1
|
Zeng H, Zhang S, Nie H, Li J, Yang J, Zhuang Y, Huang Y, Zeng M. Identification of FTY720 and COH29 as novel topoisomerase I catalytic inhibitors by experimental and computational studies. Bioorg Chem 2024; 147:107412. [PMID: 38696845 DOI: 10.1016/j.bioorg.2024.107412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/17/2024] [Accepted: 04/27/2024] [Indexed: 05/04/2024]
Abstract
The development of novel topoisomerase I (TOP1) inhibitors is crucial for overcoming the drawbacks and limitations of current TOP1 poisons. Here, we identified two potential TOP1 inhibitors, namely, FTY720 (a sphingosine 1-phosphate antagonist) and COH29 (a ribonucleotide reductase inhibitor), through experimental screening of known active compounds. Biological experiments verified that FTY720 and COH29 were nonintercalative TOP1 catalytic inhibitors that did not induce the formation of DNA-TOP1 covalent complexes. Molecular docking revealed that FTY720 and COH29 interacted favorably with TOP1. Molecular dynamics simulations revealed that FTY720 and COH29 could affect the catalytic domain of TOP1, thus resulting in altered DNA-binding cavity size. The alanine scanning and interaction entropy identified Arg536 as a hotspot residue. In addition, the bioinformatics analysis predicted that FTY720 and COH29 could be effective in treating malignant breast tumors. Biological experiments verified their antitumor activities using MCF-7 breast cancer cells. Their combinatory effects with TOP1 poisons were also investigated. Further, FTY720 and COH29 were found to cause less DNA damage compared with TOP1 poisons. The findings provide reliable lead compounds for the development of novel TOP1 catalytic inhibitors and offer new insights into the potential clinical applications of FTY720 and COH29 in targeting TOP1.
Collapse
Affiliation(s)
- Huang Zeng
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China.
| | - Shengyuan Zhang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Hua Nie
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Junhao Li
- Department of Physics and Astronomy, Uppsala University, Lägerhyddsvägen 1, SE-75121 Uppsala, Sweden
| | - Jiunlong Yang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Yuanbei Zhuang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Yingjie Huang
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| | - Miao Zeng
- Institute of Hakka Medicinal Bio-resources, Medical College, Jiaying University, Meizhou 514031, China
| |
Collapse
|
2
|
Jeon KH, Park S, Shin JH, Jung AR, Hwang SY, Seo SH, Jo H, Na Y, Kwon Y. Synthesis and evaluation of 7-(3-aminopropyloxy)-substituted flavone analogue as a topoisomerase IIα catalytic inhibitor and its sensitizing effect to enzalutamide in castration-resistant prostate cancer cells. Eur J Med Chem 2023; 246:114999. [PMID: 36493620 DOI: 10.1016/j.ejmech.2022.114999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022]
Abstract
Prostate cancer patients primarily receive androgen receptor (AR)-targeted drugs as a primary treatment option because prostate cancer is associated with highly activated AR signaling. AR amplification made prostate cancer cells viable under treatment of AR-targeted therapy, leading to castration resistance. AR amplification was more common in enzalutamide-resistant patients. As a strategy to overcome castration resistance and to improve the efficacy of enzalutamide, second-generation nonsteroidal antiandrogen drugs for castration-resistant prostate cancer (CRPC) including topoisomerase II (topo II) poisons such as etoposide and mitoxantrone, have been administered in combination with enzalutamide. In the present study, it was confirmed that amplification of topo IIα, but not I and IIβ, was directly and proportionally associated with poor clinical outcome of Prostate cancer. Among a novel series of newly designed and synthesized 7-(3-aminopropyloxy)-substituted flavone analogues, compound 6, the most potent derivative, was further characterized and identified as a topo IIα catalytic inhibitor that intercalates into DNA and binds to the DNA minor groove with better efficacy and less genotoxicity than etoposide, a topo II poison. Compound 6 showed remarkable efficacy in inhibiting AR-negative CRPC cell growth and sensitizing activity to enzalutamide in AR-positive CRPC cells, thus confirming the potential of topo IIα catalytic inhibitor to overcome resistance to androgen deprivation therapy.
Collapse
Affiliation(s)
- Kyung-Hwa Jeon
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Seojeong Park
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Jae-Ho Shin
- College of Pharmacy, CHA University, 120 Haeryong-ro, Pochon-shi, Gyeongghi-do, 11160, Republic of Korea
| | - Ah-Reum Jung
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Soo-Yeon Hwang
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Seung Hee Seo
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Hyunji Jo
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, 120 Haeryong-ro, Pochon-shi, Gyeongghi-do, 11160, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul, 03760, Republic of Korea.
| |
Collapse
|
3
|
Haider K, Sharma S, Pokharel YR, Das S, Joseph A, Najmi AK, Ahmad F, Yar MS. Synthesis, biological evaluation, and in silico studies of indole-tethered pyrazoline derivatives as anticancer agents targeting topoisomerase IIα. Drug Dev Res 2022; 83:1555-1577. [PMID: 35898169 DOI: 10.1002/ddr.21976] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/10/2022]
Abstract
We herein report a new series of indole-tethered pyrazoline derivatives as potent anticancer agents. A total of 12 compounds were designed and synthesized by conventional as well as microwave-irradiated synthesis methods. The latter method results in a significant reduction in the duration of reaction along with improved yields. All synthesized derivatives (7a-7l) were evaluated for their cytotoxic activity against A431, HeLa, and MDAMB-231 cell lines. Compounds 7a and 7b were found most potent in the series and demonstrated an IC50 value of 3.17 and 5.16 µM against the A431 cell line, respectively, compared to the standard drug doxorubicin. Compounds 7a and 7b significantly suppress colony formation, migration, and S phase cell cycle arrest of A431 cells. Furthermore, compound 7a regulated the expression of apoptotic proteins causing the downregulation of procaspase 3/9, antiapoptotic protein Bcl-xL, and upregulation of proapoptotic protein Bax in a dose-dependent manner. Topoisomerase enzyme inhibition assay confirmed that compounds 7a and 7b can significantly inhibit topoisomerase IIα. In vivo oral acute toxicity of compounds 7a and 7b revealed that both compounds are safe compared to doxorubicin; cardiomyopathy studies showed normal architecture of cardiomyocytes and myofibrils. In addition, molecular docking studies revealed the possible interaction of compounds 7a and 7b within the active binding site of the topoisomerase enzyme. The 100 ns molecular dynamic simulation of compounds 7a and 7b proved that both compounds validate all screening parameters.
Collapse
Affiliation(s)
- Kashif Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shivani Sharma
- Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Yuba Raj Pokharel
- Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Subham Das
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Alex Joseph
- Department of Pharmaceutical Chemistry, Manipal College of Pharmaceutical Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Abul Kalam Najmi
- Department of Pharmacology, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Faiz Ahmad
- Faculty of Life Science and Biotechnology, South Asian University, New Delhi, India
| | - Mohammad Shahar Yar
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| |
Collapse
|
4
|
Synthesis and biological evaluation of xanthone derivatives as anti-cancer agents targeting topoisomerase II and DNA. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02862-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
9-Bromo-2,3-diethylbenzo[de]chromene-7,8-dione (MSN54): A novel non-intercalative topoisomerase II catalytic inhibitor. Bioorg Chem 2021; 114:105097. [PMID: 34171594 DOI: 10.1016/j.bioorg.2021.105097] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 05/30/2021] [Accepted: 06/10/2021] [Indexed: 11/22/2022]
Abstract
Novel mansonone F derivative MSN54 (9-bromo-2,3-diethylbenzo[de]chromene-7,8-dione) exhibited significant cytotoxicity against twelve human tumor cell lines in vitro, with particularly strong potency against HL-60/MX2 cell line resistant to Topo II poisons. MSN54 was found to have IC50 of 0.69 and 1.43 µM against HL-60 and HL-60/MX2 cells, respectively. The resistance index is 10 times lower than that of the positive control VP-16 (etoposide). Various biological assays confirmed that MSN54 acted as a Topo IIα specific non-intercalative catalytic inhibitor. Furthermore, MSN54 exhibited good antitumor efficacy and low toxicity at a dose of 5 mg/kg in A549 tumor xenograft models. Thus, compound MSN54 is a promising candidate for the development of novel antitumor agents.
Collapse
|
6
|
Tylińska B, Wiatrak B, Czyżnikowska Ż, Cieśla-Niechwiadowicz A, Gębarowska E, Janicka-Kłos A. Novel Pyrimidine Derivatives as Potential Anticancer Agents: Synthesis, Biological Evaluation and Molecular Docking Study. Int J Mol Sci 2021; 22:3825. [PMID: 33917090 PMCID: PMC8067809 DOI: 10.3390/ijms22083825] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/31/2021] [Accepted: 04/01/2021] [Indexed: 01/06/2023] Open
Abstract
In the present paper, new pyrimidine derivatives were designed, synthesized and analyzed in terms of their anticancer properties. The tested compounds were evaluated in vitro for their antitumor activity. The cytotoxic effect on normal human dermal fibroblasts (NHDF) was also determined. According to the results, all the tested compounds exhibited inhibitory activity on the proliferation of all lines of cancer cells (colon adenocarcinoma (LoVo), resistant colon adenocarcinoma (LoVo/DX), breast cancer (MCF-7), lung cancer (A549), cervical cancer (HeLa), human leukemic lymphoblasts (CCRF-CEM) and human monocytic (THP-1)). In particular, their feature stronger influence on the activity of P-glycoprotein of cell cultures resistant to doxorubicin than doxorubicin. Tested compounds have more lipophilic character than doxorubicin, which determines their affinity for the molecular target and passive transport through biological membranes. Moreover, the inhibitory potential against topoisomerase II and DNA intercalating properties of synthesized compounds were analyzed via molecular docking.
Collapse
Affiliation(s)
- Beata Tylińska
- Department of Organic Chemistry, Wroclaw Medical University, Borowska 211A, 50-556 Wroclaw, Poland
| | - Benita Wiatrak
- Department of Pharmacology, Wroclaw Medical University, Mikulicza-Radeckiego 2, 50-345 Wrocław, Poland
| | - Żaneta Czyżnikowska
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211A, Borowska 211A, 50-556 Wroclaw, Poland; (Ż.C.); (A.J.-K.)
| | | | - Elżbieta Gębarowska
- Agricultural Microbiology Lab, Department of Plant Protection, Wrocław University of Environmental and Life Sciences, Grunwaldzka 53, 50-375 Wrocław, Poland;
| | - Anna Janicka-Kłos
- Department of Inorganic Chemistry, Wroclaw Medical University, Borowska 211A, Borowska 211A, 50-556 Wroclaw, Poland; (Ż.C.); (A.J.-K.)
| |
Collapse
|
7
|
Lu Y, Yin W, Alam MS, Kadi AA, Jahng Y, Kwon Y, Rahman AFMM. Synthesis, Biological Evaluation and Molecular Docking Study of Cyclic Diarylheptanoids as Potential Anticancer Therapeutics. Anticancer Agents Med Chem 2021; 20:464-475. [PMID: 31763968 DOI: 10.2174/1871520619666191125130237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 10/07/2019] [Accepted: 10/16/2019] [Indexed: 12/23/2022]
Abstract
BACKGROUND Cancer is one of the leading causes of mortality globally. To cope with cancer, it is necessary to develop anticancer drugs. Bioactive natural products, i.e. diarylheptanoids, have gained significant attention of researchers owing to their intriguing structures and potent biological activities. In this article, considering the development of anticancer drugs with enhanced selectivity towards cancerous cells, a series of Cyclic Diarylheptanoids (CDHs) are designed, synthesized and evaluated their biological activity. OBJECTIVE To establish an easy route for the synthesis of diarylheptanoids, and evaluate their antiproliferative, and topoisomerase-I & -IIα inhibitory activities, for developing potential anticancer drugs among CDHs. METHODS Diarylheptanoids were synthesized from reported linear diarylheptanoids using the classical Ullmann reaction. Antibacterial activity was evaluated by the filter paper disc diffusion method. Cell viability was assessed by measuring mitochondrial dehydrogenase activity with a Cell Counting Kit (CCK-8). Topoisomerases I and II (topo-I and -IIα) inhibitory activity was measured by the assessment of relaxation of supercoiled pBR322 plasmid DNA. IFD protocol of Schrodinger Maestro v11.1 was used to characterize the binding pattern of studied compounds with the ATPase domain of the human topo-IIα. RESULTS The synthesized CDHs were evaluated for their biological activities (antibacterial, antiproliferative, and topoisomerase-I & -IIα inhibitory activities, respectively). Leading to obtain a series of anticancer agents with the least inhibitory activities against different microbes, improving their selectivity for cancer cells. In brief, most of the synthesized CDHs had excellent antiproliferative activity against T47D (human breast cancer cell line). Pterocarine possessed the strongest activity (2i; IC50 = 0.63µM) against T47D. The cyclic diarylheptanoid 2b induced 30% inhibition of topoisomerase-IIα activity at 100μM compared with the reference of etoposide, which induced 72% inhibition. Among the tested compounds, galeon (2h) displayed very low activity against four bacterial strains. Compounds 2b, 2h, and 2i formed hydrogen bonds with Thr215, Asn91, Asn120, Ala167, Lys168 and Ile141 residues, which are important for binding of ligand compound to the ATPase binding site of topoisomerase IIα by acting as ATP competitive molecule validated by docking study. In silico Absorption, Distribution, Metabolism and Excretion (ADME) analysis revealed the predicted ADME parameters of the studied compounds which showed recommended values. CONCLUSION A series of CDHs were synthesized and evaluated for their antibacterial, antiproliferative, and topo-I & -IIα inhibitory activities. SARs study, molecular docking study and in silico ADME analysis were conducted. Five compounds exhibited excellent and selective antiproliferative activity against the human breast cancer cell line (T47D). Among them, a compound 2h showed topo-IIα activity by 30% at 100µM, which represented a moderate intensity of inhibition compared with etoposide. Three of them formed hydrogen bonds with Thr215, Asn91, Asn120, and Ala167 residues, which are considered as crucial residues for binding to the ATPase domain of topoisomerase IIα. According to in silico drug-likeness property analysis, three compounds are expected to show superiority over etoposide in case of absorption, distribution, metabolism and excretion.
Collapse
Affiliation(s)
- Yang Lu
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea
| | - Wencui Yin
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohammad S Alam
- Department of Chemistry, Jagannath University, Dhaka 1100, Bangladesh
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Yurngdong Jahng
- College of Pharmacy, Yeungnam University, Gyeongsan 38541, Korea
| | - Youngjoo Kwon
- College of Pharmacy, Ewha Womans University, Seoul 03760, Korea
| | - A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
8
|
Li AL, Hao Y, Wang WY, Liu QS, Sun Y, Gu W. Design, Synthesis, and Anticancer Evaluation of Novel Indole Derivatives of Ursolic Acid as Potential Topoisomerase II Inhibitors. Int J Mol Sci 2020; 21:E2876. [PMID: 32326071 PMCID: PMC7215373 DOI: 10.3390/ijms21082876] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/01/2020] [Accepted: 04/15/2020] [Indexed: 12/21/2022] Open
Abstract
In this study, a series of new indole derivatives of ursolic acid bearing different N-(aminoalkyl)carboxamide side chains were designed, synthesized, and evaluated for their in vitro cytotoxic activities against two human hepatocarcinoma cell lines (SMMC-7721 and HepG2) and normal hepatocyte cell line (LO2) via MTT assay. Among them, compound 5f exhibited the most potent activity against SMMC-7721 and HepG2 cells with IC50 values of 0.56 ± 0.08 μM and 0.91 ± 0.13 μM, respectively, and substantially lower cytotoxicity to LO2 cells. A follow-up enzyme inhibition assay and molecular docking study indicated that compound 5f can significantly inhibit the activity of Topoisomerase IIα. Further mechanistic studies performed in SMMC-7721 cells revealed that compound 5f can elevate the intracellular ROS levels, decrease mitochondrial membrane potential, and finally lead to the apoptosis of SMMC-7721 cells. Collectively, compound 5f is a promising Topoisomerase II (Topo II) inhibitor, which exhibited the potential as a lead compound for the discovery of novel anticancer agents.
Collapse
Affiliation(s)
| | | | | | | | | | - Wen Gu
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, Jiangsu Key Lab of Biomass-Based Green Fuels and Chemicals, Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; (A-L.L.); (Y.H.); (W.-Y.W.); (Q.-S.L.); (Y.S.)
| |
Collapse
|
9
|
Park S, Hwang SY, Shin J, Jo H, Na Y, Kwon Y. A chromenone analog as an ATP-competitive, DNA non-intercalative topoisomerase II catalytic inhibitor with preferences toward the alpha isoform. Chem Commun (Camb) 2019; 55:12857-12860. [PMID: 31598611 DOI: 10.1039/c9cc05524j] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
5-Hydroxy-2-phenyl-7-(thiiran-2-ylmethoxy)-4H-chromen-4-one (compound 52) was found as a DNA non-intercalative topo II specific catalytic inhibitor by targeting its ATP-binding domain. Showing changes in interaction with Mg2+, it exhibited highly selective properties against the α-isoform with less toxicity, unlike other topo II poisons, such as etoposide.
Collapse
Affiliation(s)
- Seojeong Park
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| | - Soo-Yeon Hwang
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| | - Jaeho Shin
- College of Pharmacy, CHA University, Pocheon, 11160, Korea.
| | - Hyunji Jo
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon, 11160, Korea.
| | - Youngjoo Kwon
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 03760, Korea.
| |
Collapse
|
10
|
Jo H, Hee Seo S, Na Y, Kwon Y. The synthesis and anticancer activities of chiral epoxy-substituted chromone analogs. Bioorg Chem 2018; 84:347-354. [PMID: 30530076 DOI: 10.1016/j.bioorg.2018.11.054] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 11/24/2018] [Accepted: 11/29/2018] [Indexed: 12/25/2022]
Abstract
Human DNA topoisomerases (topos) have been recognized as a good target molecule for the development of anticancer drugs because they play an important role in solving DNA topological problems caused by DNA strand separation during replication and transcription. In this study, we designed and synthesized 11 novel chromone backbone compounds possessing epoxy and halohydrin substituents with chirality. In the topos inhibition test, compounds 2, 9, 10, and 11 showed comparable topo I inhibitory activity at concentration of 100 μM compared to camptothecin, and all of the synthesized compounds showed moderate topo IIα inhibitory activity. Among them, compounds 9, 10 and 11 were more potent than the others in both topo I and IIα inhibitory activity. Compound 11 showed the most potent cell antiproliferative activity against all tested cancer cell lines with particularly strong inhibition (an IC50 of 0.04 µM) of K562 myelogenous leukemia cancer cell proliferation. In the brief structure-activity relationship analysis, there was no clear correlation between stereochemistry and topos inhibitory and cytotoxic activity. 5(R),7(S)-bisepoxy-substituted compound 11 was the most potent DNA cross-linker and induced G2/M arrest in a cell cycle assay in a dose- and time-dependent manner. After the treatment time period induced apoptosis in K562 cells without increasing G2/M-phase cells. Overall, compound 11 showed good consistent inhibitory biological activity related to cancer cell proliferation.
Collapse
Affiliation(s)
- Hyunji Jo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Seung Hee Seo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon 487-010, Republic of Korea.
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea.
| |
Collapse
|
11
|
Motiur Rahman AFM, Lu Y, Lee HJ, Jo H, Yin W, Alam MS, Cha H, Kadi AA, Kwon Y, Jahng Y. Linear diarylheptanoids as potential anticancer therapeutics: synthesis, biological evaluation, and structure–activity relationship studies. Arch Pharm Res 2018; 41:1131-1148. [DOI: 10.1007/s12272-018-1004-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2017] [Accepted: 01/06/2018] [Indexed: 01/06/2023]
|
12
|
Satish S, Srivastava A, Yadav P, Varshney S, Choudhary R, Balaramnavar VM, Narender T, Gaikwad AN. Aegeline inspired synthesis of novel amino alcohol and thiazolidinedione hybrids with antiadipogenic activity in 3T3-L1 cells. Eur J Med Chem 2018; 143:780-791. [DOI: 10.1016/j.ejmech.2017.11.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/15/2017] [Accepted: 11/17/2017] [Indexed: 12/14/2022]
|
13
|
Novel xanthone-polyamine conjugates as catalytic inhibitors of human topoisomerase IIα. Bioorg Med Chem Lett 2017; 27:4687-4693. [PMID: 28919339 DOI: 10.1016/j.bmcl.2017.09.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 08/31/2017] [Accepted: 09/04/2017] [Indexed: 01/03/2023]
Abstract
It has been proposed that xanthone derivatives with anticancer potential act as topoisomerase II inhibitors because they interfere with the ability of the enzyme to bind its ATP cofactor. In order to further characterize xanthone mechanism and generate compounds with potential as anticancer drugs, we synthesized a series of derivatives in which position 3 was substituted with different polyamine chains. As determined by DNA relaxation and decatenation assays, the resulting compounds are potent topoisomerase IIα inhibitors. Although xanthone derivatives inhibit topoisomerase IIα-catalyzed ATP hydrolysis, mechanistic studies indicate that they do not act at the ATPase site. Rather, they appear to function by blocking the ability of DNA to stimulate ATP hydrolysis. On the basis of activity, competition, and modeling studies, we propose that xanthones interact with the DNA cleavage/ligation active site of topoisomerase IIα and inhibit the catalytic activity of the enzyme by interfering with the DNA strand passage step.
Collapse
|
14
|
Islam MS, Park S, Song C, Kadi AA, Kwon Y, Rahman AFMM. Fluorescein hydrazones: A series of novel non-intercalative topoisomerase IIα catalytic inhibitors induce G1 arrest and apoptosis in breast and colon cancer cells. Eur J Med Chem 2017; 125:49-67. [PMID: 27654394 DOI: 10.1016/j.ejmech.2016.09.004] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 08/29/2016] [Accepted: 09/01/2016] [Indexed: 12/25/2022]
Abstract
Fluorescein hydrazones (5 and 7) were synthesized in three/four steps with 82-92% yields. All synthesized compounds were evaluated by topoisomerase I (topo I) and topoisomerase IIα (topo IIα)-mediated relaxation and cell viability assays. Among them, most of the compounds showed topo I & IIα inhibitory activity and nineteen compounds showed strong anti-proliferative activity against various cell lines. In brief, 5e inhibited 53% topo IIα (etoposide 29%) at 20 μM and showed excellent antiproliferative activity against DU145 (1.43 ± 0.04 μM), HCT15 (2.4 ± 0.03 μM) and MCF7 (11.4 ± 0.5 μM) cell lines in comparison with adriamycin, etoposide, and camptothecin. Compounds 5e, 5g and 5h were further evaluated to determine their mode of action. Compounds 5e, 5g and 5h functioned as non-intercalative topo IIα catalytic inhibitor with induction of G1 arrest and activation of apoptotic proteins in dose-dependent manner.
Collapse
Affiliation(s)
- Mohammad Shahidul Islam
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Seojeong Park
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Chanju Song
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea.
| | - A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
15
|
Jun KY, Kwon Y. Proposal of Dual Inhibitor Targeting ATPase Domains of Topoisomerase II and Heat Shock Protein 90. Biomol Ther (Seoul) 2016; 24:453-68. [PMID: 27582553 PMCID: PMC5012869 DOI: 10.4062/biomolther.2016.168] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 08/11/2016] [Accepted: 08/16/2016] [Indexed: 01/03/2023] Open
Abstract
There is a conserved ATPase domain in topoisomerase II (topo II) and heat shock protein 90 (Hsp90) which belong to the GHKL (gyrase, Hsp90, histidine kinase, and MutL) family. The inhibitors that target each of topo II and Hsp90 are intensively studied as anti-cancer drugs since they play very important roles in cell proliferation and survival. Therefore the development of dual targeting anti-cancer drugs for topo II and Hsp90 is suggested to be a promising area. The topo II and Hsp90 inhibitors, known to bind to their ATP binding site, were searched. All the inhibitors investigated were docked to both topo II and Hsp90. Four candidate compounds as possible dual inhibitors were selected by analyzing the molecular docking study. The pharmacophore model of dual inhibitors for topo II and Hsp90 were generated and the design of novel dual inhibitor was proposed.
Collapse
Affiliation(s)
- Kyu-Yeon Jun
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
16
|
Park S, Hong E, Kwak SY, Jun KY, Lee ES, Kwon Y, Na Y. Synthesis and biological evaluation of C1-O-substituted-3-(3-butylamino-2-hydroxy-propoxy)-xanthen-9-one as topoisomerase IIα catalytic inhibitors. Eur J Med Chem 2016; 123:211-225. [PMID: 27484510 DOI: 10.1016/j.ejmech.2016.07.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 07/06/2016] [Accepted: 07/20/2016] [Indexed: 11/30/2022]
Abstract
Topoisomerase II poison blocks the transitorily generated DNA double-strand breaks (DSBs) from religation, thereby causes severe DNA damage and gene toxicity. While topoisomerase II catalytic inhibitor does not form cleavable DNA-enzyme complex because its function attributes to inhibition of the catalytic steps of the enzyme such as before generating DNA DSBs or in the last step of the catalytic cycle after religation. It has been reported that the stabilizing effect of etoposide on transient cleavable DNA-topoisomerase IIβ complex attributes to its secondary malignancy. Therefore, topoisomerase IIα has been considered as more attractive target than topoisomerase IIβ for the development of chemotherapeutic agents. In the previous work, we reported compounds I and II as novel topoisomerase IIα catalytic inhibitors targeting for ATP binding site of human topoisomerase IIα ATP-binding domain. As a continuous work, we have designed and synthesized 43 compounds of C1-O-alkyl and arylalkyl substitiuted compounds with or without methoxy group on ring A. In the topoisomerase IIα inhibitory test, among the tested C1-O-4-chlorophenethyl substituted compounds 37 and 47 were more active than others, and compound 37 showed strongest topoisomerase IIα inhibitory activity with 94.4% and 23.0% inhibition, respectively, at 100 and 20 μM. Compounds 37 and 47 have also showed much enhanced cytotoxic activity against T47D cells; IC50 (μM): 0.63 ± 0.01 and 0.19 ± 0.02, respectively, which are stronger than reference drugs. Band depletion assay and cleavage complex assay results showed compounds 37 and 47 were potential topoisomerase IIα catalytic inhibitor with low DNA damage.
Collapse
Affiliation(s)
- Seojeong Park
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, South Korea
| | - Eunji Hong
- College of Pharmacy, CHA University, Pocheon, 487-010, South Korea
| | - Soo Yeon Kwak
- College of Pharmacy, CHA University, Pocheon, 487-010, South Korea
| | - Kyu-Yeon Jun
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, South Korea
| | - Eung-Seok Lee
- College of Pharmacy, Yeungnam University, Gyeongsan, 712-749, South Korea
| | - Youngjoo Kwon
- College of Pharmacy & Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul, 120-750, South Korea.
| | - Younghwa Na
- College of Pharmacy, CHA University, Pocheon, 487-010, South Korea.
| |
Collapse
|
17
|
Ahmad P, Woo H, Jun KY, Kadi AA, Abdel-Aziz HA, Kwon Y, Rahman AFMM. Design, synthesis, topoisomerase I & II inhibitory activity, antiproliferative activity, and structure-activity relationship study of pyrazoline derivatives: An ATP-competitive human topoisomerase IIα catalytic inhibitor. Bioorg Med Chem 2016; 24:1898-908. [PMID: 26988802 DOI: 10.1016/j.bmc.2016.03.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Revised: 03/07/2016] [Accepted: 03/08/2016] [Indexed: 12/11/2022]
Abstract
A series of pyrazoline derivatives (5) were synthesized in 92-96% yields from chalcones (3) and hydrazides (4). Subsequently, topo-I and IIα-mediated relaxation and antiproliferative activity assays were evaluated for 5. Among the tested compounds, 5h had a very strong topo-I activity of 97% (Camptothecin, 74%) at concentration of 100 μM. Nevertheless, all the compounds 5a-5i showed significant topo II inhibitory activity in the range of 90-94% (Etoposide, 96%) at the same concentration. Cytotoxic potential of these compounds was tested in a panel of three human tumor cell lines, HCT15, BT474 and T47D. All the compounds showed strong activity against HCT15 cell line with IC50 at the range of 1.9-10.4 μM (Adriamycin, 23.0; Etoposide, 6.9; and Camptothecin, 7.1 μM). Moreover, compounds 5c, 5f and 5i were observed to have strong antiproliferative activity against BT474 cell lines. Since, compound 5d showed antiproliferative activity at a very low IC50 thus 5d was then selected to study on their mode of action with diverse methods of ATP competition assay, ATPase assay and DNA-topo IIα cleavable complex assay and the results revealed that it functioned as a ATP-competitive human topoisomerase IIα catalytic inhibitor. Further evaluation of endogenous topo-mediated DNA relaxation in cells has been conducted to find that, 5d inhibited endogenous topo-mediated pBR322 plasmid relaxation is more efficient (78.0 ± 4.7% at 50 μM) than Etoposide (36.0 ± 1.7% at 50 μM).
Collapse
Affiliation(s)
- Pervez Ahmad
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hyunjung Woo
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Kyu-Yeon Jun
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea
| | - Adnan A Kadi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Hatem A Abdel-Aziz
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Applied Organic Chemistry Department, National Research Center, Dokki, Cairo 12622, Egypt
| | - Youngjoo Kwon
- College of Pharmacy, Graduate School of Pharmaceutical Sciences, Ewha Womans University, Seoul 120-750, Republic of Korea.
| | - A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia.
| |
Collapse
|
18
|
Thapa P, Jun KY, Kadayat TM, Park C, Zheng Z, Thapa Magar TB, Bist G, Shrestha A, Na Y, Kwon Y, Lee ES. Design and synthesis of conformationally constrained hydroxylated 4-phenyl-2-aryl chromenopyridines as novel and selective topoisomerase II-targeted antiproliferative agents. Bioorg Med Chem 2015; 23:6454-66. [DOI: 10.1016/j.bmc.2015.08.018] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Revised: 08/13/2015] [Accepted: 08/14/2015] [Indexed: 01/15/2023]
|
19
|
Karki R, Park C, Jun KY, Kadayat TM, Lee ES, Kwon Y. Synthesis and biological activity of 2,4-di-p-phenolyl-6-2-furanyl-pyridine as a potent topoisomerase II poison. Eur J Med Chem 2015; 90:360-78. [DOI: 10.1016/j.ejmech.2014.11.045] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2014] [Revised: 09/29/2014] [Accepted: 11/23/2014] [Indexed: 01/03/2023]
|
20
|
Rahman AFMM, Park SE, Kadi AA, Kwon Y. Fluorescein hydrazones as novel nonintercalative topoisomerase catalytic inhibitors with low DNA toxicity. J Med Chem 2014; 57:9139-51. [PMID: 25333701 DOI: 10.1021/jm501263m] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fluorescein hydrazones (3a-3l) were synthesized in three steps with 86-91% overall yields. Topo I- and IIα-mediated relaxation and cell viability assay were evaluated. 3d inhibited 47% Topo I (camptothecin, 34%) and 20% Topo II (etoposide 24%) at 20 μM. 3l inhibited 61% Topo II (etoposide 24%) at 20 μM. 3d and 3l were further evaluated to determine their mode of action with diverse methods of kDNA decatenation, DNA-Topo cleavage complex, comet, DNA intercalating/unwinding, and Topo IIα-mediated ATP hydrolysis assays. 3d functioned as a nonintercalative dual inhibitor against the catalytic activities of Topo I and Topo IIα. 3l acted as a Topo IIα specific nonintercalative catalytic inhibitor. 3d activated apoptotic proteins as it increased the level of cleaved capase-3 and cleaved PARP in a dose- and time-dependent manner. The dose- and time-dependent increase of G1 phase population was observed by treatment of 3d along with the increase of p27(kip1) and the decrease of cyclin D1 expression.
Collapse
Affiliation(s)
- A F M Motiur Rahman
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University , Riyadh 11451, Saudi Arabia
| | | | | | | |
Collapse
|
21
|
Shchekotikhin AE, Glazunova VA, Dezhenkova LG, Luzikov YN, Buyanov VN, Treshalina HM, Lesnaya NA, Romanenko VI, Kaluzhny DN, Balzarini J, Agama K, Pommier Y, Shtil AA, Preobrazhenskaya MN. Synthesis and evaluation of new antitumor 3-aminomethyl-4,11-dihydroxynaphtho[2,3-f]indole-5,10-diones. Eur J Med Chem 2014; 86:797-805. [DOI: 10.1016/j.ejmech.2014.09.021] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 09/02/2014] [Accepted: 09/06/2014] [Indexed: 12/11/2022]
|
22
|
DNA Binding Property and Antitumor Evaluation of Xanthone with Dimethylamine Side Chain. J Fluoresc 2014; 24:959-66. [DOI: 10.1007/s10895-014-1380-5] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 03/19/2014] [Indexed: 12/27/2022]
|