1
|
Solidoro R, Miciaccia M, Bonaccorso C, Fortuna CG, Armenise D, Centonze A, Ferorelli S, Vitale P, Rodrigues P, Guimarães R, de Oliveira A, da Paz M, Rangel L, Sathler PC, Altomare A, Perrone MG, Scilimati A. A further pocket or conformational plasticity by mapping COX-1 catalytic site through modified-mofezolac structure-inhibitory activity relationships and their antiplatelet behavior. Eur J Med Chem 2024; 266:116135. [PMID: 38219659 DOI: 10.1016/j.ejmech.2024.116135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
Cyclooxygenase enzymes have distinct roles in cardiovascular, neurological, and neurodegenerative disease. They are differently expressed in different type of cancers. Specific and selective COXs inhibitors are needed to be used alone or in combo-therapies. Fully understand the differences at the catalytic site of the two cyclooxygenase (COX) isoforms is still opened to investigation. Thus, two series of novel compounds were designed and synthesized in fair to good yields using the highly selective COX-1 inhibitor mofezolac as the lead compound to explore a COX-1 zone formed by the polar residues Q192, S353, H90 and Y355, as well as hydrophobic amino acids I523, F518 and L352. According to the structure of the COX-1:mofezolac complex, hydrophobic amino acids appear to have free volume eventually accessible to the more sterically hindering groups than the methoxy linked to the phenyl groups of mofezolac, in particular the methoxyphenyl at C4-mofezolac isoxazole. Mofezolac bears two methoxyphenyl groups linked to C3 and C4 of the isoxazole core ring. Thus, in the novel compounds, one or both methoxy groups were replaced by the higher homologous ethoxy, normal and isopropyl, normal and tertiary butyl, and phenyl and benzyl. Furthermore, a major difference between the two sets of compounds is the presence of either a methyl or acetic moiety at the C5 of the isoxazole. Among the C5-methyl series, 12 (direct precursor of mofezolac) (COX-1 IC50 = 0.076 μM and COX-2 IC50 = 0.35 μM) and 15a (ethoxy replacing the two methoxy groups in 12; COX-1 IC50 = 0.23 μM and COX-2 IC50 > 50 μM) were still active and with a Selectivity Index (SI = COX-2 IC50/COX-1 IC50) = 5 and 217, respectively. The other symmetrically substituted alkoxyphenyl moietis were inactive at 50 μM final concentration. Among the asymmetrically substituted, only the 16a (methoxyphenyl on C3-isoxazole and ethoxyphenyl on C4-isoxazole) and 16b (methoxyphenyl on C3-isoxazole and n-propoxyphenyl on C4-isoxazole) were active with SI = 1087 and 38, respectively. Among the set of compounds with the acetic moiety, structurally more similar to mofezolac (SI = 6329), SI ranged between 1.4 and 943. It is noteworthy that 17b (n-propoxyphenyl on both C3- and C4-isoxazole) were found to be a COX-2 slightly selective inhibitor with SI = 0.072 (COX-1 IC50 > 50 μM and COX-2 IC50 = 3.6 μM). Platelet aggregation induced by arachidonic acid (AA) can be in vitro suppressed by the synthesized compounds, without affecting of the secondary hemostasia, confirming the biological effect provided by the selective inhibition of COX-1. A positive profile of hemocompatibility in relation to erythrocyte and platelet toxicity was observed. Additionally, these compounds exhibited a positive profile of hemocompatibility and reduced cytotoxicity. Quantitative structure activity relationship (QSAR) models and molecular modelling (Ligand and Structure based virtual screening procedures) provide key information on the physicochemical and pharmacokinetic properties of the COX-1 inhibitors as well as new insights into the mechanisms of inhibition that will be used to guide the development of more effective and selective compounds. X-ray analysis was used to confirm the chemical structure of 14 (MSA17).
Collapse
Affiliation(s)
- Roberta Solidoro
- Research Laboratory for Woman and Child Health, Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Morena Miciaccia
- Research Laboratory for Woman and Child Health, Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Carmela Bonaccorso
- Laboratory of Molecular Modelling and Heterocyclic Compounds ModHet, Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Cosimo Gianluca Fortuna
- Laboratory of Molecular Modelling and Heterocyclic Compounds ModHet, Department of Chemical Sciences, University of Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Domenico Armenise
- Research Laboratory for Woman and Child Health, Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Antonella Centonze
- Research Laboratory for Woman and Child Health, Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Savina Ferorelli
- Research Laboratory for Woman and Child Health, Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Paola Vitale
- Research Laboratory for Woman and Child Health, Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy
| | - Pryscila Rodrigues
- Laboratory of Experimental Hemostasis, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | - Renilda Guimarães
- Laboratory of Experimental Hemostasis, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | - Alana de Oliveira
- Laboratory of Experimental Hemostasis, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | - Mariana da Paz
- Laboratory of Tumoral Biochemistry, Faculty of Pharmacy, Federal University of Rio de Janeiro, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | - Luciana Rangel
- Laboratory of Tumoral Biochemistry, Faculty of Pharmacy, Federal University of Rio de Janeiro, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | - Plínio Cunha Sathler
- Laboratory of Experimental Hemostasis, Carlos Chagas Filho Avenue, 373, 21941599, Rio de Janeiro, Brazil
| | - Angela Altomare
- Institute of Crystallography-CNR, Via Amendola 122/o, 70126, Bari, Italy
| | - Maria Grazia Perrone
- Research Laboratory for Woman and Child Health, Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy.
| | - Antonio Scilimati
- Research Laboratory for Woman and Child Health, Department of Pharmacy - Pharmaceutical Sciences, University of Bari "Aldo Moro", Via E. Orabona 4, 70125, Bari, Italy.
| |
Collapse
|
2
|
Zhao X, Verma R, Sridhara MB, Sharath Kumar KS. Fluorinated azoles as effective weapons in fight against methicillin-resistance staphylococcus aureus (MRSA) and its SAR studies. Bioorg Chem 2024; 143:106975. [PMID: 37992426 DOI: 10.1016/j.bioorg.2023.106975] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 10/22/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023]
Abstract
The rapid spread of Methicillin-resistant Staphylococcus aureus (MRSA) and its difficult-to-treat skin and filmsy diseases are making MRSA a threat to human life. The most dangerous feature is the fast emergence of MRSA resistance to all recognized antibiotics, including vancomycin. The creation of novel, effective, and non-toxic drug candidates to combat MRSA isolates is urgently required. Fluorine containing small molecules have taken a centre stage in the field of drug development. Over the last 50 years, there have been a growing number of fluorinated compounds that have been approved since the clinical usage of fluorinated corticosteroids in the 1950 s and fluoroquinolones in the 1980 s. Due to its advantages in terms of potency and ADME (absorption, distribution, metabolism, and excretion), fluoro-pharmaceuticals have been regarded as a potent and useful tool in the rational drug design method. The flexible bioactive fluorinated azoles are ideal candidates for the development of new antibiotics. This review summarizes the decade developments of fluorinated azole derivatives with a wide antibacterial activity against diverged MRSA strains. In specific, we correlated the efficacy of structurally varied fluorinated azole analogues including thiazole, benzimidazole, oxadiazole and pyrazole against MRSA and discussed different angles of structure-activity relationship (SAR).
Collapse
Affiliation(s)
- Xuanming Zhao
- Energy Engineering College, Yulin University, Yulin City-719000, P. R. China
| | - Rameshwari Verma
- School of New Energy, Yulin University, Yulin 719000, Shaanxi, P. R. China
| | - M B Sridhara
- Department of Chemistry, Rani Channamma University, Vidyasangama, Belagavi 591156, India
| | | |
Collapse
|
3
|
Cuffaro D, Gimeno A, Bernardoni BL, Di Leo R, Pujadas G, Garcia-Vallvé S, Nencetti S, Rossello A, Nuti E. Identification of N-Acyl Hydrazones as New Non-Zinc-Binding MMP-13 Inhibitors by Structure-Based Virtual Screening Studies and Chemical Optimization. Int J Mol Sci 2023; 24:11098. [PMID: 37446276 DOI: 10.3390/ijms241311098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 06/23/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Matrix metalloproteinase 13 plays a central role in osteoarthritis (OA), as its overexpression induces an excessive breakdown of collagen that results in an imbalance between collagen synthesis and degradation in the joint, leading to progressive articular cartilage degradation. Therefore, MMP-13 has been proposed as a key therapeutic target for OA. Here we have developed a virtual screening workflow aimed at identifying selective non-zinc-binding MMP-13 inhibitors by targeting the deep S1' pocket of MMP-13. Three ligands were found to inhibit MMP-13 in the µM range, and one of these showed selectivity over other MMPs. A structure-based analysis guided the chemical optimization of the hit compound, leading to the obtaining of a new N-acyl hydrazone-based derivative with improved inhibitory activity and selectivity for the target enzyme.
Collapse
Affiliation(s)
- Doretta Cuffaro
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Aleix Gimeno
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, 43007 Tarragona, Spain
| | | | - Riccardo Di Leo
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Gerard Pujadas
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, 43007 Tarragona, Spain
| | - Santiago Garcia-Vallvé
- Research Group in Cheminformatics & Nutrition, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, Campus de Sescelades, 43007 Tarragona, Spain
| | - Susanna Nencetti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Armando Rossello
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| | - Elisa Nuti
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy
| |
Collapse
|
4
|
Wang X, Jin B, Han Y, Wang T, Sheng Z, Tao Y, Yang H. Optimization and Antibacterial Evaluation of Novel 3-(5-Fluoropyridine-3-yl)-2-oxazolidinone Derivatives Containing a Pyrimidine Substituted Piperazine. Molecules 2023; 28:molecules28114267. [PMID: 37298744 DOI: 10.3390/molecules28114267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, a series of novel 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives were designed and synthesized based on compounds previously reported, and their antibacterial activity was investigated. Then their antibacterial activity was investigated for the first time. Preliminary screening results showed that all these compounds exhibited antibacterial activity against gram-positive bacteria, including 7 drug-sensitive strains and 4 drug-resistant strains, among which compound 7j exhibited an 8-fold stronger inhibitory effect than linezolid, with a minimum inhibitory concentration (MIC) value of 0.25 µg/mL. Further molecular docking studies predicted the possible binding mode between active compound 7j and the target. Interestingly, these compounds could not only hamper the formation of biofilms, but also have better safety, as confirmed by cytotoxicity experiments. All these results indicate that these 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives have the potential to be developed into novel candidates for the treatment of gram-positive bacterial infections.
Collapse
Affiliation(s)
- Xin Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Jin
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yutong Han
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tong Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zunlai Sheng
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Ye Tao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Hongliang Yang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| |
Collapse
|
5
|
Camci M, Karali N. Bioisosterism: 1,2,4-Oxadiazole Rings. ChemMedChem 2023; 18:e202200638. [PMID: 36772857 DOI: 10.1002/cmdc.202200638] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 02/10/2023] [Accepted: 02/10/2023] [Indexed: 02/12/2023]
Abstract
Although studies in drug discovery have gained momentum in recent years, the conversion of drugs in use today into less toxic derivatives with pharmacologically superior properties is still of great importance in drug research. Bioisosterism facilitates the conversion of drugs into derivatives that present more positive pharmacological and toxicological profiles by changing existing groups in the drug structure within the framework of certain criteria that have been expanded today. The 1,2,4-oxadiazole ring is used as a bioisostere for ester and amide groups due to its resistance to hydrolysis. However, this ring is not limited to esters and amides, but can also be used as a bioisostere for other functional groups. In this review, cases in which the 1,2,4-oxadiazole ring is used as a bioisostere for various functional groups are discussed. Herein we shed light on 1,2,4-oxadiazole bioisosterism in the development of new drug candidates and in enhancing the pharmacological profiles of currently available drugs.
Collapse
Affiliation(s)
- Merve Camci
- Istanbul University, Faculty of Pharmacy Department of Pharmaceutical Chemistry, 34134 Beyazıt, Istanbul, Turkey
| | - Nilgün Karali
- Istanbul University, Faculty of Pharmacy Department of Pharmaceutical Chemistry, 34134 Beyazıt, Istanbul, Turkey
| |
Collapse
|
6
|
Streptomyces spp. Isolated from Rosa davurica Rhizome for Potential Cosmetic Application. COSMETICS 2022. [DOI: 10.3390/cosmetics9060126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Streptomyces species are widely studied and used in different fields, including antibiotics and pesticides, and are spread in several places as soil-derived microorganisms. However, research on anti-aging, including antioxidants obtained from Streptomyces, has not been performed as much. Skin aging due to bacterial infection, especially methicillin-resistant Staphylococcus aureus (MRSA), is challenging to recover, so it is essential to prevent aging by preventing or inhibiting infection. Therefore, this study was conducted to isolate Streptomyces species from Rosa davurica rhizome soil and to determine the effect of the ethyl acetate extract of the isolated strain Streptomyces chattanoogensis THA-663 (THA-663S) on the inhibition of MRSA and UVB-irradiated human skin keratinocytes, to determine whether it could be a treatment for skin aging. The MRSA inhibition and antioxidant activities were evaluated using disc diffusion, 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2’-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS), and a reactive oxygen species (ROS) assay. The expression of aging-related markers, including mitogen-activated protein kinases/activator protein 1 (MAPK)/AP-1) and transforming growth factor-β/suppressor of mothers against decapentaplegic (TGF-β/Smad) was assessed using Western blotting. The antibacterial effect on four MRSA strains, CCARM 0204, CCARM 0205, CCARM 3855, and CCARM 3089, showed that THA-663S could greatly inhibit MRSA growth. Moreover, the findings showed that THA-663S is efficient in scavenging free radicals and dose-dependently reducing ROS generation. Furthermore, THA-663S notably reduced UVB-induced matrix metalloproteinase-1 (MMP-1) expression by inhibiting the MAPK/AP-1 signaling pathways and blocking extracellular matrix (ECM) degradation in UVB-irradiated HaCaT cells. Additionally, THA-663S improved and enhanced transforming growth factor-beta (TGF-β) signaling activation to promote procollagen type I synthesis, relieving UVB-induced skin cell damage. In conclusion, THA-663S has a high potential to protect skin cells from aging, and, simultaneously, it can prevent or treat aging caused by infection due to pathogen inhibition.
Collapse
|
7
|
Jin B, Wang T, Chen JY, Liu XQ, Zhang YX, Zhang XY, Sheng ZL, Yang HL. Synthesis and Biological Evaluation of 3-(Pyridine-3-yl)-2-Oxazolidinone Derivatives as Antibacterial Agents. Front Chem 2022; 10:949813. [PMID: 35923260 PMCID: PMC9339906 DOI: 10.3389/fchem.2022.949813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
In this research, a series of 3-(pyridine-3-yl)-2-oxazolidinone derivatives was designed, synthesized, and evaluated for in vitro antibacterial activity, which included bacteriostatic, morphological, kinetic studies, and molecular docking. The results demonstrated that compounds 21b, 21d, 21e and 21f exhibited strong antibacterial activity similar to that of linezolid toward five Gram-positive bacteria. After observing the effect of the drug on the morphology and growth dynamics of the bacteria, the possible modes of action were predicted by molecular docking. Furthermore, the antibiofilm activity and the potential drug resistance assay was proceeded. These compounds exhibited universal antibiofilm activity and compound 21d showed significant concentration-dependent inhibition of biofilm formation. Compound 21d also showed a stable effect on S. pneumoniae (ATCC 49619) with less drug resistance growth for 15 days, which is much longer than that of linezolid. Overall, these results can be used to guide further exploration of novel antimicrobial agents.
Collapse
Affiliation(s)
- Bo Jin
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tong Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jia-yi Chen
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao-qing Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yi-xin Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiu-ying Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zun-lai Sheng
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Hong-Liang Yang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
- *Correspondence: Hong-Liang Yang,
| |
Collapse
|
8
|
Hendawy OM. A comprehensive review of recent advances in the biological activities of 1,2,4-oxadiazoles. Arch Pharm (Weinheim) 2022; 355:e2200045. [PMID: 35445430 DOI: 10.1002/ardp.202200045] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/22/2022] [Accepted: 03/25/2022] [Indexed: 11/10/2022]
Abstract
Nitrogen heterocycles play an essential role in medication development. The 1,2,4-oxadiazole heterocycle has been extensively studied, yielding a large variety of molecules with varied biological functions. The 1,2,4-oxadiazole shows bioisosteric equivalency with ester and amide moieties. In recent years, the 1,2,4-oxadiazole nucleus has received a lot of attention in medicinal chemistry. It was thought to be a pharmacophore component in the production of biologically intriguing drugs. This review presents a comprehensive overview of the recent achievements in the biological activities of 1,2,4-oxadiazoles as potential antimicrobial, anticancer, anti-inflammatory, neuroprotective, and antidiabetic agents. The structure-activity relationship and mechanisms of action are also reviewed.
Collapse
Affiliation(s)
- Omnia M Hendawy
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf, Saudi Arabia
| |
Collapse
|
9
|
Shakour N, Hadizadeh F, Kesharwani P, Sahebkar A. 3D-QSAR Studies of 1,2,4-Oxadiazole Derivatives as Sortase A Inhibitors. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6380336. [PMID: 34912894 PMCID: PMC8668286 DOI: 10.1155/2021/6380336] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 10/23/2021] [Accepted: 11/13/2021] [Indexed: 12/20/2022]
Abstract
Sortase A (SrtA) is an enzyme that catalyzes the attachment of proteins to the cell wall of Gram-positive bacterial membrane, preventing the spread of pathogenic bacterial strains. Here, one class of oxadiazole compounds was distinguished as an efficient inhibitor of SrtA via the "S. aureus Sortase A" substrate-based virtual screening. The current study on 3D-QSAR was done by utilizing preparation of the structure in the Schrödinger software suite and an assessment of 120 derivatives with the crystal structure of 1,2,4-oxadiazole which was extracted from the PDB data bank. The docking operation of the best compound in terms of pMIC (pMIC = 2.77) was done to determine the drug likeliness and binding form of 1,2,4-oxadiazole derivatives as antibiotics in the active site. Using the kNN-MFA way, seven models of 3D-QSAR were created and amongst them, and one model was selected as the best. The chosen model based on q 2 (pred_r 2) and R 2 values related to the sixth factor of PLS illustrates better and more acceptable external and internal predictions. Values of crossvalidation (pred_r 2), validation (q 2), and F were observed 0.5479, 0.6319, and 179.0, respectively, for a test group including 24 molecules and the training group including 96 molecules. The external reliability outcomes showed that the acceptable and the selective 3D-QSAR model had a high predictive potential (R 2 = 0.9235) which was confirmed by the Y-randomization test. Besides, the model applicability domain was described successfully to validate the estimation of the model.
Collapse
Affiliation(s)
- Neda Shakour
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farzin Hadizadeh
- Department of Medicinal Chemistry, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Prashant Kesharwani
- Department of Pharmaceutics, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi 110062, India
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Biotechnology, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
10
|
Marzullo P, Vasto S, Buscemi S, Pace A, Nuzzo D, Palumbo Piccionello A. Ammonium Formate-Pd/C as a New Reducing System for 1,2,4-Oxadiazoles. Synthesis of Guanidine Derivatives and Reductive Rearrangement to Quinazolin-4-Ones with Potential Anti-Diabetic Activity. Int J Mol Sci 2021; 22:12301. [PMID: 34830187 PMCID: PMC8621334 DOI: 10.3390/ijms222212301] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 11/10/2021] [Accepted: 11/10/2021] [Indexed: 11/17/2022] Open
Abstract
1,2,4-Oxadiazole is a heterocycle with wide reactivity and many useful applications. The reactive O-N bond is usually reduced using molecular hydrogen to obtain amidine derivatives. NH4CO2H-Pd/C is here demonstrated as a new system for the O-N reduction, allowing us to obtain differently substituted acylamidine, acylguanidine and diacylguanidine derivatives. The proposed system is also effective for the achievement of a reductive rearrangement of 5-(2'-aminophenyl)-1,2,4-oxadiazoles into 1-alkylquinazolin-4(1H)-ones. The alkaloid glycosine was also obtained with this method. The obtained compounds were preliminarily tested for their biological activity in terms of their cytotoxicity, induced oxidative stress, α-glucosidase and DPP4 inhibition, showing potential application as anti-diabetics.
Collapse
Affiliation(s)
- Paola Marzullo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
| | - Sonya Vasto
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Silvestre Buscemi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
| | - Domenico Nuzzo
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
- Consiglio Nazionale delle Ricerche, Istituto di Biofisica (CNR-IBF), 90146 Palermo, Italy
| | - Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche-STEBICEF, Università degli Studi di Palermo, 90128 Palermo, Italy; (P.M.); (S.B.); (A.P.); (D.N.)
| |
Collapse
|
11
|
One-pot synthesis of 1,2,4-oxadiazoles from chalcogen amino acid derivatives under microwave irradiation. Tetrahedron 2021. [DOI: 10.1016/j.tet.2021.132222] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
12
|
Verma SK, Verma R, Kumar KSS, Banjare L, Shaik AB, Bhandare RR, Rakesh KP, Rangappa KS. A key review on oxadiazole analogs as potential methicillin-resistant Staphylococcus aureus (MRSA) activity: Structure-activity relationship studies. Eur J Med Chem 2021; 219:113442. [PMID: 33878562 DOI: 10.1016/j.ejmech.2021.113442] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/22/2021] [Accepted: 04/02/2021] [Indexed: 01/03/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) is becoming dangerous to human beings due to easy transmission mode and leading to the difficult-to-treat situation. The rapid resistance development of MRSA to many approved antibiotics is of major concern. There is a lot of scope to develop novel, efficient, specific, and nontoxic drug candidates to fight against MRSA isolates. The interesting molecular structure and adaptable feature of oxadiazole moiety which are bioisosteres of esters and amides, and these functional groups show improved resistance to esterases mediated hydrolytic cleavage, attracting researchers to develop required novel antibiotics based on oxadiazole core. This review summarizes the developments of oxadiazole-containing derivatives as potent antibacterial agents against multidrug-resistant MRSA strains and discussing the structure-activity relationship (SAR) in various directions. The current survey is the highlight of the present scenario of oxadiazole hybrids on MRSA studies, covering articles published from 2011 to 2020. This collective information may become a good platform to plan and develop new oxadiazole-based small molecule growth inhibitors of MRSA with minimal side effects.
Collapse
Affiliation(s)
- Santosh Kumar Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, Shaanxi, PR China; Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin University, Yulin, 719000, Shaanxi, PR China
| | - Rameshwari Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin, 719000, Shaanxi, PR China; Shaanxi Key Laboratory of Low Metamorphic Coal Clean Utilization, Yulin University, Yulin, 719000, Shaanxi, PR China.
| | | | - Laxmi Banjare
- School of Pharmaceutical Sciences, Guru Ghasidas Central University, Bilaspur, Koni, 495009, Chhattisgarh, India
| | - Afzal B Shaik
- Department of Pharmaceutical Chemistry, Vignan Pharmacy College, Jawaharlal Nehru Technological University, Vadlamudi, 522213, Andhra Pradesh, India
| | - Richie R Bhandare
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, United Arab Emirates; Centre of Medical and Bio-allied Health Sciences Research, Ajman Uniersity, Ajman, United Arab Emirates
| | - Kadalipura P Rakesh
- School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan, 430073, PR China
| | | |
Collapse
|
13
|
Shimotori Y, Hoshi M, Ogawa N, Miyakoshi T, Kanamoto T. Synthesis, antibacterial activities, and sustained perfume release properties of optically active5-hydroxy- and 5-acetoxyalkanethioamide analogues. HETEROCYCL COMMUN 2020. [DOI: 10.1515/hc-2019-0103] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Abstract5-Acetoxy- and 5-hydroxyalkanethioamide analogues showed high antibacterial activity against Staphylococcus aureus. Antibacterial thioamides were prepared from 5-alkyl-δ-lactones by amidation, thionation, and subsequent deacetylation. Optically active thioamides with 99% diastereomeric excesses were prepared by diastereomeric resolution using Cbz-L-proline as the resolving agent. Antibacterial thioamides were slowly lactonized by a lipase catalyst. Therefore, these thioamides are potential sustained-release perfume compounds having antibacterial properties.
Collapse
Affiliation(s)
- Yasutaka Shimotori
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido090-8507, Japan
| | - Masayuki Hoshi
- School of Regional Innovation and Social Design Engineering, Kitami Institute of Technology, 165 Koen-cho, Kitami, Hokkaido090-8507, Japan
| | - Narihito Ogawa
- Department of Applied Chemistry, School of Science of Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki214-8571Japan
| | - Tetsuo Miyakoshi
- Department of Applied Chemistry, School of Science of Technology, Meiji University, 1-1-1 Higashi-mita, Tama-ku, Kawasaki214-8571Japan
| | - Taisei Kanamoto
- Faculty of Pharmaceutical Sciences, Showa Pharmaceutical University, 3-3165 Higashi-Tamagawagakuen, Machida194-8543, Japan
| |
Collapse
|
14
|
Teslenko FE, Churakov AI, Larin AA, Ananyev IV, Fershtat LL, Makhova NN. Route to 1,2,4- and 1,2,5-oxadiazole ring assemblies via a one-pot condensation/oxidation protocol. Tetrahedron Lett 2020. [DOI: 10.1016/j.tetlet.2020.151678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Gezegen H, Tutar U, Hepokur C, Ceylan M. Synthesis and biological evaluation of novel indenopyrazole derivatives. J Biochem Mol Toxicol 2019; 33:e22285. [PMID: 30672630 DOI: 10.1002/jbt.22285] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2018] [Accepted: 01/03/2019] [Indexed: 12/15/2022]
Abstract
A series of novel indenopyrazole derivatives 2a-j and 3a-j were synthesized from the reaction of 1-(4-(hydroxy(1-oxo-1,3-dihydro-2 H-inden-2-ylidene)methyl)phenyl)-3-phenylurea derivatives 1a-j with hydrazine and phenylhydrazine, respectively. The obtained novel indenopyrazoles ( 2a-j and 3a-j) were evaluated for anticancer activity against HeLa and C6 cell lines. Antiproliferative activity was determined by the BrdU proliferation ELISA assay; 2a, 2b, 2d, 2h, and 3h were found to be the most active compounds. The compounds were also screened for antimicrobial activity, and all compounds showed moderate activity against used microorganisms.
Collapse
Affiliation(s)
- Hayreddin Gezegen
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Cumhuriyet University, Sivas, Turkey
| | - Uğur Tutar
- Department of Nutrition and Dietetics, Faculty of Health Sciences, Cumhuriyet University, Sivas, Turkey
| | - Ceylan Hepokur
- Department of Biochemistry, Faculty of Pharmacy, Cumhuriyet University, Sivas, Turkey
| | - Mustafa Ceylan
- Department of Chemistry, Faculty of Arts and Sciences, Gaziosmanpasa University, Tokat, Turkey
| |
Collapse
|
16
|
Fernandes FS, Rodrigues MT, Zeoly LA, Conti C, Angolini CFF, Eberlin MN, Coelho F. Vinyl-1,2,4-oxadiazoles Behave as Nucleophilic Partners in Morita-Baylis-Hillman Reactions. J Org Chem 2018; 83:15118-15127. [PMID: 30468075 DOI: 10.1021/acs.joc.8b02402] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
We describe that vinyl-oxadiazoles function as a new and efficient nucleophilic partner for the Morita-Baylis-Hillman (MBH) reaction. The reaction between 5-vinyl-3-aryl-1,2,4-oxadiazoles and aromatic and aliphatic aldehydes, catalyzed by DABCO in the absence of solvent, showed high efficiency to afford a new class of heterocyclic MBH adducts with potential biological activity on yields up to 99% and short reaction times. These synthetically attractive adducts bear a heterocyclic scaffold of large pharmaceutical and commercial interest associated with a plethora of biological effects and technological applications. We also demonstrate their synthetic usefulness by a photoinduced addition reaction to a polyfunctionalized amino alcohol.
Collapse
|
17
|
Computational and biological profile of boronic acids for the detection of bacterial serine- and metallo-β-lactamases. Sci Rep 2017; 7:17716. [PMID: 29255163 PMCID: PMC5735191 DOI: 10.1038/s41598-017-17399-7] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2017] [Accepted: 11/16/2017] [Indexed: 12/21/2022] Open
Abstract
β-Lactamases (BLs) able to hydrolyze β-lactam antibiotics and more importantly the last resort carbapenems, represent a major mechanism of resistance in Gram-negative bacteria showing multi-drug or extensively drug resistant phenotypes. The early detection of BLs responsible of resistant infections is challenging: approaches aiming at the identification of new BLs inhibitors (BLI) can thus serve as the basis for the development of highly needed diagnostic tools. Starting from benzo-[b]-thiophene-2-boronic acid (BZB), a nanomolar inhibitor of AmpC β-lactamase (K i = 27 nM), we have identified and characterized a set of BZB analogues able to inhibit clinically-relevant β-lactamases, including AmpC, Extended-Spectrum BLs (ESBL), KPC- and OXA-type carbapenemases and metallo-β-lactamases (MBL). A multiligand set of boronic acid (BA) β-lactamase inhibitors was obtained using covalent molecular modeling, synthetic chemistry, enzyme kinetics and antibacterial susceptibility testing. Data confirmed the possibility to discriminate between clinically-relevant β-lactamases on the basis of their inhibition profile. Interestingly, this work also allowed the identification of potent KPC-2 and NDM-1 inhibitors able to potentiate the activity of cefotaxime (CTX) and ceftazidime (CAZ) against resistant clinical isolates (MIC reduction, 32-fold). Our results open the way to the potential use of our set of compounds as a diagnostic tool for the sensitive detection of clinically-relevant β-lactamases.
Collapse
|
18
|
Perrone MG, Vitale P, Ferorelli S, Boccarelli A, Coluccia M, Pannunzio A, Campanella F, Di Mauro G, Bonaccorso C, Fortuna CG, Scilimati A. Effect of mofezolac-galactose distance in conjugates targeting cyclooxygenase (COX)-1 and CNS GLUT-1 carrier. Eur J Med Chem 2017; 141:404-416. [DOI: 10.1016/j.ejmech.2017.09.066] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/25/2017] [Accepted: 09/29/2017] [Indexed: 01/04/2023]
|
19
|
Paisuwan W, Chantra T, Rashatasakhon P, Sukwattanasinitt M, Ajavakom A. Direct synthesis of oxazolidin-2-ones from tert -butyl allylcarbamate via halo-induced cyclisation. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.04.063] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
20
|
Caruso Bavisotto C, Nikolic D, Marino Gammazza A, Barone R, Lo Cascio F, Mocciaro E, Zummo G, Conway de Macario E, Macario AJL, Cappello F, Giacalone V, Pace A, Barone G, Palumbo Piccionello A, Campanella C. The dissociation of the Hsp60/pro-Caspase-3 complex by bis(pyridyl)oxadiazole copper complex ( CubipyOXA ) leads to cell death in NCI-H292 cancer cells. J Inorg Biochem 2017; 170:8-16. [DOI: 10.1016/j.jinorgbio.2017.02.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Revised: 01/16/2017] [Accepted: 02/09/2017] [Indexed: 11/24/2022]
|
21
|
Baykov S, Sharonova T, Shetnev A, Rozhkov S, Kalinin S, Smirnov AV. The first one-pot ambient-temperature synthesis of 1,2,4-oxadiazoles from amidoximes and carboxylic acid esters. Tetrahedron 2017. [DOI: 10.1016/j.tet.2017.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
22
|
Siragusa L, Luciani R, Borsari C, Ferrari S, Costi MP, Cruciani G, Spyrakis F. Comparing Drug Images and Repurposing Drugs with BioGPS and FLAPdock: The Thymidylate Synthase Case. ChemMedChem 2016; 11:1653-66. [PMID: 27404817 DOI: 10.1002/cmdc.201600121] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/08/2016] [Indexed: 12/14/2022]
Abstract
Repurposing and repositioning drugs has become a frequently pursued and successful strategy in the current era, as new chemical entities are increasingly difficult to find and get approved. Herein we report an integrated BioGPS/FLAPdock pipeline for rapid and effective off-target identification and drug repurposing. Our method is based on the structural and chemical properties of protein binding sites, that is, the ligand image, encoded in the GRID molecular interaction fields (MIFs). Protein similarity is disclosed through the BioGPS algorithm by measuring the pockets' overlap according to which pockets are clustered. Co-crystallized and known ligands can be cross-docked among similar targets, selected for subsequent in vitro binding experiments, and possibly improved for inhibitory potency. We used human thymidylate synthase (TS) as a test case and searched the entire RCSB Protein Data Bank (PDB) for similar target pockets. We chose casein kinase IIα as a control and tested a series of its inhibitors against the TS template. Ellagic acid and apigenin were identified as TS inhibitors, and various flavonoids were selected and synthesized in a second-round selection. The compounds were demonstrated to be active in the low-micromolar range.
Collapse
Affiliation(s)
- Lydia Siragusa
- Molecular Discovery Limited, 215 Marsh Road, Pinner Middlesex, London, HA5 5NE, UK
| | - Rosaria Luciani
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Chiara Borsari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Stefania Ferrari
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Maria Paola Costi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy
| | - Gabriele Cruciani
- Department of Chemistry, Biology and Biotechnology, University of Perugia, Via Elce di Sotto 8, 06123, Perugia, Italy
| | - Francesca Spyrakis
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 103, 41125, Modena, Italy. .,Department of Food Science, University of Parma, Viale delle Scienze 17A, 43124, Parma, Italy.
| |
Collapse
|
23
|
Yoshimura A, Nguyen KC, Klasen SC, Postnikov PS, Yusubov MS, Saito A, Nemykin VN, Zhdankin VV. Hypervalent Iodine‐Catalyzed Synthesis of 1,2,4‐Oxadiazoles from Aldoximes and Nitriles. ASIAN J ORG CHEM 2016. [DOI: 10.1002/ajoc.201600247] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Akira Yoshimura
- Department of Chemistry and Biochemistry University of Minnesota Duluth Duluth Minnesota 55812 USA
| | - Khiem C. Nguyen
- Department of Chemistry and Biochemistry University of Minnesota Duluth Duluth Minnesota 55812 USA
| | - Scott C. Klasen
- Department of Chemistry and Biochemistry University of Minnesota Duluth Duluth Minnesota 55812 USA
| | | | | | - Akio Saito
- Division of Applied Chemistry Institute of Engineering Tokyo University of Agriculture and Technology Koganei Tokyo 184-8588 Japan
| | - Victor N. Nemykin
- Department of Chemistry and Biochemistry University of Minnesota Duluth Duluth Minnesota 55812 USA
| | - Viktor V. Zhdankin
- Department of Chemistry and Biochemistry University of Minnesota Duluth Duluth Minnesota 55812 USA
| |
Collapse
|
24
|
Grunenberg J, Licari G. Effective in silico prediction of new oxazolidinone antibiotics: force field simulations of the antibiotic-ribosome complex supervised by experiment and electronic structure methods. Beilstein J Org Chem 2016; 12:415-28. [PMID: 27340438 PMCID: PMC4902031 DOI: 10.3762/bjoc.12.45] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 02/16/2016] [Indexed: 12/16/2022] Open
Abstract
We propose several new and promising antibacterial agents for the treatment of serious Gram-positive infections. Our predictions rely on force field simulations, supervised by first principle calculations and available experimental data. Different force fields were tested in order to reproduce linezolid's conformational space in terms of a) the isolated and b) the ribosomal bound state. In a first step, an all-atom model of the bacterial ribosome consisting of nearly 1600 atoms was constructed and evaluated. The conformational space of 30 different ribosomal/oxazolidinone complexes was scanned by stochastic methods, followed by an evaluation of their enthalpic penalties or rewards and the mechanical strengths of the relevant hydrogen bonds (relaxed force constants; compliance constants). The protocol was able to reproduce the experimentally known enantioselectivity favoring the S-enantiomer. In a second step, the experimentally known MIC values of eight linezolid analogues were used in order to crosscheck the robustness of our model. In a final step, this benchmarking led to the prediction of several new and promising lead compounds. Synthesis and biological evaluation of the new compounds are on the way.
Collapse
Affiliation(s)
- Jörg Grunenberg
- Institut für Organische Chemie, Hagenring30, TU-Braunschweig, 38106 Braunschweig, Germany
| | - Giuseppe Licari
- Institut für Organische Chemie, Hagenring30, TU-Braunschweig, 38106 Braunschweig, Germany; Physical Chemistry Department, Sciences II, University of Geneva , 30, Quai Ernest Ansermet, CH-1211 Geneva 4, Switzerland
| |
Collapse
|
25
|
Gong HH, Baathulaa K, Lv JS, Cai GX, Zhou CH. Synthesis and biological evaluation of Schiff base-linked imidazolyl naphthalimides as novel potential anti-MRSA agents. MEDCHEMCOMM 2016. [DOI: 10.1039/c5md00574d] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Schiff base-linked imidazolyl naphthalimide 9i was a potential anti-MRSA agent, which could effectively inhibit the growth of MRSA.
Collapse
Affiliation(s)
- Huo-Hui Gong
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Kishore Baathulaa
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Jing-Song Lv
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry
- Key Laboratory of Applied Chemistry of Chongqing Municipality
- School of Chemistry and Chemical Engineering
- Southwest University
- Chongqing 400715
| |
Collapse
|
26
|
De Matteis L, Di Renzo F, Germani R, Goracci L, Spreti N, Tiecco M. α-Chymotrypsin superactivity in quaternary ammonium salt solution: kinetic and computational studies. RSC Adv 2016. [DOI: 10.1039/c6ra07425a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ammonium salts determine an increase of the hydrophobicity of the α-chymotrypsin catalytic site and therefore an improvement of its activity.
Collapse
Affiliation(s)
- Laura De Matteis
- Department of Physical and Chemical Sciences
- University of L'Aquila
- I-67100 Coppito
- Italy
| | - Francesca Di Renzo
- Department of Physical and Chemical Sciences
- University of L'Aquila
- I-67100 Coppito
- Italy
| | - Raimondo Germani
- CEMIN, Centre of Excellence on Nanostructured Innovative Materials
- Department of Chemistry
- Biology and Biotechnology
- University of Perugia
- I-06123 Perugia
| | - Laura Goracci
- Laboratory for Chemoinformatics and Molecular Modelling
- Department of Chemistry
- Biology and Biotechnology
- University of Perugia
- I-06123 Perugia
| | - Nicoletta Spreti
- Department of Physical and Chemical Sciences
- University of L'Aquila
- I-67100 Coppito
- Italy
| | - Matteo Tiecco
- CEMIN, Centre of Excellence on Nanostructured Innovative Materials
- Department of Chemistry
- Biology and Biotechnology
- University of Perugia
- I-06123 Perugia
| |
Collapse
|
27
|
Piccionello AP, Calabrese A, Pibiri I, Giacalone V, Pace A, Buscemi S. Synthesis of Fluorinated Bent-Core Mesogens (BCMs) Containing the 1,2,4-Oxadiazole Ring. J Heterocycl Chem 2015. [DOI: 10.1002/jhet.2509] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Antonio Palumbo Piccionello
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche; Università di Palermo; Viale delle Scienze, ed. 17 90128 Palermo Italy
- Istituto Euro-mediterraneo di scienza e Tecnologia, IEMEST; Via E. Amari 123 90145 Palermo Italy
| | - Alessandro Calabrese
- ENEA UTTRI-Ufficio territoriale della Sicilia-via Principe di Granatelli 24; 90139 Palermo Italy
| | - Ivana Pibiri
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche; Università di Palermo; Viale delle Scienze, ed. 17 90128 Palermo Italy
- Istituto Euro-mediterraneo di scienza e Tecnologia, IEMEST; Via E. Amari 123 90145 Palermo Italy
| | - Valentina Giacalone
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche; Università di Palermo; Viale delle Scienze, ed. 17 90128 Palermo Italy
| | - Andrea Pace
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche; Università di Palermo; Viale delle Scienze, ed. 17 90128 Palermo Italy
- Istituto Euro-mediterraneo di scienza e Tecnologia, IEMEST; Via E. Amari 123 90145 Palermo Italy
| | - Silvestre Buscemi
- Dipartimento di Scienze e Tecnologie Biologiche, Chimiche e Farmaceutiche; Università di Palermo; Viale delle Scienze, ed. 17 90128 Palermo Italy
| |
Collapse
|
28
|
Enhancement of premature stop codon readthrough in the CFTR gene by Ataluren (PTC124) derivatives. Eur J Med Chem 2015; 101:236-44. [PMID: 26142488 DOI: 10.1016/j.ejmech.2015.06.038] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/14/2015] [Accepted: 06/19/2015] [Indexed: 12/31/2022]
Abstract
Premature stop codons are the result of nonsense mutations occurring within the coding sequence of a gene. These mutations lead to the synthesis of a truncated protein and are responsible for several genetic diseases. A potential pharmacological approach to treat these diseases is to promote the translational readthrough of premature stop codons by small molecules aiming to restore the full-length protein. The compound PTC124 (Ataluren) was reported to promote the readthrough of the premature UGA stop codon, although its activity was questioned. The potential interaction of PTC124 with mutated mRNA was recently suggested by molecular dynamics (MD) studies highlighting the importance of H-bonding and stacking π-π interactions. To improve the readthrough activity we changed the fluorine number and position in the PTC124 fluoroaryl moiety. The readthrough ability of these PTC124 derivatives was tested in human cells harboring reporter plasmids with premature stop codons in H2BGFP and FLuc genes as well as in cystic fibrosis (CF) IB3.1 cells with a nonsense mutation. Maintaining low toxicity, three of these molecules showed higher efficacy than PTC124 in the readthrough of the UGA premature stop codon and in recovering the expression of the CFTR protein in IB3.1 cells from cystic fibrosis patient. Molecular dynamics simulations performed with mutated CFTR mRNA fragments and active or inactive derivatives are in agreement with the suggested interaction of PTC124 with mRNA.
Collapse
|
29
|
Liu N, Zhai LJ, Lian P, Li H, Wang BZ. Synthesis of 3,5,5-Trisubstituted 4-Hydroxy-4 H,5 H-1,2,4-oxadiazoles through the Condensation of N-Hydroxyamidoximes and Ketones or Aldehydes. European J Org Chem 2015. [DOI: 10.1002/ejoc.201500083] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
30
|
Pace A, Buscemi S, Piccionello AP, Pibiri I. Recent Advances in the Chemistry of 1,2,4-OxadiazolesaaDedicated to Professor Nicolò Vivona on the occasion of his 75th birthday. ADVANCES IN HETEROCYCLIC CHEMISTRY 2015. [DOI: 10.1016/bs.aihch.2015.05.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Mangione MR, Palumbo Piccionello A, Marino C, Ortore MG, Picone P, Vilasi S, Di Carlo M, Buscemi S, Bulone D, San Biagio PL. Photo-inhibition of Aβ fibrillation mediated by a newly designed fluorinated oxadiazole. RSC Adv 2015. [DOI: 10.1039/c4ra13556c] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The interaction of oxadiazole3photo-stimulated with Aβ1–40induces a structural modification responsible for fibrillogenesis inhibition.
Collapse
Affiliation(s)
- M. R. Mangione
- Institute of Biophysics
- National Research Council
- Palermo
- Italy
| | - A. Palumbo Piccionello
- Institute of Biophysics
- National Research Council
- Palermo
- Italy
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies
| | - C. Marino
- Institute of Biophysics
- National Research Council
- Palermo
- Italy
- Department of Neurology
| | - M. G. Ortore
- Department of Life and Environmental Sciences
- National Interuniversity Consortium for the Physical Sciences of Matter
- Marche Polytechnic University
- Ancona
- Italy
| | - P. Picone
- Institute of Biomedicine and Molecular Immunology
- National Research Council
- Palermo
- Italy
| | - S. Vilasi
- Institute of Biophysics
- National Research Council
- Palermo
- Italy
| | - M. Di Carlo
- Institute of Biomedicine and Molecular Immunology
- National Research Council
- Palermo
- Italy
| | - S. Buscemi
- Institute of Biophysics
- National Research Council
- Palermo
- Italy
- Department of Biological Chemical and Pharmaceutical Sciences and Technologies
| | - D. Bulone
- Institute of Biophysics
- National Research Council
- Palermo
- Italy
| | | |
Collapse
|
32
|
Fershtat LL, Ananyev IV, Makhova NN. Efficient assembly of mono- and bis(1,2,4-oxadiazol-3-yl)furoxan scaffolds via tandem reactions of furoxanylamidoximes. RSC Adv 2015. [DOI: 10.1039/c5ra07295f] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Tandem protocols for the synthesis of new types of hybrid molecules – (1,2,4-oxadiazol-3-yl)furoxans based on the furoxanylamidoximes heterocyclization have been developed.
Collapse
Affiliation(s)
- Leonid L. Fershtat
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Ivan V. Ananyev
- A. N. Nesmeyanov Institute of Organoelement Chemistry
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| | - Nina N. Makhova
- N. D. Zelinsky Institute of Organic Chemistry
- Russian Academy of Sciences
- 119991 Moscow
- Russian Federation
| |
Collapse
|
33
|
Fortuna CG, Berardozzi R, Bonaccorso C, Caltabiano G, Di Bari L, Goracci L, Guarcello A, Pace A, Palumbo Piccionello A, Pescitelli G, Pierro P, Lonati E, Bulbarelli A, Cocuzza CE, Musumarra G, Musumeci R. New potent antibacterials against Gram-positive multiresistant pathogens: Effects of side chain modification and chirality in linezolid-like 1,2,4-oxadiazoles. Bioorg Med Chem 2014; 22:6814-25. [DOI: 10.1016/j.bmc.2014.10.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/20/2014] [Accepted: 10/24/2014] [Indexed: 01/25/2023]
|
34
|
Frenna V, Palumbo Piccionello A, Cosimelli B, Ghelfi F, Spinelli D. The Boulton-Katritzky Reaction: A Kinetic Study of the Effect of 5-Nitrogen Substituents on the Rearrangement of Some (Z)-Phenylhydrazones of 3-Benzoyl-1,2,4-oxadiazoles. European J Org Chem 2014. [DOI: 10.1002/ejoc.201402569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
35
|
Palumbo FS, Di Stefano M, Palumbo Piccionello A, Fiorica C, Pitarresi G, Pibiri I, Buscemi S, Giammona G. Perfluorocarbon functionalized hyaluronic acid derivatives as oxygenating systems for cell culture. RSC Adv 2014. [DOI: 10.1039/c4ra01502a] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
36
|
Cappello F, Marino Gammazza A, Palumbo Piccionello A, Campanella C, Pace A, Conway de Macario E, Macario AJL. Hsp60 chaperonopathies and chaperonotherapy: targets and agents. Expert Opin Ther Targets 2013; 18:185-208. [PMID: 24286280 DOI: 10.1517/14728222.2014.856417] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
INTRODUCTION Hsp60 (Cpn60) assembles into a tetradecamer that interacts with the co-chaperonin Hsp10 (Cpn10) to assist client polypeptides to fold, but it also has other roles, including participation in pathogenic mechanisms. AREA COVERED Hsp60 chaperonopathies are pathological conditions, inherited or acquired, in which the chaperone plays a determinant etiologic-pathogenic role. These diseases justify selection of Hsp60 as a target for developing agents that interfere with its pathogenic effects. We provide information on how to proceed. EXPERT OPINION The information available encourages the development of ways to improve Hsp60 activity (positive chaperonotherapy) when deficient or to block it (negative chaperonotherapy) when pathogenic. Many questions are still unanswered and obstacles are obvious. More information is needed to establish when and why autologous Hsp60 becomes a pathogenic autoantigen, or induces cytokine formation and inflammation, or favors carcinogenesis. Clarification of these points will take considerable time. However, analysis of the Hsp60 molecule and a search for active compounds aimed at structural sites that will affect its functioning should continue without interruption. No doubt that some of these compounds will offer therapeutic hopes and will also be instrumental for dissecting structure-function relationships at the biochemical and biological (using animal models and cultured cells) levels.
Collapse
Affiliation(s)
- Francesco Cappello
- Euro-Mediterranean Institute of Science and Technology (IEMEST) , Palermo , Italy
| | | | | | | | | | | | | |
Collapse
|
37
|
Novel promising linezolid analogues: Rational design, synthesis and biological evaluation. Eur J Med Chem 2013; 69:779-85. [DOI: 10.1016/j.ejmech.2013.09.035] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 09/12/2013] [Accepted: 09/14/2013] [Indexed: 11/21/2022]
|
38
|
Piccionello AP, Pierro P, Accardo A, Buscemi S, Pace A. Concise asymmetric synthesis of Linezolid through catalyzed Henry reaction. RSC Adv 2013. [DOI: 10.1039/c3ra45186k] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
|