu, Sichuan 610037, P.R. China
| | - Li Xianyong
- Department of Oncology, Chengdu Fuxing Hospital, Chengdu, Sichuan 610037, P.R. China.,Department of Research, Chengdu Fuxing Hospital, Chengdu, Sichuan 610037, P.R. China
| |
Collapse
|
6
|
Adam MSS, Abdel-Rahman OS, Makhlouf MM. Metal ion induced changes in the structure of Schiff base hydrazone chelates and their reactivity effect on catalytic benzyl alcohol oxidation and biological assays. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2022.134164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Novel organoselenium-based N-mealanilic acid and its zinc (II) chelate: Catalytic, anticancer, antimicrobial, antioxidant, and computational assessments. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
8
|
Comparable catalytic and biological behavior of alternative polar dioxo-molybdenum (VI) Schiff base hydrazone chelates. J Taiwan Inst Chem Eng 2022. [DOI: 10.1016/j.jtice.2022.104425] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
9
|
Kalındemirtaş FD, Kaya B, Sert E, Şahin O, Kuruca SE, Ülküseven B. New oxovanadium(IV) complexes overcame drug resistance and increased in vitro cytotoxicity by an apoptotic pathway in breast cancer cells. Chem Biol Interact 2022; 363:109997. [PMID: 35654126 DOI: 10.1016/j.cbi.2022.109997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/21/2022] [Accepted: 05/24/2022] [Indexed: 11/03/2022]
Abstract
In order to examine the anticancer potential of oxovanadium(IV) complexes with thiosemicarbazone, two new complexes were prepared starting from 2-thenoyltrifluoroacetone-S-methylthiosemicarbazone. The complexes with tetradentate thiosemicarbazone ligand were characterized by elemental analysis, IR, ESI MS, and single-crystal X-ray diffraction analysis. Cytotoxicity on breast cancer cells, MDA-MB-231 and MCF-7, was determined by MTT assay. Cisplatin was positive control and the results were compared with those of the normal cells, HUVEC and 3T3. The complexes exhibited greater activity on cancer cells than cisplatin, but they were cytotoxic at several times higher concentrations in the healthy cells. In our study, the presence of thiophene and fluoro groups in the oxovanadium(IV) complexes with thiosemicarbazone increased greatly the cytotoxic activity of the complexes on breast cancer cells. Moreover, the complexes induced apoptosis-mediated cell death and also reduced the expression of MDR-1 or P-glycoprotein and ABCG2. As a result, the findings indicated that the complexes have selective cytotoxicity on breast cancer cells and can overcome multidrug resistance. These properties of the complexes make it possible to be a potential anticancer drug candidate for breast cancer treatment.
Collapse
Affiliation(s)
| | - Büşra Kaya
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, 34320, Avcilar, Istanbul, Turkey
| | - Esra Sert
- Department of Hematology, Istanbul Faculty of Medicine, Istanbul University, 34390, Çapa, Istanbul, Turkey
| | - Onur Şahin
- Department of Occupat Health & Safety, Faculty of Health Sciences, Sinop University, TR-57000, Sinop, Turkey
| | - Serap Erdem Kuruca
- Department of Physiology, Istanbul Medical Faculty, Istanbul University, 34390, Çapa, Istanbul, Turkey
| | - Bahri Ülküseven
- Department of Chemistry, Engineering Faculty, Istanbul University-Cerrahpasa, 34320, Avcilar, Istanbul, Turkey
| |
Collapse
|
10
|
Arene Ru(II) Complexes Acted as Potential KRAS G-Quadruplex DNA Stabilizer Induced DNA Damage Mediated Apoptosis to Inhibit Breast Cancer Progress. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103046. [PMID: 35630522 PMCID: PMC9146995 DOI: 10.3390/molecules27103046] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 04/18/2022] [Accepted: 04/24/2022] [Indexed: 11/24/2022]
Abstract
A series of arene Ru(II) complexes, [(η6-MeC6H5)Ru(L)Cl]Cl, (L=o-ClPIP, 1; m-ClPIP, 2 and p-ClPIP, 3) (o-ClPIP=2-(2-chlorophenyl)imidazo[4,5-f][1,10]phenanthroline; m-ClPIP=2-(3-chlorophenyl)imidazo[4,5-f][1,10]phenanthroline; p-ClPIP=2-(4-chlorophenyl)imidazo[4,5-f][1,10]phenanthroline) was synthesized and investigated as a potential apoptosis inducer in chemotherapy. Spectroscopy and molecular docking simulations show that 1 exhibits moderated binding affinity to KRAS G-quadruplex DNA by groove mode. Further, in vitro studies reveal that 1 displays inhibitory activity against MCF-7 growth with IC50 = 3.7 ± 0.2 μM. Flow cytometric analysis, comet assay, and immunofluorescence confirm that 1 can induce the apoptosis of MCF-7 cells and G0/G1 phase arrest through DNA damage. In summary, the prepared arene Ru(II) complexes can be developed as a promising candidate for targeting G-quadruplex structure to induce the apoptosis of breast cancer cells via binding and stabilizing KRAS G-quadruplex conformation on oncogene promoter.
Collapse
|
11
|
Adam MSS, Makhlouf MM, Mohamed MA, Desoky M. Mohamad A. Promoted catalytic potential in sulfides oxidation and biological screening of green Pd (II) and Co (II) complexes of salicylidene isatin hydrazone ligand. Appl Organomet Chem 2022. [DOI: 10.1002/aoc.6688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Mohamed Shaker S. Adam
- Department of Chemistry College of Science, King Faisal University Al‐Ahsa Saudi Arabia
- Department of Chemistry, Faculty of Science Sohag University Sohag Egypt
| | - M. M. Makhlouf
- Department of Sciences and Technology Ranyah University College, Taif University Taif Saudi Arabia
| | - Mamdouh A. Mohamed
- Chemistry Department High Institute of Engineering and Technology Luxor Egypt
| | | |
Collapse
|
12
|
Kar B, Shanavas S, Nagendra AH, Das U, Roy N, Pete S, Sharma S A, De S, Kumar S K A, Vardhan S, Sahoo SK, Panda D, Shenoy S, Bose B, Paira P. Iridium(III)-Cp*-(imidazo[4,5- f][1,10]phenanthrolin-2-yl)phenol analogues as hypoxia active, GSH-resistant cancer cytoselective and mitochondria-targeting cancer stem cell therapeutic agents. Dalton Trans 2022; 51:5494-5514. [PMID: 35293923 DOI: 10.1039/d2dt00168c] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Herein, we have introduced a series of iridium(III)-Cp*-(imidazo[4,5-f][1,10]phenanthrolin-2-yl)phenol complexes via a convenient synthetic methodology, which act as hypoxia active and glutathione-resistant anticancer metallotherapeutics. The [IrIII(Cp*)(L5)(Cl)](PF6) (IrL5) complex exhibited the best cytoselectivity, GSH resistance and hypoxia effectivity in HeLa and Caco-2 cells among the synthesized complexes. IrL5 also exhibited highly cytotoxic effects on the HCT-116 CSC cell line. This complex was localized in the mitochondria and subsequent mitochondrial dysfunction was observed via MMP alteration and ROS generation on colorectal cancer stem cells. Cell cycle analysis also established the potential of this complex in mediating G2/M phase cell cycle arrest.
Collapse
Affiliation(s)
- Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Shanooja Shanavas
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Apoorva H Nagendra
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Nilmadhab Roy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Sudhindra Pete
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Ajay Sharma S
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Sourav De
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Ashok Kumar S K
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Seshu Vardhan
- Department of Applied Chemistry, S. V. National Institute of Technology (SVNIT), Ichchanath, Surat, Gujrat-395007, India.
| | - Suban K Sahoo
- Department of Applied Chemistry, S. V. National Institute of Technology (SVNIT), Ichchanath, Surat, Gujrat-395007, India.
| | - Debashis Panda
- Department of Basic Sciences and Humanities, Rajiv Gandhi Institute of Petroleum Technology, An Institution of National Importance, Jais, Amethi-229304, Uttar Pradesh, India.
| | - Sudheer Shenoy
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Bipasha Bose
- Department Stem Cells and Regenerative Medicine Centre, Institution Yenepoya Research Centre, Yenepoya University, University Road, Derlakatte, Mangalore 575018, Karnataka, India.
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| |
Collapse
|
13
|
Novel isatin-based complexes of Mn(II) and Cu(II) ions: Characterization, homogeneous catalysts for sulfides oxidation, bioactivity screening and theoretical implementations via DFT and pharmacokinetic studies. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.118620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
14
|
Sonkar C, Sarkar S, Mukhopadhyay S. Ruthenium(ii)-arene complexes as anti-metastatic agents, and related techniques. RSC Med Chem 2022; 13:22-38. [PMID: 35224494 PMCID: PMC8792825 DOI: 10.1039/d1md00220a] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 09/15/2021] [Indexed: 09/18/2023] Open
Abstract
With the discovery of cisplatin, a vast area of applications of metallodrugs in cancer treatment was opened but due to the side effects caused by the cisplatin complexes, researchers began to look for alternatives with similar anticancer properties but fewer side effects. Ruthenium was found to be a promising candidate, considering its significant anticancer properties and low side effects. Several ruthenium complexes, viz. NAMI-A, KP1019, KP1339, and TLD1433, have entered clinical trials. Some other arene ruthenium complexes such as RM175 and RAPTA-C have also entered clinical trials but very few of them have shown anti-metastatic properties. Herein, we provide information and probable mechanistic pathways for ruthenium(ii)-arene complexes that have been studied, so far, for their anti-metastatic activities. Also, we discuss the techniques and their significance for determining the anti-metastatic effects of the complexes.
Collapse
Affiliation(s)
- Chanchal Sonkar
- Department of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
| | - Sayantan Sarkar
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
| | - Suman Mukhopadhyay
- Department of Biosciences and Biomedical Engineering, School of Engineering, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
- Department of Chemistry, School of Basic Sciences, Indian Institute of Technology Indore Khandwa Road, Simrol Indore 453552 MP India
| |
Collapse
|
15
|
Bai MJ, Liu NZ, Zhou YL, Liu J, Zou J, Tan WJ, Huang XT, Mei WJ. Synthesis of Fluorinated Imidazole[4,5f][1,10]phenanthroline Derivatives as Potential Inhibitors of Liver Cancer Cell Proliferation by Inducing Apoptosis via DNA Damage. ChemMedChem 2021; 17:e202100537. [PMID: 34713586 DOI: 10.1002/cmdc.202100537] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 10/22/2021] [Indexed: 12/26/2022]
Abstract
Phenanthroline derivatives containing fluorinated imidazole ring are effective anti-neoplastic agents. Herein, a series of four fluorinated imidazole[4,5f][1,10]phenanthroline derivatives were synthesized and investigated as potential inhibitors to fight against the growth of liver cancer cells. The in vitro antitumor activity of targeted compounds have been evaluated by using MTT assay, and results showed that compound 4 (2-(2,3-difluorophenyl)-1H-imidazo[4,5-f][1,10]phenanthroline) exhibited excellent inhibitory effect against the growth of various tumor cells, particularly for HepG2 cells, with IC50 value of approximately 0.29 μM. This result has been further confirmed by colony formation assay, showing that compound 4 suppressed the proliferation of HepG2 cells. Moreover, cell apoptosis (AO/PI dual staining and flow cytometry) analyses as well as comet assay showed that compound 4 may induce apoptosis of HepG2 cells through triggering DNA damage. Furthermore, the in vivo anti-tumor activity were evaluated on zebrafish bearing HepG2 cells showed that compound 4 can observably block the growth of liver cancer cells. All in together, these compounds, particularly compound 4, may be developed as a potential agent to treat liver cancer in the future.
Collapse
Affiliation(s)
- Ming-Jun Bai
- Department of Interventional Radiology, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510430, China
| | - Ning-Zhi Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yu-Ling Zhou
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510430, China
| | - Jie Liu
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510430, China
| | - Jun Zou
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wei-Jun Tan
- School of Food, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Xiao-Ting Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Wen-Jie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China.,Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-Medicine Imaging, Guangzhou, 510006, China
| |
Collapse
|
16
|
Wang J, Huang B, Wang L, Jiang G, Cheng J, Xiong Y, Wang J, Liao X. The synthesis and evaluation of the antitumor and antibacterial activity of two novel oxovanadium complexes. JOURNAL OF CHEMICAL RESEARCH 2021. [DOI: 10.1177/17475198211045894] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Two novel oxovanadium(IV) complexes ([VO(hntdtsc)(BPIP)] and [VO(hntdtsc)(MOPIP)] (hntdtsc = 2-hydroxy-1-naphthaldehydethiosemicarbazone, BPIP = 2-(4-bromophenyl)-imidazo[4,5- f]-1,10-phenanthroline, MOPIP = 2-(4-methoxyphenyl)-imidazo[4,5- f]1,10-phenanthroline), are synthesized and characterized. Subsequently, the Methyl Thiazolyl Tetrazolium (MTT) assay is used to investigate the antitumor activity of the ligand and two complexes in vitro.The results indicate that both complexes could significantly inhibit selected tumor cells (SH-SY5Y, MCF-7, and SK-N-SH). In addition, the antibacterial activity of VO(hntdtsc)(BPIP) against Staphylococcus aureus is further investigated. Interestingly, VO(hntdtsc)(BPIP) can efficiently attenuate S. aureus growth and abrogate α-hemolysin secretion and biofilm formation. The plasmid DNA cleavage activity of both complexes is also investigated. The results suggest that supercoiled plasmid DNA is efficiently cleaved after treatment with each complex, which might contribute to the biological activity of these oxovanadium(IV) complexes.
Collapse
Affiliation(s)
- Jing Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Bin Huang
- School of Pharmaceutical Sciences, Hunan University of Medicine, Huaihua, P.R. China
| | - Liqiang Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Guijjuan Jiang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Jianxin Cheng
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Yanshi Xiong
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Jintao Wang
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| | - Xiangwen Liao
- School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang, P.R. China
| |
Collapse
|
17
|
Kar B, Das U, De S, Pete S, Sharma S A, Roy N, S K AK, Panda D, Paira P. GSH-resistant and highly cytoselective ruthenium(II)- p-cymene-(imidazo[4,5- f][1,10]phenanthrolin-2-yl)phenol complexes as potential anticancer agents. Dalton Trans 2021; 50:10369-10373. [PMID: 34308466 DOI: 10.1039/d1dt01604k] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To avoid the side effects of the current popular platinum-based anticancer drugs, researchers have made tireless attempts to design appropriate GSH-resistant Ru(ii)-arene complexes. In this regard, luminescent ruthenium(ii)-p-cymene-imidazophenanthroline complexes were developed as promising highly cytoselective cancer theraputic agents for HeLa and Caco-2 cells.
Collapse
Affiliation(s)
- Binoy Kar
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Utpal Das
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Sourav De
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Sudhindra Pete
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Ajay Sharma S
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Nilmadhab Roy
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Ashok Kumar S K
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| | - Debashis Panda
- Department of Basic Sciences and Humanities, Rajiv Gandhi Institute of Petroleum Technology, An Institution of National Importance, Jais, Amethi-229304, Uttar Pradesh, India.
| | - Priyankar Paira
- Department of Chemistry, School of Advanced Sciences, Vellore Institute of Technology, Vellore-632014, Tamilnadu, India.
| |
Collapse
|
18
|
Sathiya Kamatchi T, Mohamed Subarkhan MK, Ramesh R, Wang H, Małecki JG. Investigation into antiproliferative activity and apoptosis mechanism of new arene Ru(ii) carbazole-based hydrazone complexes. Dalton Trans 2021; 49:11385-11395. [PMID: 32776042 DOI: 10.1039/d0dt01476a] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Ruthenium complexes with bioactive ligands are becoming promising substitutes for platinum complexes due to their precise action against various cancers. In the present study, the synthesis of three new arene Ru(ii) complexes containing new carbazole-based hydrazone ligands of general formula [(η6-benzene)Ru(L)Cl] (1-3; L = carbazolone benzhydrazone ligands), and their anticancer properties are described. The structural characterization of the ligands and their ruthenium complexes has been realized with the aid of elemental analysis, IR, UV-vis, NMR and HR-MS techniques. The molecular structures of all three complexes have been elucidated by single crystal X-ray crystallography and reveal the existence of pseudo-octahedral geometry around the ruthenium. The in vitro cancer cell growth inhibition property of the complexes against A549 (lung carcinoma), A2780 (ovarian adenocarcinoma) and non-cancerous 16HBE (human lung bronchial epithelium) cells were examined by MTT assay. All the complexes display good cytotoxicity towards both of these types of cancer cell compared to the standard drug cisplatin, with low IC50 values. Remarkably, complex 3, which contains an electron-donating substituent, induces a significant reduction of viability in A2780 cells. The inhibition capacity of the complexes towards A2780 cells proliferation was further confirmed using 5-ethynyl-2-deoxyuridine (EdU) assay via minimal DNA synthesis. The result of the acridine orange-ethidium bromide (AO-EB) fluorescent staining assay establishes that the cytotoxicity of the complexes was mediated by apoptosis in cancer cells. Furthermore, flow cytometry using Annexin V-FITC/propidium iodide (PI) double staining determines the quantitative discrimination of early apoptosis by the externalization of phosphatidylserine. In addition, cell cycle distribution indicates that the complexes block the cell cycle progression in the S-phase. The outcome of our investigation shows the promising scope and potency of tailored arene ruthenium complexes for precise cancer chemotherapy beyond platinum drugs.
Collapse
Affiliation(s)
- Thangavel Sathiya Kamatchi
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India.
| | - Mohamed Kasim Mohamed Subarkhan
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Rengan Ramesh
- Centre for Organometallic Chemistry, School of Chemistry, Bharathidasan University, Tiruchirappalli-620 024, Tamil Nadu, India.
| | - Hangxiang Wang
- The First Affiliated Hospital, Key Laboratory of Combined Multi-Organ Transplantation, Ministry of Public Health, School of Medicine, Zhejiang University, Hangzhou, 310003, PR China
| | - Jan Grzegorz Małecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, 40-006, Katowice, Poland
| |
Collapse
|
19
|
Moharana P, Ghosh D, Paira P. Drive to organoruthenium and organoiridium complexes from organoplatinum: Next-generation anticancer metallotherapeutics. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2020.108364] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
|
20
|
Digital gene expression profiling analysis of A549 cells cultured with PM10 in moxa smoke. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2020. [DOI: 10.1016/j.jtcms.2020.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|
21
|
Wu Q, Song Y, Liu R, Wang R, Mei W, Chen W, Yang H, Wang X. Synthesis, docking studies and antitumor activity of phenanthroimidazole derivatives as promising c-myc G-quadruplex DNA stabilizers. Bioorg Chem 2020; 102:104074. [PMID: 32738566 DOI: 10.1016/j.bioorg.2020.104074] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 04/24/2020] [Accepted: 06/30/2020] [Indexed: 12/28/2022]
Abstract
Phenanthroimidazole derivatives containing phenanthroline and imidazole heterocyclic aromatic rings are effective agents to inhibit tumor cell growth. Herein, halogen element-modified imidazo[4,5f][1,10]phenanthroline derivatives 1-6 (1, 4-fluorophenyl; 2, 4-chlorophenyl; 3, 4-bromobenyl; 4, 2,3-dichlorophenyl; 5, 3,4-dichlorophenyl; and 6, 2,4-dichlorophenyl) were synthesized, and their antitumor activities were investigated. All of the compounds, especially 4, exhibited an excellent inhibitory effect against nasopharyngeal carcinoma CNE-1 cells. This effect was better than that of doxorubicin. Compound 4 also markedly blocked the proliferation of the CNE-1 cells in a zebrafish xenograft model. The antitumor mechanisms might be attributed to apoptosis induction, which triggered ROS-mediated DNA damage and generated mitochondrial dysfunction by stabilizing c-myc G-quadruplex DNA structure. Results indicated that phenanthroimidazole derivatives could act as promising anticancer agents.
Collapse
Affiliation(s)
- Qiong Wu
- The First Affiliation Hospital of Guangdong Pharmaceutical University, Guangzhou 510062, China; Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-Medical Imaging, Guangzhou 510006, China
| | - Yue Song
- The First Affiliation Hospital of Guangdong Pharmaceutical University, Guangzhou 510062, China
| | - Ruotong Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-Medical Imaging, Guangzhou 510006, China
| | - Rui Wang
- The First Affiliation Hospital of Guangdong Pharmaceutical University, Guangzhou 510062, China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-Medical Imaging, Guangzhou 510006, China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Weiming Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-Medical Imaging, Guangzhou 510006, China
| | - Huanglan Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Province Engineering Technology Centre for Molecular Probe and Bio-Medical Imaging, Guangzhou 510006, China
| | - Xicheng Wang
- The First Affiliation Hospital of Guangdong Pharmaceutical University, Guangzhou 510062, China.
| |
Collapse
|
22
|
Yadhukrishnan VO, Muralisankar M, Dheepika R, Konakanchi R, Bhuvanesh NSP, Nagarajan S. Structurally different domains embedded half-sandwich arene Ru(II) complex: DNA/HSA binding and cytotoxic studies. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1782895] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- V. O. Yadhukrishnan
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamilnadu, India
| | - Mathiyan Muralisankar
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamilnadu, India
| | - Ramachandran Dheepika
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamilnadu, India
| | - Ramaiah Konakanchi
- Department of Chemistry, National Institute of Technology, Warangal, Telangana, India
| | | | - Samuthira Nagarajan
- Department of Chemistry, Central University of Tamil Nadu, Thiruvarur, Tamilnadu, India
| |
Collapse
|
23
|
Aboura W, Batchelor LK, Garci A, Dyson PJ, Therrien B. Reactivity and biological activity of N,N,S-Schiff-base rhodium pentamethylcyclopentadienyl complexes. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119265] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
24
|
Mondal A, Paira P. Hypoxia efficient and glutathione-resistant cytoselective ruthenium(ii)-p-cymene-arylimidazophenanthroline complexes: biomolecular interaction and live cell imaging. Dalton Trans 2020; 49:12865-12878. [DOI: 10.1039/d0dt02069a] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A series of ruthenium(ii)–arene-2-arylimidazophenanthroline based DNA targeting, cytoselective, hypoxia efficient and glutathione-resistant luminescent anticancer drugs have been developed which are also represented as HeLa cell imaging probes.
Collapse
Affiliation(s)
- Ashaparna Mondal
- Department of Chemistry
- School of advanced sciences
- Vellore Institute of Technology
- Vellore-632014
- India
| | - Priyankar Paira
- Department of Chemistry
- School of advanced sciences
- Vellore Institute of Technology
- Vellore-632014
- India
| |
Collapse
|
25
|
Ferreiro ME, Amarilla MS, Glienke L, Méndez CS, González C, Jacobo PV, Sobarzo CM, De Laurentiis A, Ferraris MJ, Theas MS. The inflammatory mediators TNFα and nitric oxide arrest spermatogonia GC-1 cell cycle. Reprod Biol 2019; 19:329-339. [PMID: 31757605 DOI: 10.1016/j.repbio.2019.11.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2018] [Revised: 10/08/2019] [Accepted: 11/02/2019] [Indexed: 01/01/2023]
Abstract
During an inflammatory process of the testis, the network of somatic, immune, and germ cell interactions is altered leading to organ dysfunction. In testicular biopsies of infertile men, spermatogenesis impairment is associated with reduced spermatogonia proliferation, increased number of immune cells, and content of pro-inflammatory cytokines. TNFα-TNFR and nitric oxide (NO)-NO synthase systems are up-regulated in models of testicular damage and in human testis with maturation arrest. The purpose of this study was to test the hypothesis that TNFα-TNFR system and NO alter the function of spermatogonia in the inflamed testis. We studied the effect of TNFα and NO on GC-1 spermatogonia cell cycle progression and death by flow cytometry. GC-1 cells expressed TNFR1 and TNFR2 (immunofluorescence). TNFα (10 and 50 ng/ml) and DETA-Nonoate (0.5 and 2 mM), a NO releaser, increased the percentage of cells in S-phase of the cell cycle and reduced the percentage in G1, inducing also cell apoptosis. TNFα effect was not mediated by oxidative stress unlike NO, since the presence of N-acetyl-l-cysteine (2.5 and 5.0 mM) prevented NO induced cell cycle arrest and death. GC-1 spermatogonia overpass NO induced cell cycle arrest but no TNFα, since after removal of NO, spermatogonia progressed through the cell cycle. We propose TNFα and NO might contribute to impairment of spermatogenesis by preventing adequate functioning of the spermatogonia population. Our results showed that TNFα and NO impaired spermatogonia cell cycle, inducing GC-1 arrest in the S phase.
Collapse
Affiliation(s)
- María Eugenia Ferreiro
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - María Sofía Amarilla
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Leilane Glienke
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Cinthia Soledad Méndez
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Candela González
- Centro de Estudios Biomédicos, Biotecnológicos, Ambientales y Diagnósticos (CEBBAD), Universidad Maimónides, Buenos Aires, Argentina
| | - Patricia Verónica Jacobo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Cristian Marcelo Sobarzo
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - Andrea De Laurentiis
- Centro de Estudios Farmacológicos y Botánicos (CEFYBO) CONICET-Universidad de Buenos Aires, Buenos Aires, Argentina
| | - María Jimena Ferraris
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina
| | - María Susana Theas
- Universidad de Buenos Aires, Facultad de Medicina, Departamento de Biología Celular, Cátedra II de Histología, Buenos Aires, Argentina, CONICET-Universidad de Buenos Aires, Instituto de Investigaciones Biomédicas (INBIOMED), Buenos Aires, Argentina.
| |
Collapse
|
26
|
Zhao J, Zhang X, Liu H, Xiong Z, Li M, Chen T. Ruthenium arene complex induces cell cycle arrest and apoptosis through activation of P53-mediated signaling pathways. J Organomet Chem 2019. [DOI: 10.1016/j.jorganchem.2019.07.020] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
Liu J, Lai H, Xiong Z, Chen B, Chen T. Functionalization and cancer-targeting design of ruthenium complexes for precise cancer therapy. Chem Commun (Camb) 2019; 55:9904-9914. [PMID: 31360938 DOI: 10.1039/c9cc04098f] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
The successful clinical application of the three generation platinum anticancer drugs, cisplatin, carboplatin and oxaliplatin, has promoted research interest in metallodrugs; however, the problems of drug resistance and adverse effects have hindered their further application and effects. Thus, scientists are searching for new anticancer metallodrugs with lower toxicity and higher efficacy. The ruthenium complexes have emerged as the most promising alternatives to platinum-based anticancer agents because of their unique multifunctional biochemical properties. In this review, we first focus on the anticancer applications of various ruthenium complexes in different signaling pathways, including the mitochondria-mediated pathway, the DNA damage-mediated pathway, and the death receptor-mediated pathway. We then discuss the functionalization and cancer-targeting designs of different ruthenium complexes in conjunction with other therapies such as photodynamic therapy, photothermal therapy, radiosensitization, targeted therapy and nanotechnology for precise cancer therapy. This review will help in designing and accelerating the research progress regarding new anticancer ruthenium complexes.
Collapse
Affiliation(s)
- Jinggong Liu
- Orthopedics Department, Guangdong Provincial Hospital of Traditional Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, No. 111 Dade Road, Guangzhou 510120, China
| | | | | | | | | |
Collapse
|
28
|
Xu L, Zhao J, Wang Z. Genotoxic response and damage recovery of macrophages to graphene quantum dots. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 664:536-545. [PMID: 30759415 DOI: 10.1016/j.scitotenv.2019.01.356] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 05/20/2023]
Abstract
The potential adverse effects of graphene quantum dots (GQDs) have increasingly attracted attention. Our present study revealed the genotoxic responses of rat alveolar macrophages (NR8383) to aminated graphene QDs (AG-QDs) and detected the cellular recovery after removing AG-QDs. Global gene expression analysis from RNA-sequencing showed that AG-QDs (100 μg/mL) caused significant alterations in expression of 2898 genes after exposure for 24 h. Among these, 1335 and 1563 genes were up-regulated and down-regulated, respectively. Based on the Gene Ontology (GO) and Kyoto Encyclopedia of Gene and Genomes (KEGG) analysis, we found that most of the down-regulated genes were responsive to "cell cycle", which correlated well with the cell cycle arrest data that AG-QDs triggered cell cycle arrest at S (synthesis) and G2/M (second gap/mitosis) phase. The percentages of cells in S and G2/M phase were increased by 4.5%, and 29.0%, respectively. In addition, the up-regulated genes related with "endocytosis" and "phagocytosis" were identified, which could regulate the internalization of AG-QDs by endocytosis and phagocytosis. After removing exposed AG-QDs and re-incubating the cells in fresh medium, the arrest of S and G2/M phase in NR8383 cells was reduced, and the cell cycle gradually recovered. This cellular recovery could be attributed to the cellular excretion of AG-QDs and the up-regulation of the DNA-repair-related genes (Rad51, Brca2, and Atm). The current work provides insights into the potential hazards of AG-QDs in transcriptional level and presented the long-term effects of AG-QDs on organisms in environment.
Collapse
Affiliation(s)
- Lina Xu
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China; Institute of Coastal Environmental Pollution Control, and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Jian Zhao
- Institute of Coastal Environmental Pollution Control, and College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Zhenyu Wang
- Institute of Environmental Processes and Pollution Control, and School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, China.
| |
Collapse
|
29
|
Bai M, Pan T, Yu G, Xie Q, Zeng Z, Zhang Y, Zhu D, Mu L, Qian J, Chang B, Mei WJ, Guan S. Chiral ruthenium(II) complex Δ-[Ru(bpy) 2(o-FMPIP)] (bpy = bipyridine, o-FMPIP = 2-(2'-trifluoromethyphenyl) imidazo[4,5-f][1,10]phenanthroline) as potential apoptosis inducer via DNA damage. Eur J Pharmacol 2019; 853:49-55. [PMID: 30880177 DOI: 10.1016/j.ejphar.2019.03.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 03/05/2019] [Accepted: 03/06/2019] [Indexed: 12/21/2022]
Abstract
Chiral ruthenium(II) complexes have long been considered as potential anticancer agents. Herein, in vivo inhibitory activity of a chiral ruthenium(II) complex coordinated by ligand 2-(2'-trifluoromethyphenyl) imidazo [4,5-f][1,10]phenanthroline, Δ-[Ru(bpy)2(o-FMPIP)] (D0402) on Kunming(KM) mice bearing tumor (H22 hepatic cancer) has been evaluated, and the results showed that the tumor weight of mice treated with 0.22 mg/(kg·day) D0402 via i.v. administration for 7 days decreased about 31.79% compared to the control group, while the body weight, as well as the thymus, spleen, liver, lung, and kidney indices of mice treated with D0402 observed almost no loss compared to the control group. Furthermore, the mechanism studies on anti-angiogenic showed that D0402 could inhibit the formation of angiogenesis in the transgenic Tg(fli1a: EGFP) zebrafish. After treated with D0402, the sub-intestinal vessels(SIVs) of the zebrafish became disordered and chaotic, and was dosage dependent. Moreover, the TUNEL analysis and comet assays revealed that D0402 can induce apoptosis of HepG2 cell through DNA damage, and this was further demonstrated by immunofluorescence analysis with the number of γ-H2AX increased following the increasing amount of D0402. Besides, in vivo toxicity of D0402 has also been investigated on the development of zebrafish embryo, and the results showed that there were no death or development delay occurred for zebrafish embryo treated with D0402 up to concentration of 60 μM. All in together, this study suggested that D0402 can be developed as a potential inhibitor against liver cancer through co-junction of anti-angiogenesis and apoptosis-inducing via DNA damage in the near future.
Collapse
Affiliation(s)
- Mingjun Bai
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Tao Pan
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Gengnan Yu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China
| | - Qiang Xie
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| | - Zhaolin Zeng
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Yanyang Zhang
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Duo Zhu
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Luwen Mu
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Jiesheng Qian
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Boyang Chang
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China
| | - Wen-Jie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China; Guangdong Province Engineering Technology Centre for Molecular Probe and Biomedicine Imaging, Guangzhou 510006, China.
| | - Shouhai Guan
- The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou 510630, China.
| |
Collapse
|
30
|
Li Y, Wu Q, Yu G, Li L, Zhao X, Huang X, Mei W. Polypyridyl Ruthenium(II) complex-induced mitochondrial membrane potential dissipation activates DNA damage-mediated apoptosis to inhibit liver cancer. Eur J Med Chem 2019; 164:282-291. [DOI: 10.1016/j.ejmech.2018.12.041] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 12/11/2018] [Accepted: 12/17/2018] [Indexed: 12/25/2022]
|
31
|
Liu X, Zhao X, Li Y, Zheng K, Wu Q, Mei W. Microwave-Assisted Synthesis, Characterisation, and DNA-Binding Properties of RuII Complexes Coordinated by Norfloxacin as Potential Tumour Inhibitors. Aust J Chem 2019. [DOI: 10.1071/ch18637] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Three novel norfloxacin-based ruthenium(ii) complexes, [Ru(bpy)2(NFLX)]Cl·2H2O (1), [Ru(phen)2(NFLX)]Cl·2H2O (2), and [Ru(dmbpy)2(NFLX)]Cl·2H2O (3) (bpy=2,2′-bipyridine, phen=1,10-phenanthroline, dmbpy=4,4′-dimethyl-2,2′-bipyridine, and NFLX=norfloxacin), were synthesised and characterised with electrospray ionisation mass spectrometry and 1H and 13C NMR spectroscopy. The antitumour properties were evaluated by MTT assay, and the data revealed that 2 can inhibit the growth of human lung adenocarcinoma A549 efficiently. Furthermore, the DNA-binding behaviours of these complexes were investigated by a multiple spectroscopy assay and viscosity study. The results indicated that these complexes interact with calf thymus DNA through electrostatic interactions with a strong binding affinity in the order 2>3>1. Therefore, these results suggested that 2 might be a suitable anticancer agent due to its excellent DNA-binding abilities.
Collapse
|
32
|
Nucleus-enriched Ruthenium Polypyridine Complex Acts as a Potent Inhibitor to Suppress Triple-negative Breast Cancer Metastasis In vivo. Comput Struct Biotechnol J 2018; 17:21-30. [PMID: 30581541 PMCID: PMC6297906 DOI: 10.1016/j.csbj.2018.11.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2018] [Revised: 11/20/2018] [Accepted: 11/23/2018] [Indexed: 12/31/2022] Open
Abstract
Polypyridine Ru(II) complexes have long been deemed to excellent antitumor agents that inhibit the proliferation of breast cancer cells. Nevertheless, their effects on the metastatic potency of breast cancer cells need further research. Herein, a class of polypyridine Ru(II) complexes coordinated with phenazine derivates (DPPZ) ([Ru(bpy)2(DPPZ-R)](ClO4)2, Ru(bpy)2DPPZ: R = -H, Ru(bpy)2BrDPPZ: R = -Br, Ru(bpy)2MDPPZ: R = -CH3, Ru(bpy)2BnDPPZ: R = −acene, Ru(bpy)2BEDPPZ: R = -C ≡ C(C6H5)) was synthesized by introducing different substituent groups to regulate the electron cloud density and planarity of the main ligands. Results indicated that this class of DPPZ-based Ru(II) complexes exhibited promising inhibitory effect against MDA-MB-231 triple-negative breast cancer cells, especially for Ru(bpy)2BEDPPZ, which is comparable with that of cisplatin. In addition, Ru(bpy)2BEDPPZ effectively inhibited the migration and invasion of MDA-MB-231 cells in vitro and suppressed focal adhesion and stress fiber formation. Moreover, it effectively blocked MDA-MB-231 cell metastasis in blood vessels and restrained angiogenesis formation in a zebrafish xenograft breast cancer model. Further studies showed that the mechanisms may involve DNA damage-mediated apoptosis probably due to Ru(bpy)2BEDPPZ, which was enriched in the cell nucleus and induced DNA damage. All these results suggested that the DPPZ-based Ru(II) complexes can act as potent anti-metastasis agents.
Collapse
|
33
|
|
34
|
Wu Q, Zheng K, Huang X, Li L, Mei W. Tanshinone-IIA-Based Analogues of Imidazole Alkaloid Act as Potent Inhibitors To Block Breast Cancer Invasion and Metastasis in Vivo. J Med Chem 2018; 61:10488-10501. [DOI: 10.1021/acs.jmedchem.8b01018] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Qiong Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Gaungzhou, 510006, China
| | - Kangdi Zheng
- School of Pharmacy, Guangdong Pharmaceutical University, Gaungzhou, 510006, China
| | - Xiaoting Huang
- School of Pharmacy, Guangdong Pharmaceutical University, Gaungzhou, 510006, China
| | - Li Li
- School of Pharmacy, Guangdong Pharmaceutical University, Gaungzhou, 510006, China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Gaungzhou, 510006, China
- Guangdong Province Engineering Technology Centre for molecular Probe & Bio-medicine Imaging, Guangdong Pharmaceutical University, Guangzhou 510006, China
- Guangzhou key laboratory of construction and application of new drug screening model systems, Guangdong Pharmaceutical University, Guangzhou 510006, China
| |
Collapse
|
35
|
Alkoxylation of the imine carbon atom of a Schiff-base ligand upon coordination to arene ruthenium. Inorganica Chim Acta 2018. [DOI: 10.1016/j.ica.2018.07.025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Synthesis, structure, DNA binding and anticancer activity of mixed ligand ruthenium(II) complex. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.10.105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
37
|
Chen L, Li G, Peng F, Jie X, Dongye G, Cai K, Feng R, Li B, Zeng Q, Lun K, Chen J, Xu B. The induction of autophagy against mitochondria-mediated apoptosis in lung cancer cells by a ruthenium (II) imidazole complex. Oncotarget 2018; 7:80716-80734. [PMID: 27811372 PMCID: PMC5348350 DOI: 10.18632/oncotarget.13032] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Accepted: 10/26/2016] [Indexed: 01/06/2023] Open
Abstract
In the present study, it was found that the ruthenium (II) imidazole complex [Ru(Im)4(dppz)]2+ (Ru1) could induce significant growth inhibition and apoptosis in A549 and NCI-H460 cells. Apart from the induction of apoptosis, it was reported for the first time that Ru1 induced an autophagic response in A549 and NCI-H460 cells as evidenced by the formation of autophagosomes, acidic vesicular organelles (AVOs), and the up-regulation of LC3-II. Furthermore, scavenging of reactive oxygen species (ROS) by antioxidant NAC or Tiron inhibited the release of cytochrome c, caspase-3 activity, and eventually rescued cancer cells from Ru1-mediated apoptosis, suggesting that Ru1 inducing apoptosis was partially caspase 3-dependent by triggering ROS-mediated mitochondrial dysfunction in A549 and NCI-H460 cells. Further study indicated that the extracellular signal-regulated kinase (ERK) signaling pathway was involved in Ru1-induced autophagy in A549 and NCI-H460 cells. Moreover, blocking autophagy using pharmacological inhibitors 3-methyladenine (3-MA) and chloroquine (CQ) enhanced Ru1-induced apoptosis, indicating the cytoprotective role of autophagy in Ru1-treated A549 and NCI-H460 cells. Finally, the in vivo mice bearing A549 xenografts, Ru1 dosed at 10 or 20 mg/kg significantly inhibited tumor growth.
Collapse
Affiliation(s)
- Lanmei Chen
- School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China
| | - Guodong Li
- School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China
| | - Fa Peng
- School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China
| | - Xinming Jie
- Analysis Centre of Guangdong Medical University, Zhanjiang, 524023, China
| | - Guangzhi Dongye
- Analysis Centre of Guangdong Medical University, Zhanjiang, 524023, China
| | - Kangrong Cai
- Analysis Centre of Guangdong Medical University, Zhanjiang, 524023, China
| | - Ruibing Feng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Baojun Li
- School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China
| | - Qingwang Zeng
- School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China
| | - Kaiyi Lun
- School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China
| | - Jincan Chen
- Analysis Centre of Guangdong Medical University, Zhanjiang, 524023, China.,Guangdong Key Laboratory for Research and Development of Nature Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| | - Bilian Xu
- School of Pharmacy, Guangdong Medical University, Zhanjiang, 524023, China.,Guangdong Key Laboratory for Research and Development of Nature Drugs, Guangdong Medical University, Zhanjiang, 524023, China
| |
Collapse
|
38
|
Synthesis, DNA binding and cytotoxic activity of pyrimido[4′,5′:4,5]thieno(2,3-b)quinoline with 9-hydroxy-4-(3-diethylaminopropylamino) and 8-methoxy-4-(3-diethylaminopropylamino) substitutions. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2018; 178:1-9. [DOI: 10.1016/j.jphotobiol.2017.10.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 10/11/2017] [Accepted: 10/24/2017] [Indexed: 11/22/2022]
|
39
|
Wu YC, Luo SH, Mei WJ, Cao L, Wu HQ, Wang ZY. Synthesis and biological evaluation of 4-biphenylamino-5-halo-2( 5H )-furanones as potential anticancer agents. Eur J Med Chem 2017; 139:84-94. [DOI: 10.1016/j.ejmech.2017.08.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/15/2017] [Accepted: 08/02/2017] [Indexed: 10/19/2022]
|
40
|
Synthesis and In Vitro (Anticancer) Evaluation of η6-Arene Ruthenium Complexes Bearing Stannyl Ligands. INORGANICS 2017. [DOI: 10.3390/inorganics5030044] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
41
|
Dhayabaran VV, Prakash TD. Synthesis and multi‐spectroscopic study on DNA‐binding, cleavage and biological properties of M(II) complexes based on N
2
O
2
donor Schiff base ligand. LUMINESCENCE 2017; 32:1339-1348. [DOI: 10.1002/bio.3330] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Revised: 01/30/2017] [Accepted: 03/05/2017] [Indexed: 12/16/2022]
Affiliation(s)
- V. Violet Dhayabaran
- PG and Research Department of Chemistry Bishop Heber College Tiruchirappalli India
| | - T. Daniel Prakash
- PG and Research Department of Chemistry Bishop Heber College Tiruchirappalli India
| |
Collapse
|
42
|
Cao J, Wu Q, Zheng W, Li L, Mei W. Microwave-assisted synthesis of polypyridyl ruthenium(ii) complexes as potential tumor-targeting inhibitors against the migration and invasion of Hela cells through G2/M phase arrest. RSC Adv 2017. [DOI: 10.1039/c7ra00658f] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The polypyridyl ruthenium(ii) complexes 4 was identified as a potential inhibitor against the migration and invasion of Hela cells, which could selectively accumulate in tumors tissue and induce G2/M phase arrest in cancer cells.
Collapse
Affiliation(s)
- Jieqiong Cao
- College of Pharmacy
- Jinan University
- Guangzhou
- China
| | - Qiong Wu
- Integrated Chinese and Western Medicine Postdoctoral Research Station
- Jinan University
- Guangzhou
- China
| | - Wenjie Zheng
- College of Pharmacy
- Jinan University
- Guangzhou
- China
- Integrated Chinese and Western Medicine Postdoctoral Research Station
| | - Li Li
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- China
| | - Wenjie Mei
- School of Pharmacy
- Guangdong Pharmaceutical University
- Guangzhou
- China
| |
Collapse
|
43
|
Xie L, Luo Z, Zhao Z, Chen T. Anticancer and Antiangiogenic Iron(II) Complexes That Target Thioredoxin Reductase to Trigger Cancer Cell Apoptosis. J Med Chem 2016; 60:202-214. [DOI: 10.1021/acs.jmedchem.6b00917] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Lina Xie
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zuandi Luo
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Zhennan Zhao
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| | - Tianfeng Chen
- Department of Chemistry, Jinan University, Guangzhou 510632, China
| |
Collapse
|
44
|
Zhang Z, Dai R. Photoactive platinum diimine complexes showing induced cancer cell death by apoptosis. Biometals 2016; 30:37-42. [DOI: 10.1007/s10534-016-9985-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/03/2016] [Indexed: 12/15/2022]
|
45
|
Zhang H, Li L, Wu Q, Yang F, Chen L, Hou T, Chen J, Mei W, Wang X. Inhibiting the growth of tumor cells by ruthenium(II) complexes [Ru(phen)2L] (L = o-TFMPIP and p-CPIP) through DNA-binding. J COORD CHEM 2016; 69:3507-3517. [DOI: 10.1080/00958972.2016.1237633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Accepted: 08/23/2016] [Indexed: 11/11/2022]
Affiliation(s)
- Hao Zhang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Li Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Qiong Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Fan Yang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Lanmei Chen
- College of Pharmacy, Guangdong Medical College, Zhanjiang, PR China
| | - Tieying Hou
- Guangdong Academy of Medical Science, Guangzhou, PR China
- Guangdong General Hospital, Guangzhou, PR China
| | - Jincan Chen
- College of Pharmacy, Guangdong Medical College, Zhanjiang, PR China
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, PR China
| | - Xicheng Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, PR China
| |
Collapse
|
46
|
Fu Y, Sanchez-Cano C, Soni R, Romero-Canelon I, Hearn JM, Liu Z, Wills M, Sadler PJ. The contrasting catalytic efficiency and cancer cell antiproliferative activity of stereoselective organoruthenium transfer hydrogenation catalysts. Dalton Trans 2016; 45:8367-8378. [PMID: 27109147 DOI: 10.1039/c6dt01242f] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The rapidly growing area of catalytic ruthenium chemistry has provided new complexes with potential as organometallic anticancer agents with novel mechanisms of action. Here we report the anticancer activity of four neutral organometallic Ru(II) arene N-tosyl-1,2-diphenylethane-1,2-diamine (TsDPEN) tethered transfer hydrogenation catalysts. The enantiomers (R,R)-[Ru(η(6)-C6H5(CH2)3-TsDPEN-N-Me)Cl] (8) and (S,S)-[Ru(η(6)-C6H5(CH2)3-TsDPEN-N-Me)Cl] (8a) exhibited higher potency than cisplatin against A2780 human ovarian cancer cells. When the N-methyl was replaced by N-H, i.e. to give (R,R)-[Ru(η(6)-Ph(CH2)3-TsDPEN-NH)Cl] (7) and (S,S)-[Ru(η(6)-Ph(CH2)3-TsDPEN-NH)Cl] (7a), respectively, anticancer activity decreased >5-fold. Their antiproliferative activity appears to be linked to their ability to accumulate in cells, and their mechanism of action might involve inhibition of tubulin polymerisation. This appears to be the first report of the potent anticancer activity of tethered Ru(II) arene complexes, and the structure-activity relationship suggests that the N-methyl substituents are important for potency. In the National Cancer Institute 60-cancer-cell-line screen, complexes 8 and 8a exhibited higher activity than cisplatin towards a broad range of cancer cell lines. Intriguingly, in contrast to their potent anticancer properties, complexes 8/8a are poor catalysts for asymmetric transfer hydrogenation, whereas complexes 7/7a are effective asymmetric hydrogenation catalysts.
Collapse
Affiliation(s)
- Ying Fu
- Department of Chemistry, University of Warwick, Gibbet Hill Road, Coventry, CV4 7AL, UK.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Zeng ZP, Wu Q, Sun FY, Zheng KD, Mei WJ. Imaging Nuclei of MDA-MB-231 Breast Cancer Cells by Chiral Ruthenium(II) Complex Coordinated by 2-(4-Phenyacetylenephenyl)-1H-imidazo[4,5f][1,10]phenanthroline. Inorg Chem 2016; 55:5710-8. [DOI: 10.1021/acs.inorgchem.6b00824] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
| | | | - Fen-Yong Sun
- Department
of Clinical Laboratory Medicine, Shanghai Tenth People’s Hospital of Tongji University, 301 Yanchang Road, 200072 Shanghai, People’s Republic of China
| | | | | |
Collapse
|
48
|
Chen Y, Wu Q, Wang X, Xie Q, Tang Y, Lan Y, Zhang S, Mei W. Microwave-Assisted Synthesis of Arene Ru(II) Complexes Induce Tumor Cell Apoptosis Through Selectively Binding and Stabilizing bcl-2 G-Quadruplex DNA. MATERIALS (BASEL, SWITZERLAND) 2016; 9:ma9050386. [PMID: 28773504 PMCID: PMC5503023 DOI: 10.3390/ma9050386] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 05/06/2016] [Accepted: 05/10/2016] [Indexed: 12/21/2022]
Abstract
A series of arene Ru(II) complexes coordinated with phenanthroimidazole derivatives, [(η⁶-C₆H₆)Ru(l)Cl]Cl(1b L = p-ClPIP = 2-(4-Chlorophenyl)imidazole[4,5f] 1,10-phenanthroline; 2b L = m-ClPIP = 2-(3-Chlorophenyl)imidazole[4,5f] 1,10-phenanthroline; 3b L = p-NPIP = 2-(4-Nitrophenyl)imidazole[4,5f] 1,10-phenanthroline; 4b L = m-NPIP = 2-(3-Nitrophenyl) imidazole [4,5f] 1,10-phenanthroline) were synthesized in yields of 89.9%-92.7% under conditions of microwave irradiation heating for 30 min to liberate four arene Ru(II) complexes (1b, 2b, 3b, 4b). The anti-tumor activity of 1b against various tumor cells was evaluated by MTT assay. The results indicated that this complex blocked the growth of human lung adenocarcinoma A549 cells with an IC50 of 16.59 μM. Flow cytometric analysis showed that apoptosis of A549 cells was observed following treatment with 1b. Furthermore, the in vitro DNA-binding behaviors that were confirmed by spectroscopy indicated that 1b could selectively bind and stabilize bcl-2 G-quadruplex DNA to induce apoptosis of A549 cells. Therefore, the synthesized 1b has impressive bcl-2 G-quadruplex DNA-binding and stabilizing activities with potential applications in cancer chemotherapy.
Collapse
Affiliation(s)
- Yanhua Chen
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Qiong Wu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Xicheng Wang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China.
| | - Qiang Xie
- The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 440100, China.
| | - Yunyun Tang
- The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou 510080, China.
| | - Yutao Lan
- School of Nursing, Guangdong Pharmaceutical University, Guangzhou 510310, China.
| | - Shuangyan Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| | - Wenjie Mei
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, China.
| |
Collapse
|
49
|
Wu Q, Zheng K, Liao S, Ding Y, Li Y, Mei W. Arene Ruthenium(II) Complexes as Low-Toxicity Inhibitor against the Proliferation, Migration, and Invasion of MDA-MB-231 Cells through Binding and Stabilizing c-myc G-Quadruplex DNA. Organometallics 2016. [DOI: 10.1021/acs.organomet.5b00820] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Qiong Wu
- Key
Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Kangdi Zheng
- School
of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Siyan Liao
- School
of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou, 510180, China
| | - Yang Ding
- School
of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| | - Yangqiu Li
- Key
Laboratory for Regenerative Medicine of Ministry of Education, Jinan University, Guangzhou, 510632, China
| | - Wenjie Mei
- School
of Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
50
|
Nikolić S, Rangasamy L, Gligorijević N, Aranđelović S, Radulović S, Gasser G, Grgurić-Šipka S. Synthesis, characterization and biological evaluation of novel Ru(II)-arene complexes containing intercalating ligands. J Inorg Biochem 2016; 160:156-65. [PMID: 26818702 DOI: 10.1016/j.jinorgbio.2016.01.005] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/30/2015] [Accepted: 01/07/2016] [Indexed: 01/20/2023]
Abstract
Three new ruthenium(II)-arene complexes, namely [(η(6)-p-cymene)Ru(Me2dppz)Cl]PF6 (1), [(η(6)-benzene)Ru(Me2dppz)Cl]PF6 (2) and [(η(6)-p-cymene)Ru(aip)Cl]PF6 (3) (Me2dppz=11,12-dimethyldipyrido[3,2-a:2',3'-c]phenazine; aip=2-(9-anthryl)-1H-imidazo[4,5-f] [1,10] phenanthroline) have been synthesized and characterized using different spectroscopic techniques including elemental analysis. The complexes were found to be well soluble and stable in DMSO. The biological activity of the three complexes was tested in three different human cancer cell lines (A549, MDA-MB-231 and HeLa) and in one human non-cancerous cell line (MRC-5). Complexes 1 and 3, carrying η(6)-p-cymene as the arene ligand, were shown to be toxic in all cell lines in the low micromolar/subnanomolar range, with complex 1 being the most cytotoxic complex of the series. Flow cytometry analysis revealed that complex 1 caused concentration- and time-dependent arrest of the cell cycle in G2-M and S phases in HeLa cells. This event is followed by the accumulation of the sub-G1 DNA content after 48h, in levels higher than cisplatin and in the absence of phosphatidylserine externalization. Fluorescent microscopy and acridine orange/ethidium bromide staining revealed that complex 1 induced both apoptotic and necrotic cell morphology characteristics. Drug-accumulation and DNA-binding studies performed by inductively coupled plasma mass spectrometry in HeLa cells showed that the total ruthenium uptake increased in a time- and concentration-dependent manner, and that complex 1 accumulated more efficiently than cisplatin at equimolar concentrations. The introduction of a Me2dppz ligand into the ruthenium(II)-p-cymene scaffold was found to allow the discovery of a strongly cytotoxic complex with significantly higher cellular uptake and DNA-binding properties than cisplatin.
Collapse
Affiliation(s)
- Stefan Nikolić
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia
| | - Loganathan Rangasamy
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Nevenka Gligorijević
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Sandra Aranđelović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Siniša Radulović
- Institute for Oncology and Radiology of Serbia, Pasterova 14, 11000 Belgrade, Serbia
| | - Gilles Gasser
- Department of Chemistry, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Sanja Grgurić-Šipka
- Faculty of Chemistry, University of Belgrade, Studentski trg 12-16, 11000 Belgrade, Serbia.
| |
Collapse
|