1
|
Campbell MR, Ruiz-Saenz A, Zhang Y, Peterson E, Steri V, Oeffinger J, Sampang M, Jura N, Moasser MM. Extensive conformational and physical plasticity protects HER2-HER3 tumorigenic signaling. Cell Rep 2022; 38:110285. [PMID: 35108526 PMCID: PMC8865943 DOI: 10.1016/j.celrep.2021.110285] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Revised: 08/30/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Surface-targeting biotherapeutic agents have been successful in treating HER2-amplified cancers through immunostimulation or chemodelivery but have failed to produce effective inhibitors of constitutive HER2-HER3 signaling. We report an extensive structure-function analysis of this tumor driver, revealing complete uncoupling of intracellular signaling and tumorigenic function from regulation or constraints from their extracellular domains (ECDs). The canonical HER3 ECD conformational changes and exposure of the dimerization interface are nonessential, and the entire ECDs of HER2 and HER3 are redundant for tumorigenic signaling. Restricting the proximation of partner ECDs with bulk and steric clash through extremely disruptive receptor engineering leaves tumorigenic signaling unperturbed. This is likely due to considerable conformational flexibilities across the span of these receptor molecules and substantial undulations in the plane of the plasma membrane, none of which had been foreseen as impediments to targeting strategies. The massive overexpression of HER2 functionally and physically uncouples intracellular signaling from extracellular constraints.
Collapse
Affiliation(s)
- Marcia R Campbell
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Ana Ruiz-Saenz
- Departments of Cell Biology & Medical Oncology, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Yuntian Zhang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Elliott Peterson
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Veronica Steri
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Julie Oeffinger
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Maryjo Sampang
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Natalia Jura
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA 94143, USA; Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mark M Moasser
- Department of Medicine, University of California, San Francisco, San Francisco, CA 94143, USA; Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
2
|
Sonju JJ, Dahal A, Singh SS, Gu X, Johnson WD, Muthumula CMR, Meyer SA, Jois SD. A pH-sensitive liposome formulation of a peptidomimetic-Dox conjugate for targeting HER2 + cancer. Int J Pharm 2022; 612:121364. [PMID: 34896567 PMCID: PMC8751737 DOI: 10.1016/j.ijpharm.2021.121364] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/05/2021] [Indexed: 02/06/2023]
Abstract
Cancer treatment faces the challenge of selective delivery of the cytotoxic drug to the desired site of action to minimize undesired side effects. The liposomal formulation containing targeting ligand conjugated cytotoxic drug can be an effective approach to specifically deliver chemotherapeutic drugs to cancer cells that overexpress a particular cell surface receptor. This research focuses on the in vitro and in vivo studies of a peptidomimetic ligand attached doxorubicin for the HER2 positive lung and breast cancer cells transported by a pH-dependent liposomal formulation system for the enhancement of targeted anticancer treatment. The selected pH-sensitive liposome formulation showed effective pH-dependent delivery of peptidomimetic-doxorubicin conjugate at lower pH conditions mimicking tumor microenvironment (pH-6.5) compared to normal physiological conditions (pH 7.4), leading to the improvement of cell uptake. In vivo results revealed the site-specific delivery of the formulation and enhanced antitumor activity with reduced toxicity compared to the free doxorubicin (Free Dox). The results suggested that the targeting ligand conjugated cytotoxic drug with the pH-sensitive liposomal formulation is a promising approach to chemotherapy.
Collapse
Affiliation(s)
- Jafrin Jobayer Sonju
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201
| | - Achyut Dahal
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201
| | - Sitanshu S. Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201
| | - Xin Gu
- Department of Pathology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, LA, 71103, USA
| | - William D. Johnson
- Biostatistics Department, Pennington Biomedical Research Center, Baton Rouge, LA 70808
| | - Chandra Mohan Reddy Muthumula
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201
| | - Sharon A Meyer
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201
| | - Seetharama D. Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201,To whom correspondence should be addressed: Seetharama D. Jois, Professor of Medicinal Chemistry, School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, 1800 Bienville Drive, Monroe LA 71201 USA Tel: 318-342-1993; Fax: 318-342-1737;
| |
Collapse
|
3
|
Molecular Targeting of Epidermal Growth Factor Receptor (EGFR) and Vascular Endothelial Growth Factor Receptor (VEGFR). Molecules 2021; 26:molecules26041076. [PMID: 33670650 PMCID: PMC7922143 DOI: 10.3390/molecules26041076] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 02/13/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Epidermal growth factor receptor (EGFR) and vascular endothelial growth factor receptor (VEGFR) are two extensively studied membrane-bound receptor tyrosine kinase proteins that are frequently overexpressed in many cancers. As a result, these receptor families constitute attractive targets for imaging and therapeutic applications in the detection and treatment of cancer. This review explores the dynamic structure and structure-function relationships of these two growth factor receptors and their significance as it relates to theranostics of cancer, followed by some of the common inhibition modalities frequently employed to target EGFR and VEGFR, such as tyrosine kinase inhibitors (TKIs), antibodies, nanobodies, and peptides. A summary of the recent advances in molecular imaging techniques, including positron emission tomography (PET), single-photon emission computerized tomography (SPECT), computed tomography (CT), magnetic resonance imaging (MRI), and optical imaging (OI), and in particular, near-IR fluorescence imaging using tetrapyrrolic-based fluorophores, concludes this review.
Collapse
|
4
|
Wu Y, Tam WS, Chau HF, Kaur S, Thor W, Aik WS, Chan WL, Zweckstetter M, Wong KL. Solid-phase fluorescent BODIPY-peptide synthesis via in situ dipyrrin construction. Chem Sci 2020; 11:11266-11273. [PMID: 34094367 PMCID: PMC8162834 DOI: 10.1039/d0sc04849f] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 09/23/2020] [Indexed: 12/28/2022] Open
Abstract
Traditional fluorescent peptide chemical syntheses hinge on the use of limited fluorescent/dye-taggable unnatural amino acids and entail multiple costly purifications. Here we describe a facile and efficient protocol for in situ construction of dipyrrins on the N-terminus with 20 natural and five unnatural amino acids and the lysine's side chain of selected peptides/peptide drugs through Fmoc-based solid-phase peptide synthesis. The new strategy enables the direct formation of boron-dipyrromethene (BODIPY)-peptide conjugates from simple aldehyde and pyrrole derivatives without pre-functionalization, and only requires a single-time chromatographic purification at the final stage. As a model study, synthesized EBNA1-targeting BODIPY1-Pep4 demonstrates intact selectivity in vitro, responsive fluorescence enhancement, and higher light cytotoxicity due to the photo-generation of cytotoxic singlet oxygen. This work offers a novel practical synthetic platform for fluorescent peptides for multifaceted biomedical applications.
Collapse
Affiliation(s)
- Yue Wu
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR China
| | - Wing-Sze Tam
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR China
| | - Ho-Fai Chau
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR China
| | - Simranjeet Kaur
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR China
| | - Waygen Thor
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR China
| | - Wei Shen Aik
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR China
| | - Wai-Lun Chan
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR China
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Von-Siebold-Str. 3a 37075 Göttingen Germany
| | - Markus Zweckstetter
- Department for NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry Am Fassberg 11 37077 Göttingen Germany
- German Center for Neurodegenerative Diseases (DZNE) Von-Siebold-Str. 3a 37075 Göttingen Germany
| | - Ka-Leung Wong
- Department of Chemistry, Hong Kong Baptist University Kowloon Hong Kong SAR China
| |
Collapse
|
5
|
Linden G, Vázquez O. Bioorthogonal Turn-On BODIPY-Peptide Photosensitizers for Tailored Photodynamic Therapy. Chemistry 2020; 26:10014-10023. [PMID: 32638402 PMCID: PMC7496803 DOI: 10.1002/chem.202001718] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 06/22/2020] [Indexed: 12/13/2022]
Abstract
Photodynamic therapy (PDT) leads to cancer remission via the production of cytotoxic species under photosensitizer (PS) irradiation. However, concomitant damage and dark toxicity can both hinder its use. With this in mind, we have implemented a versatile peptide-based platform of bioorthogonally activatable BODIPY-tetrazine PSs. Confocal microscopy and phototoxicity studies demonstrated that the incorporation of the PS, as a bifunctional module, into a peptide enabled spatial and conditional control of singlet oxygen (1 O2 ) generation. Comparing subcellular distribution, PS confined in the cytoplasmic membrane achieved the highest toxicities (IC50 =0.096±0.003 μm) after activation and without apparent dark toxicity. Our tunable approach will inspire novel probes towards smart PDT.
Collapse
Affiliation(s)
- Greta Linden
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| | - Olalla Vázquez
- Fachbereich ChemiePhilipps-Universität MarburgHans-Meerwein-Straße 435043MarburgGermany
| |
Collapse
|
6
|
Williams TM, Zhou Z, Singh SS, Sibrian-Vazquez M, Jois SD, Henriques Vicente MDG. Targeting EGFR Overexpression at the Surface of Colorectal Cancer Cells by Exploiting Amidated BODIPY-Peptide Conjugates. Photochem Photobiol 2020; 96:581-595. [PMID: 32086809 DOI: 10.1111/php.13234] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 12/22/2019] [Indexed: 12/12/2022]
Abstract
Three BODIPY-peptide conjugates designed to target the epidermal growth factor receptor (EGFR) at the extracellular domain were synthesized, and their specificity for binding to EGFR was investigated. Peptide sequences containing seven amino acids, GLARLLT (2) and KLARLLT (4), and 13 amino acids, GYHWYGYTPQNVI (3), were conjugated to carboxyl BODIPY dye (1) by amide bond formation in up to 73% yields. The BODIPY-peptide conjugates and their "parent" peptides were determined to bind to EGFR experimentally using SPR analysis and were further investigated using computational methods (AutoDock). Results of SPR, competitive binding and docking studies propose that conjugate 6 including the GYHWYGYTPQNVI sequence binds to EGFR more effectively than conjugates 5 and 7, bearing the smaller peptide sequences. Findings in human carcinoma HEp2 cells overexpressing EGFR showed nontoxic behavior in the presence of activated light (1.5 J cm-2 ) and in the absence of light for all BODIPYs. Furthermore, conjugate 6 showed about five-fold higher accumulation within HEp2 cells compared with conjugates 5 and 7, localizing preferentially in the cell ER and lysosomes. Our findings suggest that BODIPY-peptide conjugate 6 is a promising contrast agent for detection of colorectal cancer and potentially other EGFR-overexpressing cancers.
Collapse
Affiliation(s)
| | - Zehua Zhou
- Department of Chemistry, Louisiana State University, Baton Rouge, LA
| | - Sitanshu S Singh
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA
| | | | - Seetharama D Jois
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA
| | | |
Collapse
|
7
|
Bodio E, Denat F, Goze C. BODIPYS and aza-BODIPY derivatives as promising fluorophores for in vivo molecular imaging and theranostic applications. J PORPHYR PHTHALOCYA 2020. [DOI: 10.1142/s1088424619501268] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Since their discovery in 1968, the BODIPYs dyes (4,4-difluoro-4-bora-3a, 4a diaza-s-indacene) have found an exponentially increasing number of applications in a large variety of scientific fields. In particular, studies reporting bioapplications of BODIPYs have increased dramatically. However, most of the time, only in vitro investigations have been reported. The in vivo potential of BODIPYs and aza-BODIPYs is more recent, but considering the number of in vivo studies with BODIPY and aza-BODIPY which have been reported in the last five years, we can now affirm that this family of fluorophores can be considered important as cyanine dyes for future in vivo and even clinical applications. This review aims to present representative examples of recent in vivo applications of BODIPYs or aza-BODIPYs, and to highlight the potential of these dyes for optical molecular imaging.
Collapse
Affiliation(s)
- Ewen Bodio
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon Cedex, France
| | - Franck Denat
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon Cedex, France
| | - Christine Goze
- Institut de Chimie Moléculaire de l’Université de Bourgogne, UMR 6302, CNRS, Université Bourgogne Franche-Comté, 9 Avenue A. Savary, 21078 Dijon Cedex, France
| |
Collapse
|
8
|
Lee SB, Han YR, Jeon HJ, Jun CH, Kim SK, Chin J, Lee SJ, Jeong M, Lee JE, Lee CH, Cho SJ, Kim DS, Jeon YH. Medical fluorophore 1 (MF1), a benzoquinolizinium-based fluorescent dye, as an inflammation imaging agent. J Mater Chem B 2019; 7:7326-7331. [PMID: 31681930 DOI: 10.1039/c9tb01266d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Structure-based targeting of fluorescent dyes is essential for their use as imaging agents for disease diagnosis. Here, we describe the development of the benzoquinolizinium compound Medical fluorophore 1 (MF1) as a novel biomedical imaging agent that allows the visualization of inflammation by virtue of its unique chemical structure. Lipopolysaccharide treatment stimulated the uptake of MF1 by bone marrow-derived macrophages, with no adverse effects on cell proliferation. In vivo fluorescence lifetime imaging revealed the accumulation of MF1 in carrageenan-induced acute inflammatory lesions in mice, which peaked at 6 h. MF1-based imaging also allowed monitoring of the response to the anti-inflammatory drugs dexamethasone and sulfasalazine. Thus, MF1 can be used to diagnose diseases characterized by inflammation as well as treatment efficacy.
Collapse
Affiliation(s)
- Sang Bong Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Ye Ri Han
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Hui-Jeon Jeon
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Chul-Ho Jun
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea and Center for NanoMedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea and Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Sang-Kyoon Kim
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Jungwook Chin
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Su-Jeong Lee
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Minseon Jeong
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Jae-Eon Lee
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea. and Department of Biomaterials Science, College of Natural Resources and Life Science/Life and Industry Convergence Research Institute, Pusan National University, Pusan, Republic of Korea
| | - Chang-Hee Lee
- Department of Chemistry, Yonsei University, 50 Yonsei-ro, Seodaemun-gu, Seoul 03722, Republic of Korea and Center for NanoMedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea and Yonsei-IBS Institute, Yonsei University, Seoul 03722, Republic of Korea
| | - Sung Jin Cho
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Dong-Su Kim
- New Drug Development Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| | - Yong Hyun Jeon
- Laboratory Animal Center, Daegu-Gyeongbuk Medical Innovation Foundation, 80 Chembok-ro Dong-gu Daegu, Republic of Korea.
| |
Collapse
|
9
|
LaMaster DJ, Kaufman NEM, Bruner AS, Vicente MGH. Structure Based Modulation of Electron Dynamics in meso-(4-Pyridyl)-BODIPYs: A Computational and Synthetic Approach. J Phys Chem A 2018; 122:6372-6380. [PMID: 30016866 PMCID: PMC6693353 DOI: 10.1021/acs.jpca.8b05153] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The effects of structural modification on the electronic structure and electron dynamics of cationic meso-(4-pyridyl)-BODIPYs were investigated. A library of 2,6-difunctionalized meso-(4-pyridyl)-BODIPYs bearing various electron-withdrawing substituents was designed, and DFT calculations were used to model the redox properties, while TDDFT was used to determine the effects of functionalization on the excited states. Structural modification was able to restructure the low-lying molecular orbitals to effectively inhibit d-PeT. A new meso-(4-pyridyl)-BODIPY bearing 2,6-dichloro groups was synthesized and shown to exhibit enhanced charge recombination fluorescence. The fluorescence enhancement was determined to be the result of functionalization modulating the kinetics of the excited state dynamics.
Collapse
Affiliation(s)
- Daniel J. LaMaster
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Nichole E. M. Kaufman
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - Adam S. Bruner
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| | - M. Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
10
|
Fluorine-18 Labeling of the HER2-Targeting Single-Domain Antibody 2Rs15d Using a Residualizing Label and Preclinical Evaluation. Mol Imaging Biol 2018; 19:867-877. [PMID: 28409338 DOI: 10.1007/s11307-017-1082-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE Our previous studies with F-18-labeled anti-HER2 single-domain antibodies (sdAbs) utilized 5F7, which binds to the same epitope on HER2 as trastuzumab, complicating its use for positron emission tomography (PET) imaging of patients undergoing trastuzumab therapy. On the other hand, sdAb 2Rs15d binds to a different epitope on HER2 and thus might be a preferable vector for imaging in these patients. The aim of this study was to evaluate the tumor targeting of F-18 -labeled 2Rs15d in HER2-expressing breast carcinoma cells and xenografts. PROCEDURES sdAb 2Rs15d was labeled with the residualizing labels N-succinimidyl 3-((4-(4-[18F]fluorobutyl)-1H-1,2,3-triazol-1-yl)methyl)-5-(guanidinomethyl)benzoate ([18F]RL-I) and N-succinimidyl 4-guanidinomethyl-3-[125I]iodobenzoate ([125I]SGMIB), and the purity and HER2-specific binding affinity and immunoreactivity were assessed after labeling. The biodistribution of I-125- and F-18-labeled 2Rs15d was determined in SCID mice bearing subcutaneous BT474M1 xenografts. MicroPET/x-ray computed tomograph (CT) imaging of [18F]RL-I-2Rs15d was performed in this model and compared to that of nonspecific sdAb [18F]RL-I-R3B23. MicroPET/CT imaging was also done in an intracranial HER2-positive breast cancer brain metastasis model after administration of 2Rs15d-, 5F7-, and R3B23-[18F]RL-I conjugates. RESULTS [18F]RL-I was conjugated to 2Rs15d in 40.8 ± 9.1 % yield and with a radiochemical purity of 97-100 %. Its immunoreactive fraction (IRF) and affinity for HER2-specific binding were 79.2 ± 5.4 % and 7.1 ± 0.4 nM, respectively. [125I]SGMIB was conjugated to 2Rs15d in 58.4 ± 8.2 % yield and with a radiochemical purity of 95-99 %; its IRF and affinity for HER2-specific binding were 79.0 ± 12.9 % and 4.5 ± 0.8 nM, respectively. Internalized radioactivity in BT474M1 cells in vitro for [18F]RL-I-2Rs15d was 43.7 ± 3.6, 36.5 ± 2.6, and 21.7 ± 1.2 % of initially bound radioactivity at 1, 2, and 4 h, respectively, and was similar to that seen for [125I]SGMIB-2Rs15d. Uptake of [18F]RL-I-2Rs15d in subcutaneous xenografts was 16-20 %ID/g over 1-3 h. Subcutaneous tumor could be clearly delineated by microPET/CT imaging with [18F]RL-I-2Rs15d but not with [18F]RL-I-R3B23. Intracranial breast cancer brain metastases could be visualized after intravenous administration of both [18F]RL-I-2Rs15d and [18F]RL-I-5F7. CONCLUSIONS Although radiolabeled 2Rs15d conjugates exhibited lower tumor cell retention both in vitro and in vivo than that observed previously for 5F7, given that it binds to a different epitope on HER2 from those targeted by the clinically utilized HER2-targeted therapeutic antibodies trastuzumab and pertuzumab, F-18-labeled 2Rs15d has potential for assessing HER2 status by PET imaging after trastuzumab and/or pertuzumab therapy.
Collapse
|
11
|
Almeida-Marrero V, van de Winckel E, Anaya-Plaza E, Torres T, de la Escosura A. Porphyrinoid biohybrid materials as an emerging toolbox for biomedical light management. Chem Soc Rev 2018; 47:7369-7400. [DOI: 10.1039/c7cs00554g] [Citation(s) in RCA: 136] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The present article reviews the most important developing strategies in light-induced nanomedicine, based on the combination of porphyrinoid photosensitizers with a wide variety of biomolecules and biomolecular assemblies.
Collapse
Affiliation(s)
| | | | - Eduardo Anaya-Plaza
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- Cantoblanco 28049
- Spain
| | - Tomás Torres
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- Cantoblanco 28049
- Spain
- Institute for Advanced Research in Chemistry (IAdChem)
| | - Andrés de la Escosura
- Departamento de Química Orgánica
- Universidad Autónoma de Madrid
- Cantoblanco 28049
- Spain
- Institute for Advanced Research in Chemistry (IAdChem)
| |
Collapse
|
12
|
Alsaid MS, Al-Mishari AA, Soliman AM, Ragab FA, Ghorab MM. Discovery of Benzo[g]quinazolin benzenesulfonamide derivatives as dual EGFR/HER2 inhibitors. Eur J Med Chem 2017; 141:84-91. [PMID: 29028534 DOI: 10.1016/j.ejmech.2017.09.061] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 09/25/2017] [Accepted: 09/27/2017] [Indexed: 12/27/2022]
Abstract
An array of some new N-(substituted)-2-((4-oxo-3-(4-sulfamoylphenyl)-3,4-dihydrobenzo[g]quinazolin-2-yl)thio)acetamide 5-19 were synthesized from the starting compound 4-(2-mercapto-4-oxobenzo[g]quinazolin-3(4H)-yl)benzenesulfonamide 4, to be assessed for their cytotoxic activity against A549 lung cancer cell line and to determine their inhibitory effect on EGFR tyrosine kinase enzyme. Compounds 5-19 showed high activity towards A549 cell line with IC50 values of 0.12-8.70 μM. Compounds 6, 12 and 18 were the most potent in this series. These compounds were further screened as dual inhibitors for EGFR/HER2 enzymes in comparison with erlotinib and were found to possess very potent activity. Compound 12 showed the highest activity with IC50 values of 0.06 μM and 0.30 μM towards EGFR and HER2, respectively. Accordingly, the apoptotic effect of the most potent compounds 6, 12 and 18 was investigated and showed a marked increase in the level of caspases-3 by 6, 9 and 8 folds, respectively, compared to the control cells. Moreover, Molecular modeling was performed inside the active site of EGFR, keeping in mind their binding possibilities, bond lengths, angles and energy scores. It was found that the most active compounds demonstrated the best binding scores in the active site of EGFR, which may clarify their high inhibition profile.
Collapse
Affiliation(s)
- Mansour S Alsaid
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia
| | - Abdullah A Al-Mishari
- Medicinal, Aromatic and Poisonous Plants Research Center (MAPPRC), College of Pharmacy, King Saud University, Saudi Arabia
| | - Aiten M Soliman
- Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo 113701, Egypt
| | - Fatma A Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Egypt
| | - Mostafa M Ghorab
- Department of Pharmacognosy, College of Pharmacy, King Saud University, P.O. Box 2457, Riyadh 11451, Saudi Arabia; Department of Drug Radiation Research, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo 113701, Egypt.
| |
Collapse
|
13
|
Zhao N, Williams TM, Zhou Z, Fronczek FR, Sibrian-Vazquez M, Jois SD, Vicente MGH. Synthesis of BODIPY-Peptide Conjugates for Fluorescence Labeling of EGFR Overexpressing Cells. Bioconjug Chem 2017; 28:1566-1579. [PMID: 28414435 DOI: 10.1021/acs.bioconjchem.7b00211] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Regioselective functionalization of 2,3,5,6,8-pentachloro-BODIPY 1 produced unsymmetric BODIPY 5, bearing an isothiocyanate group suitable for conjugation, in only four steps. The X-ray structure of 5 reveals a nearly planar BODIPY core with aryl dihedral angles in the range 47.4-62.9°. Conjugation of 5 to two EGFR-targeting pegylated peptides, 3PEG-LARLLT (6) and 3PEG-GYHWYGYTPQNVI (7), under mild conditions (30 min at room temperature), afforded BODIPY conjugates 8 and 9 in 50-80% isolated yields. These conjugates showed red-shifted absorption and emission spectra compared with 5, in the near-IR region, and were evaluated as potential fluorescence imaging agents for EGFR overexpressing cells. SPR and docking investigations suggested that conjugate 8 bearing the LARLLT sequence binds to EGFR more effectively than 9 bearing the GYHWYGYTPQNVI peptide, in part due to the lower solubility of 9, and its tendency for aggregation at concentrations above 10 μM. Studies in human carcinoma HEp2 cells overexpressing EGFR demonstrated low dark and photo cytotoxicities for BODIPY 5 and the two peptide conjugates, and remarkably high cellular uptake for both conjugates 8 and 9, up to 90-fold compared with BODIPY 5 after 1 h. Fluorescence imaging studies in HEp2 cells revealed subcellular localization of the BODIPY-peptide conjugates mainly in the Golgi apparatus and the cell lysosomes. The low cytotoxicity of the new conjugates and their remarkably high uptake into EGFR overexpressing cells renders them promising imaging agents for cancers overexpressing EGFR.
Collapse
Affiliation(s)
- Ning Zhao
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Tyrslai M Williams
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Zehua Zhou
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Frank R Fronczek
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| | - Martha Sibrian-Vazquez
- Department of Chemistry, Portland State University , Portland, Oregon 97201, United States
| | - Seetharama D Jois
- Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe , Monroe, Louisiana 71201, United States
| | - M Graça H Vicente
- Department of Chemistry, Louisiana State University , Baton Rouge, Louisiana 70803, United States
| |
Collapse
|
14
|
Zarei O, Hamzeh-Mivehroud M, Benvenuti S, Ustun-Alkan F, Dastmalchi S. Characterizing the Hot Spots Involved in RON-MSPβ Complex Formation Using In Silico Alanine Scanning Mutagenesis and Molecular Dynamics Simulation. Adv Pharm Bull 2017; 7:141-150. [PMID: 28507948 PMCID: PMC5426727 DOI: 10.15171/apb.2017.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Revised: 03/18/2017] [Accepted: 03/20/2017] [Indexed: 12/30/2022] Open
Abstract
Purpose: Implication of protein-protein interactions (PPIs) in development of many diseases such as cancer makes them attractive for therapeutic intervention and rational drug design. RON (Recepteur d'Origine Nantais) tyrosine kinase receptor has gained considerable attention as promising target in cancer therapy. The activation of RON via its ligand, macrophage stimulation protein (MSP) is the most common mechanism of activation for this receptor. The aim of the current study was to perform in silico alanine scanning mutagenesis and to calculate binding energy for prediction of hot spots in protein-protein interface between RON and MSPβ chain (MSPβ). Methods: In this work the residues at the interface of RON-MSPβ complex were mutated to alanine and then molecular dynamics simulation was used to calculate binding free energy. Results: The results revealed that Gln193, Arg220, Glu287, Pro288, Glu289, and His424 residues from RON and Arg521, His528, Ser565, Glu658, and Arg683 from MSPβ may play important roles in protein-protein interaction between RON and MSP. Conclusion: Identification of these RON hot spots is important in designing anti-RON drugs when the aim is to disrupt RON-MSP interaction. In the same way, the acquired information regarding the critical amino acids of MSPβ can be used in the process of rational drug design for developing MSP antagonizing agents, the development of novel MSP mimicking peptides where inhibition of RON activation is required, and the design of experimental site directed mutagenesis studies.
Collapse
Affiliation(s)
- Omid Zarei
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Students Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Hamzeh-Mivehroud
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Silvia Benvenuti
- Molecular Therapeutics and Exploratory Research Laboratory, Candiolo Cancer Institute-FPO-IRCCS, Candiolo, Turin, Italy
| | - Fulya Ustun-Alkan
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Istanbul University, Istanbul, Turkey
| | - Siavoush Dastmalchi
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.,Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
15
|
Design of a doxorubicin-peptidomimetic conjugate that targets HER2-positive cancer cells. Eur J Med Chem 2016; 125:914-924. [PMID: 27769032 DOI: 10.1016/j.ejmech.2016.10.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 09/14/2016] [Accepted: 10/07/2016] [Indexed: 01/01/2023]
Abstract
Doxorubicin (DOX) belongs to the anthracycline class of drugs that are used in the treatment of various cancers. It has limited cystostatic effects in therapeutic doses, but higher doses can cause cardiotoxicity. In the current approach, we conjugated a peptidomimetic (Arg-aminonaphthylpropionic acid-Phe, compound 5) known to bind to HER2 protein to DOX via a glutaric anhydride linker. Antiproliferative assays suggest that the DOX-peptidomimetic conjugate has activity in the lower micromolar range. The conjugate exhibited higher toxicity in HER2-overexpressed cells than in MCF-7 and MCF-10A cells that do not overexpress HER2 protein. Cellular uptake studies using confocal microscope experiments showed that the conjugate binds to HER2-overexpressed cells and DOX is taken up into the cells in 4 h compared to conjugate in MCF-7 cells. Binding studies using surface plasmon resonance indicated that the conjugate binds to the HER2 extracellular domain with high affinity compared to compound 5 or DOX alone. The conjugate was stable in the presence of cells with a half-life of nearly 4 h and 1 h in human serum. DOX is released from the conjugate and internalized into the cells in 4 h, causing cellular toxicity. These results suggest that this conjugate can be used to target DOX to HER2-overexpressing cells and can improve the therapeutic index of DOX for HER2-positive cancer.
Collapse
|
16
|
Kanthala S, Gauthier T, Satyanarayanajois S. Structure-activity relationships of peptidomimetics that inhibit PPI of HER2-HER3. Biopolymers 2016; 101:693-702. [PMID: 24222531 DOI: 10.1002/bip.22441] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/01/2013] [Accepted: 11/05/2013] [Indexed: 12/25/2022]
Abstract
Human epidermal growth factor receptor-2 (HER2) is a tyrosine kinase family protein receptor that is known to undergo heterodimerization with other members of the family of epidermal growth factor receptors (EGFR) for cell signaling. Overexpression of HER2 and deregulation of signaling has implications in breast, ovarian, and lung cancers. We have designed several peptidomimetics to block the HER2-mediated dimerization, resulting in antiproliferative activity for cancer cells. In this work, we have investigated the structure-activity relationships of peptidomimetic analogs of Compound 5. Compound 5 was conformationally constrained by N- and C-terminal modification and cyclization as well as by substitution with d-amino acids at the N-and C-termini. Among the compounds studied in this work, a peptidomimetic Compound 21 with d-amino acid substitution and its N- and C-termini capped with acetyl and amide functional groups and a reversed sequence compared to that of Compound 5 exhibited better antiproliferative activity in HER2-overexpressed breast, ovarian, and lung cancer cell lines. Compound 21 was further evaluated for its protein-protein interaction (PPI) inhibition ability using enzyme fragment complementation assay, proximity ligation assay, and Western blot analysis. Results suggested that Compound 21 is able to block HER2:HER3 interaction and inhibit phosphorylation of the kinase domain of HER2. The mode of binding of Compound 21 to HER2 protein was modeled using a docking method. Compound 21 seems to bind to domain IV of HER2 near the PPI site of EGFR:HER2, and HER:HER3 and inhibit PPI.
Collapse
Affiliation(s)
- Shanthi Kanthala
- Department of Basic Pharmaceutical Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71201
| | | | | |
Collapse
|
17
|
Fontenot KR, Ongarora BG, LeBlanc LE, Zhou Z, Jois SD, Vicente MGH. Targeting of the epidermal growth factor receptor with mesoporphyrin IX-peptide conjugates. J PORPHYR PHTHALOCYA 2016; 20:352-366. [PMID: 27738394 PMCID: PMC5058426 DOI: 10.1142/s1088424616500115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The synthesis and in vitro evaluation of four mesoporphyrin IX-peptide conjugates designed to target EGFR, over-expressed in colorectal and other cancers, are reported. Two peptides with known affinity for EGFR, LARLLT (1) and GYHWYGYTPQNVI (2), were conjugated to mesoporphyrin IX (MPIX, 3) via one or both the propionic side chains, directly (4, 5) or with a triethylene glycol spacer (7, 8). The conjugates were characterized using NMR, MS, CD, SPR, UV-vis and fluorescence spectroscopies. Energy minimization and molecular dynamics suggest different conformations for the conjugates. SPR studies show that conjugate 4, bearing two LARLLT with no PEG spacers, has the greatest affinity for binding to EGFR, followed by conjugate 7 with two PEG and two LARLLT sequences. Molecular modeling and docking studies suggest that both conjugates 4 and 7 can bind to monomer and dimer EGFR in open and closed conformations. The cytotoxicity and cellular targeting ability of the conjugates were investigated in human HEp2 cells over-expressing EGFR. All conjugates showed low dark- and photo-toxicities. The cellular uptake was highest for conjugates 4 and 8 and lowest for 7 bearing two LARLLT linked via PEG groups, likely due to decreased hydrophobicity. Among the conjugates investigated 4 is the most efficient EGFR-targeting agent, and therefore the most promising for the detection of cancers that over-express EGFR.
Collapse
Affiliation(s)
- Krystal R. Fontenot
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Benson G. Ongarora
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Logan E. LeBlanc
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Zehua Zhou
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Seetharama D. Jois
- University of Louisiana at Monroe, School of Pharmacy, Monroe, LA 71201, USA
| | - M. Graça H. Vicente
- Department of Chemistry, Louisiana State University, Baton Rouge, LA 70803, USA
| |
Collapse
|
18
|
Joshi BP, Zhou J, Pant A, Duan X, Zhou Q, Kuick R, Owens SR, Appelman H, Wang TD. Design and Synthesis of Near-Infrared Peptide for in Vivo Molecular Imaging of HER2. Bioconjug Chem 2015; 27:481-94. [PMID: 26709709 DOI: 10.1021/acs.bioconjchem.5b00565] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
We report the development, characterization, and validation of a peptide specific for the extracellular domain of HER2. This probe chemistry was developed for molecular imaging by using a structural model to select an optimal combination of amino acids that maximize the likelihood for unique hydrophobic and hydrophilic interactions with HER2 domain 3. The sequence KSPNPRF was identified and conjugated with either FITC or Cy5.5 via a GGGSK linker using Fmoc-mediated solid-phase synthesis to demonstrate flexibility for this chemical structure to be labeled with different fluorophores. A scrambled sequence was developed for control by altering the conformationally rigid spacer and moving both hydrophobic and hydrophilic amino acids on the C-terminus. We validated peptide specificity for HER2 in knockdown and competition experiments using human colorectal cancer cells in vitro, and measured a binding affinity of kd = 21 nM and time constant of k = 0.14 min(-1) (7.14 min). We used this peptide with either topical or intravenous administration in a preclinical model of colorectal cancer to demonstrate specific uptake in spontaneous adenomas and to show feasibility for real time in vivo imaging with near-infrared fluorescence. We used this peptide in immunofluorescence studies of human proximal colon specimens to evaluate specificity for sessile serrated and sporadic adenomas. Improved visualization can be used endoscopically to guide tissue biopsy and detect premalignant lesions that would otherwise be missed. Our peptide design for specificity to HER2 is promising for clinical translation in molecular imaging methods for early cancer detection.
Collapse
Affiliation(s)
- Bishnu P Joshi
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Juan Zhou
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Asha Pant
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Xiyu Duan
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Quan Zhou
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Rork Kuick
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Scott R Owens
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Henry Appelman
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| | - Thomas D Wang
- Department of Medicine, Division of Gastroenterology, ‡Department of Biomedical Engineering, §Department of Biostatistics, ∥Department of Pathology, and ⊥Department of Mechanical Engineering, University of Michigan , Ann Arbor, Michigan 48109, United States
| |
Collapse
|
19
|
Wang Z, Wang W, Bu X, Wei Z, Geng L, Wu Y, Dong C, Li L, Zhang D, Yang S, Wang F, Lausted C, Hood L, Hu Z. Microarray based screening of peptide nano probes for HER2 positive tumor. Anal Chem 2015. [PMID: 26218790 DOI: 10.1021/acs.analchem.5b01588] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Peptides are excellent biointerface molecules and diagnostic probes with many advantages such as good penetration, short turnover time, and low cost. We report here an efficient peptide screening strategy based on in situ single bead sequencing on a microarray. Two novel peptides YLFFVFER (H6) and KLRLEWNR (H10) specifically binding to the tumor biomarker human epidermal growth factor receptor 2 (HER2) with aKD of 10(-8) M were obtained from a 10(5) library. Conjugated to nanoparticles, both the H6 and H10 probes showed specific accumulation in HER2-positive tumor tissues in xenografted mice by in vivo imaging.
Collapse
Affiliation(s)
| | | | | | | | | | - Yue Wu
- ‡Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing China, 100191
| | - Chengyan Dong
- ‡Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing China, 100191
| | - Liqiang Li
- ‡Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing China, 100191
| | | | | | - Fan Wang
- ‡Medical Isotopes Research Center, Department of Radiation Medicine, School of Basic Medical Sciences, Peking University, Beijing China, 100191
| | - Christopher Lausted
- §Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - Leroy Hood
- §Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States
| | - Zhiyuan Hu
- §Institute for Systems Biology, 401 Terry Avenue North, Seattle, Washington 98109, United States.,∥Beijing Proteome Research Center, Beijing Institute of Radiation Medicine, Beijing China, 102206
| |
Collapse
|
20
|
Surfing the Protein-Protein Interaction Surface Using Docking Methods: Application to the Design of PPI Inhibitors. Molecules 2015; 20:11569-603. [PMID: 26111183 PMCID: PMC6272567 DOI: 10.3390/molecules200611569] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2015] [Revised: 06/02/2015] [Accepted: 06/15/2015] [Indexed: 02/06/2023] Open
Abstract
Blocking protein-protein interactions (PPI) using small molecules or peptides modulates biochemical pathways and has therapeutic significance. PPI inhibition for designing drug-like molecules is a new area that has been explored extensively during the last decade. Considering the number of available PPI inhibitor databases and the limited number of 3D structures available for proteins, docking and scoring methods play a major role in designing PPI inhibitors as well as stabilizers. Docking methods are used in the design of PPI inhibitors at several stages of finding a lead compound, including modeling the protein complex, screening for hot spots on the protein-protein interaction interface and screening small molecules or peptides that bind to the PPI interface. There are three major challenges to the use of docking on the relatively flat surfaces of PPI. In this review we will provide some examples of the use of docking in PPI inhibitor design as well as its limitations. The combination of experimental and docking methods with improved scoring function has thus far resulted in few success stories of PPI inhibitors for therapeutic purposes. Docking algorithms used for PPI are in the early stages, however, and as more data are available docking will become a highly promising area in the design of PPI inhibitors or stabilizers.
Collapse
|
21
|
Kanthala S, Banappagari S, Gokhale A, Liu YY, Xin G, Zhao Y, Jois S. Novel Peptidomimetics for Inhibition of HER2:HER3 Heterodimerization in HER2-Positive Breast Cancer. Chem Biol Drug Des 2014; 85:702-714. [PMID: 25346057 DOI: 10.1111/cbdd.12453] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/23/2014] [Accepted: 10/15/2014] [Indexed: 01/06/2023]
Abstract
The current approach to treating HER2-overexpressed breast cancer is the use of monoclonal antibodies or a combination of antibodies with traditional chemotherapeutic agents or kinase inhibitors. Our approach is to target clinically validated HER2 domain IV with peptidomimetics and inhibit the protein-protein interactions (PPI) of HERs. Unlike antibodies, peptidomimetics have advantages in terms of stability, modification, and molecular size. We have designed peptidomimetics (compounds 5 and 9) that bind to HER2 domain IV, inhibit protein-protein interactions, and decrease cell viability in breast cancer cells with HER2 overexpression. We have shown, using enzyme fragment complementation and proximity ligation assays, that peptidomimetics inhibit the PPI of HER2:HER3. Compounds 5 and 9 suppressed the tumor growth in a xenograft mouse model. Furthermore, we have shown that these compounds inhibit PPI of HER2:HER3 and phosphorylation of HER2 as compared to control in tissue samples derived from in vivo studies. The stability of the compounds was also investigated in mouse serum, and the compounds exhibited stability with a half-life of up to 3 h. These results suggest that the novel peptidomimetics we have developed target the extracellular domain of HER2 protein and inhibit HER2:HER3 interaction, providing a novel method to treat HER2-positive cancer.
Collapse
Affiliation(s)
- Shanthi Kanthala
- Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201
| | - Sashikanth Banappagari
- Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201
| | - Ameya Gokhale
- Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201
| | - Yong-Yu Liu
- Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201
| | - Gu Xin
- Department of Pharmacology, LSU Health Sciences Center, Shreveport, LA 71103
| | - Yunfeng Zhao
- Department of Pharmacology, LSU Health Sciences Center, Shreveport, LA 71103
| | - Seetharama Jois
- Basic Pharmaceutical Sciences, School of Pharmacy, University of Louisiana at Monroe, Monroe LA 71201
| |
Collapse
|