1
|
Sharma S, Babu MA, Kumar R, Singh TG, Dwivedi AR, Ahmad G, Goel KK, Kumar B. A review on pyrimidine-based pharmacophore as a template for the development of hybrid drugs with anticancer potential. Mol Divers 2025:10.1007/s11030-025-11112-x. [PMID: 39937329 DOI: 10.1007/s11030-025-11112-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 01/07/2025] [Indexed: 02/13/2025]
Abstract
The low efficacy and toxicity of traditional chemotherapy, led by drug resistance of targeted anticancer therapies, have mandated the exploration and development of anticancer molecules. In this league, hybrid drugs, owing to their peculiar multitargeted functionality and structural diversity, could serve as vital leads in this quest for drug discovery. They are plausibly found to offer added advantages considering the improved efficacy, low toxicity, and improved patient compliance. Among numerous heterocycles explored, pyrimidine derivatives epitomize as a valuable resource for the hybrid drug development due to their validated efficacy and versatility. The present review discusses the role of pyrimidine, a diversified pharmacophore in drug development and concepts of hybrid drugs. The study covers the recent advancements in pyrimidine-based hybrid pharmacophores. It delves further into the challenges in hybrid drug development and ongoing research in hybrid drug discovery. Furthermore, the challenges faced in developing hybrid molecules, such as their design and optimization complexities, bioavailability and pharmacokinetics issues, target identification and validation, and off-target effects, are discussed.
Collapse
Affiliation(s)
- Shivam Sharma
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, 281406, India
| | - Roshan Kumar
- Department of Microbiology, Central University of Punjab, VPO-Ghudda, Punjab, 151401, India
- Graphic Era (Deemed to Be University, Clement Town, Dehradun, 248002, India
| | - Thakur Gurjeet Singh
- Centre of Research Impact and Outcome, Chitkara University, Rajpura, Punjab, 140401, India
| | - Ashish Ranjan Dwivedi
- Department of Medicinal Chemistry, GITAM School of Pharmacy Hyderabad Campus GITAM University, Hyderabad, 502329, India
| | - Gazanfar Ahmad
- Prabha Harjilal College of Pharmacy and Paraclinical Sciences, Jammu, Jammu and Kashmir, India
| | - Kapil Kumar Goel
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, Gurukul Kangri (Deemed to Be University), Haridwar, 249404, India.
| | - Bhupinder Kumar
- Department of Pharmaceutical Sciences, Hemvati Nandan Bahuguna Garhwal University (Central University, Dist. Garhwal, Srinagar, Uttarakhand, 246174, India.
| |
Collapse
|
2
|
Chouhan S, Muhammad N, Usmani D, Khan TH, Kumar A. Molecular Sentinels: Unveiling the Role of Sirtuins in Prostate Cancer Progression. Int J Mol Sci 2024; 26:183. [PMID: 39796040 PMCID: PMC11720558 DOI: 10.3390/ijms26010183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Revised: 12/21/2024] [Accepted: 12/27/2024] [Indexed: 01/13/2025] Open
Abstract
Prostate cancer (PCa) remains a critical global health challenge, with high mortality rates and significant heterogeneity, particularly in advanced stages. While early-stage PCa is often manageable with conventional treatments, metastatic PCa is notoriously resistant, highlighting an urgent need for precise biomarkers and innovative therapeutic strategies. This review focuses on the dualistic roles of sirtuins, a family of NAD+-dependent histone deacetylases, dissecting their unique contributions to tumor suppression or progression in PCa depending on the cellular context. It reveals their multifaceted impact on hallmark cancer processes, including sustaining proliferative signaling, evading growth suppressors, activating invasion and metastasis, resisting cell death, inducing angiogenesis, and enabling replicative immortality. SIRT1, for example, fosters chemoresistance and castration-resistant prostate cancer through metabolic reprogramming, immune modulation, androgen receptor signaling, and enhanced DNA repair. SIRT3 and SIRT4 suppress oncogenic pathways by regulating cancer metabolism, while SIRT2 and SIRT6 influence tumor aggressiveness and androgen receptor sensitivity, with SIRT6 promoting metastatic potential. Notably, SIRT5 oscillates between oncogenic and tumor-suppressive roles by regulating key metabolic enzymes; whereas, SIRT7 drives PCa proliferation and metabolic stress adaptation through its chromatin and nucleolar regulatory functions. Furthermore, we provide a comprehensive summary of the roles of individual sirtuins, highlighting their potential as biomarkers in PCa and exploring their therapeutic implications. By examining each of these specific mechanisms through which sirtuins impact PCa, this review underscores the potential of sirtuin modulation to address gaps in managing advanced PCa. Understanding sirtuins' regulatory effects could redefine therapeutic approaches, promoting precision strategies that enhance treatment efficacy and improve outcomes for patients with aggressive disease.
Collapse
Affiliation(s)
- Surbhi Chouhan
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
- Cecil H and Ida Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75235, USA
| | - Naoshad Muhammad
- Department of Radiation Oncology, School of Medicine, Washington University, St. Louis, MO 63130, USA
| | - Darksha Usmani
- Department of Ophthalmology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Tabish H. Khan
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63130, USA
| | - Anil Kumar
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA 91016, USA
| |
Collapse
|
3
|
Binarci B, Kilic EK, Dogan T, Cetin Atalay R, Kahraman DC, Nacak Baytas S. Design, synthesis, and evaluation of novel Indole-Based small molecules as sirtuin inhibitors with anticancer activities. Drug Dev Res 2024; 85:e70008. [PMID: 39428864 DOI: 10.1002/ddr.70008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/22/2024]
Abstract
Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality worldwide, driven mainly by chronic hepatitis infections and metabolic disorders, which highlights the urgent need for novel therapeutic strategies. Sirtuins, particularly SIRT1 are crucial in HCC pathogenesis, making it a promising drug target. Indole-based molecules show potential as therapeutic agents by interacting with key proteins like sirtuins involved in cancer progression. In this study, we designed and synthesized novel indole-based small molecules and investigated their potential sirtuin inhibitory action and anticancer activity on HCC cell lines. Four of the twenty-eight tested small molecules on different cancer types were selected (4 g, 4 h, 4o, and 7j) based on their structure-activity relationship and studied on a panel of HCC cell lines. Compounds had active drug-target interactions with SIRT1 or SIRT2 based on DEEPScreen DTI predictions and docking studies which confirmed that 4o, 4 g, and 7j were most potent in their interaction with SIRT1. Compound 4 g caused the highest sirtuin activity inhibition in vitro and induced G1 arrest and apoptosis in HCC cell lines.
Collapse
Affiliation(s)
- Busra Binarci
- Department of Biological Sciences, METU, Ankara, Turkiye
| | - Ensar Korkut Kilic
- Division of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkiye
| | - Tunca Dogan
- Biological Data Science Lab, Department of Computer Engineering, Hacettepe University, Ankara, Turkiye
- Department of Bioinformatics, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkiye
| | - Rengul Cetin Atalay
- Cancer Systems Biology Laboratory, Department of Health Informatics, Graduate School of Informatics, METU, Ankara, Turkiye
| | - Deniz Cansen Kahraman
- Cancer Systems Biology Laboratory, Department of Health Informatics, Graduate School of Informatics, METU, Ankara, Turkiye
| | - Sultan Nacak Baytas
- Division of Pharmaceutical Sciences, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Gazi University, Ankara, Turkiye
- Department of Pharmaceutical Chemistry, Graduate School of Health Sciences, Gazi University, Ankara, Turkiye
| |
Collapse
|
4
|
Concept of Hybrid Drugs and Recent Advancements in Anticancer Hybrids. Pharmaceuticals (Basel) 2022; 15:ph15091071. [PMID: 36145292 PMCID: PMC9500727 DOI: 10.3390/ph15091071] [Citation(s) in RCA: 79] [Impact Index Per Article: 26.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 08/19/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is a complex disease, and its treatment is a big challenge, with variable efficacy of conventional anticancer drugs. A two-drug cocktail hybrid approach is a potential strategy in recent drug discovery that involves the combination of two drug pharmacophores into a single molecule. The hybrid molecule acts through distinct modes of action on several targets at a given time with more efficacy and less susceptibility to resistance. Thus, there is a huge scope for using hybrid compounds to tackle the present difficulties in cancer medicine. Recent work has applied this technique to uncover some interesting molecules with substantial anticancer properties. In this study, we report data on numerous promising hybrid anti-proliferative/anti-tumor agents developed over the previous 10 years (2011–2021). It includes quinazoline, indole, carbazole, pyrimidine, quinoline, quinone, imidazole, selenium, platinum, hydroxamic acid, ferrocene, curcumin, triazole, benzimidazole, isatin, pyrrolo benzodiazepine (PBD), chalcone, coumarin, nitrogen mustard, pyrazole, and pyridine-based anticancer hybrids produced via molecular hybridization techniques. Overall, this review offers a clear indication of the potential benefits of merging pharmacophoric subunits from multiple different known chemical prototypes to produce more potent and precise hybrid compounds. This provides valuable knowledge for researchers working on complex diseases such as cancer.
Collapse
|
5
|
Kumar S, Patil MT, Salunke DB. Indole based prostate cancer agents. PHYSICAL SCIENCES REVIEWS 2022. [DOI: 10.1515/psr-2021-0131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Cancer weakens the immune system which fails to fight against the rapidly growing cells. Among the various types of cancers, prostate cancer (PCa) is causing greater number of deaths in men after lung cancer, demanding advancement to prevent, detect and treat PCa. Several small molecule heterocycles and few peptides are being used as oncological drugs targeting PCa. Heterocycles are playing crucial role in the development of novel cancer chemotherapeutics as well as immunotherapeutics. Indole skeleton, being a privileged structure has been extensively used for the discovery of novel anticancer agents and the application of indole derivatives against breast cancer is well documented. The present article highlights the usefulness of indole linked heterocyclic compounds as well as the fused indole derivatives against prostate cancer.
Collapse
Affiliation(s)
- Sunil Kumar
- Department of Chemistry and Centre for Advanced Studies in Chemistry , Panjab University , Chandigarh , 160014 , India
- Department of Chemistry , J. C. Bose University of Science and Technology, YMCA , Faridabad 121006 , Haryana , India
| | - Madhuri T. Patil
- Mehr Chand Mahajan DAV College for Women , Sector 36A , Chandigarh 160036 , India
| | - Deepak B. Salunke
- Department of Chemistry and Centre for Advanced Studies in Chemistry , Panjab University , Chandigarh , 160014 , India
- National Interdisciplinary Centre of Vaccine, Immunotherapeutics and Antimicrobials , Panjab University , Chandigarh 160014 , India
| |
Collapse
|
6
|
Liu H, Cui J, Zhang L, Chang G, Wang W. Screening of anti-chronic nonbacterial prostatitis activity of different extractions of the aerial part of Glycyrrhiza uralensis, and network pharmacology research. Biomed Rep 2021; 15:99. [PMID: 34667596 PMCID: PMC8517761 DOI: 10.3892/br.2021.1475] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 08/23/2021] [Indexed: 12/18/2022] Open
Abstract
In the present study, anti-chronic nonbacterial prostatitis (CNP) pharmacological experiments using water and ethanol extraction of the aerial parts of Glycyrrhiza uralensis were performed to select the best active parts by comparing their efficacy in a CNP model established by injecting carrageenin into the ventral lobe of rat prostate. The anti-CNP activities and expression of serum inflammatory factors in rats were also analyzed. A Protein-Protein Interaction network was constructed, and core targets were screened using topology and analyzed using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes. Water and ethanol extraction exhibited good inhibitory effect on the pathological changes of the prostate tissue, the expression of inflammatory factors and fibrosis factors in CNP rats, whereas no differences were observed compared with the positive control drug. Water extraction was more effective and significantly reduced PGE2 expression (P<0.05). Network pharmacology assays showed 15 active components in the aerial part of Glycyrrhiza uralensis, and 9 key CNP therapeutic targets of the aerial parts of Glycyrrhiza uralensis were identified. The effect of water exraction on chronic prostatitis rats was significant. The aerial part of Glycyrrhiza uralensis downregulated the levels of inflammatory factors and inhibited proinflammatory gene transcription, reduced oxidative stress response, inhibited cell survival pathways, regulated sex hormone levels, prevented immunostimulation and attenuated inflammation. This study provides a theoretical reference for the development of anti-CNP agents, and offers a novel methodology for identifying and clarifying the mechanisms underlying the efficacy of the anti-CNP components in the aerial part of Glycyrrhiza uralensis.
Collapse
Affiliation(s)
- Haifan Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medicinal Plant Development, Beijing 100193, P.R. China
| | - Jie Cui
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medicinal Plant Development, Beijing 100193, P.R. China
| | - Lin Zhang
- Beijing University of Chinese Medicine, Beijing 102488, P.R. China
| | - Guanhua Chang
- Beijing University of Chinese Medicine, Beijing 102488, P.R. China
| | - Wenquan Wang
- Chinese Academy of Medical Sciences and Peking Union Medical College Institute of Medicinal Plant Development, Beijing 100193, P.R. China.,Engineering Research Center of Good Agricultural Practice for Chinese Crude Drugs, Ministry of Education, Beijing 100102, P.R. China
| |
Collapse
|
7
|
Ma J, Li J, Guo P, Liao X, Cheng H. Synthesis and antitumor activity of novel indole derivatives containing α-aminophosphonate moieties. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.103256] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
8
|
Song F, Bian Y, Liu J, Li Z, Zhao L, Fang J, Lai Y, Zhou M. Indole Alkaloids, Synthetic Dimers and Hybrids with Potential In Vivo Anticancer Activity. Curr Top Med Chem 2021; 21:377-403. [PMID: 32901583 DOI: 10.2174/1568026620666200908162311] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/02/2020] [Accepted: 08/12/2020] [Indexed: 11/22/2022]
Abstract
Indole, a heterocyclic organic compound, is one of the most promising heterocycles found in natural and synthetic sources since its derivatives possess fascinating structural diversity and various therapeutic properties. Indole alkaloids, synthetic dimers and hybrids could act on diverse targets in cancer cells, and consequently, possess potential antiproliferative effects on various cancers both in vitro and in vivo. Vinblastine, midostaurin, and anlotinib as the representative of indole alkaloids, synthetic dimers and hybrids respectively, have already been clinically applied to treat many types of cancers, demonstrating indole alkaloids, synthetic dimers and hybrids are useful scaffolds for the development of novel anticancer agents. Covering articles published between 2010 and 2020, this review emphasizes the recent development of indole alkaloids, synthetic dimers and hybrids with potential in vivo therapeutic application for cancers.
Collapse
Affiliation(s)
- Feng Song
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Yunqiang Bian
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Jing Liu
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Zhenghua Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Li Zhao
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, Shandong, China
| | - Junman Fang
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Yonghong Lai
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| | - Meng Zhou
- School of Life Sciences, Dezhou University, Dezhou 253023, Shandong, China
| |
Collapse
|
9
|
Mir RH, Mohi-ud-din R, Wani TU, Dar MO, Shah AJ, Lone B, Pooja C, Masoodi MH. Indole: A Privileged Heterocyclic Moiety in the Management of Cancer. CURR ORG CHEM 2021. [DOI: 10.2174/1385272825666210208142108] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Heterocyclic are a class of compounds that are intricately entwined into life processes.
Almost more than 90% of marketed drugs carry heterocycles. Synthetic chemistry, in
turn, allocates a cornucopia of heterocycles. Among the heterocycles, indole, a bicyclic structure
consisting of a six-membered benzene ring fused to a five-membered pyrrole ring with
numerous pharmacophores that generate a library of various lead molecules. Due to its profound
pharmacological profile, indole got wider attention around the globe to explore it fully
in the interest of mankind. The current review covers recent advancements on indole in the
design of various anti-cancer agents acting by targeting various enzymes or receptors, including
(HDACs), sirtuins, PIM kinases, DNA topoisomerases, and σ receptors.
Collapse
Affiliation(s)
- Reyaz Hassan Mir
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Roohi Mohi-ud-din
- Pharmacognosy Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar, 190006, Kashmir, India
| | - Taha Umair Wani
- Pharmaceutics Lab, Department of Pharmaceutical Sciences, School of Applied Sciences and Technology, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Mohammad Ovais Dar
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, Mohali, Punjab, 160062, India
| | - Abdul Jaleel Shah
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| | - Bashir Lone
- Natural Product Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu-180001, India
| | - Chawla Pooja
- Department of Pharmaceutical Analysis, ISF College of Pharmacy, Moga-142001, India
| | - Mubashir Hussain Masoodi
- Pharmaceutical Chemistry Division, Department of Pharmaceutical Sciences, University of Kashmir, Hazratbal, Srinagar-190006, Kashmir, India
| |
Collapse
|
10
|
Shalini, Kumar V. Have molecular hybrids delivered effective anti-cancer treatments and what should future drug discovery focus on? Expert Opin Drug Discov 2020; 16:335-363. [PMID: 33305635 DOI: 10.1080/17460441.2021.1850686] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
INTRODUCTION Cancer continues to be a big threat and its treatment is a huge challenge among the medical fraternity. Conventional anti-cancer agents are losing their efficiency which highlights the need to introduce new anti-cancer entities for treating this complex disease. A hybrid molecule has a tendency to act through varied modes of action on multiple targets at a given time. Thus, there is the significant scope with hybrid compounds to tackle the existing limitations of cancer chemotherapy. AREA COVERED This perspective describes the most significant hybrids that spring hope in the field of cancer chemotherapy. Several hybrids with anti-proliferative/anti-tumor properties currently approved or in clinical development are outlined, along with a description of their mechanism of action and identified drug targets. EXPERT OPINION The success of molecular hybridization in cancer chemotherapy is quite evident by the number of molecules entering into clinical trials and/or have entered the drug market over the past decade. Indeed, the recent advancements and co-ordinations in the interface between chemistry, biology, and pharmacology will help further the advancement of hybrid chemotherapeutics in the future.List of abbreviations: Deoxyribonucleic acid, DNA; national cancer institute, NCI; peripheral blood mononuclear cells, PBMC; food and drug administration, FDA; histone deacetylase, HDAC; epidermal growth factor receptor, EGFR; vascular endothelial growth factor receptor, VEGFR; suberoylanilide hydroxamic acid, SAHA; farnesyltransferase inhibitor, FTI; adenosine triphosphate, ATP; Tamoxifen, TAM; selective estrogen receptor modulator, SERM; structure activity relationship, SAR; estrogen receptor, ER; lethal dose, LD; half maximal growth inhibitory concentration, GI50; half maximal inhibitory concentration, IC50.
Collapse
Affiliation(s)
- Shalini
- Department of Chemistry, Guru Nanak Dev University, Amritsar-India
| | - Vipan Kumar
- Department of Chemistry, Guru Nanak Dev University, Amritsar-India
| |
Collapse
|
11
|
Gopi C, Dhanaraju MD. Synthesis and antioxidant properties of 2-(3-(hydroxyimino)methyl)-1H-indol-1-yl)acetamide derivatives. FUTURE JOURNAL OF PHARMACEUTICAL SCIENCES 2020. [DOI: 10.1186/s43094-020-00090-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
The main aim of this work was to synthesise a novel N-(substituted phenyl)-2-(3-(hydroxyimino) methyl)-1H-indol-1-yl) acetamide derivatives and evaluate their antioxidant activity. These compounds were prepared by a condensation reaction between 1H-indole carbaldehyde oxime and 2-chloro acetamide derivatives. The newly synthesised compound structures were characterised by FT-IR, 1H-NMR, mass spectroscopy and elemental analysis. Furthermore, the above-mentioned compounds were screened for antioxidant activity by using ferric reducing antioxidant power (FRAP) and 1,1-diphenyl-2-picrylhydrazyl (DPPH) methods.
Result
The antioxidant activity result reveals that most of the compounds were exhibiting considerable activity in both methods and the values are very closer to the standards. Among the synthesised compounds, compound 3j, 3a and 3k were shown remarkable activity at low concentration.
Conclusion
Compounds 3j, 3a and 3k were shown highest activity among the prepared analogues due to the attachment of halogens connected at the appropriate place in the phenyl ring. Hence, these substituted phenyl rings considered as a perfect side chain for the indole nucleus for the development of the new antioxidant agents.
Collapse
|
12
|
Bülbül B, Küçükgüzel İ. Microsomal Prostaglandin E2 Synthase-1 as a New Macromolecular Drug Target in the Prevention of Inflammation and Cancer. Anticancer Agents Med Chem 2020; 19:1205-1222. [PMID: 30827263 DOI: 10.2174/1871520619666190227174137] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/29/2019] [Accepted: 02/05/2019] [Indexed: 12/13/2022]
Abstract
BACKGROUND Cancer is one of the most life-threatening diseases worldwide. Since inflammation is considered to be one of the known characteristics of cancer, the activity of PGE2 has been paired with different tumorigenic steps such as increased tumor cell proliferation, resistance to apoptosis, increased invasiveness, angiogenesis and immunosuppression. OBJECTIVE It has been successfully demonstrated that inhibition of mPGES-1 prevented inflammation in preclinical studies. However, despite the crucial roles of mPGEs-1 and PGE2 in tumorigenesis, there is not much in vivo study on mPGES-1 inhibition in cancer therapy. The specificity of mPGEs-1 enzyme and its low expression level under normal conditions makes it a promising drug target with a low risk of side effects. METHODS A comprehensive literature search was performed for writing this review. An updated view on PGE2 biosynthesis, PGES isoenzyme family and its pharmacology and the latest information about inhibitors of mPGES-1 have been discussed. RESULTS In this study, it was aimed to highlight the importance of mPGES-1 and its inhibition in inflammationrelated cancer and other inflammatory conditions. Information about PGE2 biosynthesis, its role in inflammationrelated pathologies were also provided. We kept the noncancer-related inflammatory part short and tried to bring together promising molecules or scaffolds. CONCLUSION The information provided in this review might be useful to researchers in designing novel and potent mPGES-1 inhibitors for the treatment of cancer and inflammation.
Collapse
Affiliation(s)
- Bahadır Bülbül
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| | - İlkay Küçükgüzel
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Marmara University, Istanbul, Turkey
| |
Collapse
|
13
|
Chiba S, Ohue M, Gryniukova A, Borysko P, Zozulya S, Yasuo N, Yoshino R, Ikeda K, Shin WH, Kihara D, Iwadate M, Umeyama H, Ichikawa T, Teramoto R, Hsin KY, Gupta V, Kitano H, Sakamoto M, Higuchi A, Miura N, Yura K, Mochizuki M, Ramakrishnan C, Thangakani AM, Velmurugan D, Gromiha MM, Nakane I, Uchida N, Hakariya H, Tan M, Nakamura HK, Suzuki SD, Ito T, Kawatani M, Kudoh K, Takashina S, Yamamoto KZ, Moriwaki Y, Oda K, Kobayashi D, Okuno T, Minami S, Chikenji G, Prathipati P, Nagao C, Mohsen A, Ito M, Mizuguchi K, Honma T, Ishida T, Hirokawa T, Akiyama Y, Sekijima M. A prospective compound screening contest identified broader inhibitors for Sirtuin 1. Sci Rep 2019; 9:19585. [PMID: 31863054 PMCID: PMC6925144 DOI: 10.1038/s41598-019-55069-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Accepted: 11/21/2019] [Indexed: 12/17/2022] Open
Abstract
Potential inhibitors of a target biomolecule, NAD-dependent deacetylase Sirtuin 1, were identified by a contest-based approach, in which participants were asked to propose a prioritized list of 400 compounds from a designated compound library containing 2.5 million compounds using in silico methods and scoring. Our aim was to identify target enzyme inhibitors and to benchmark computer-aided drug discovery methods under the same experimental conditions. Collecting compound lists derived from various methods is advantageous for aggregating compounds with structurally diversified properties compared with the use of a single method. The inhibitory action on Sirtuin 1 of approximately half of the proposed compounds was experimentally accessed. Ultimately, seven structurally diverse compounds were identified.
Collapse
Affiliation(s)
- Shuntaro Chiba
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, 226-8501, Japan.,Advanced Computational Drug Discovery Unit, Tokyo Institute of Technology, J3-23-4259 Nagatsutacho, Midori-ku, Yokohama, 226-8501, Japan.,RIKEN Medical Sciences Innovation Hub Program, 1-7-22, Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Masahito Ohue
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Advanced Computational Drug Discovery Unit, Tokyo Institute of Technology, J3-23-4259 Nagatsutacho, Midori-ku, Yokohama, 226-8501, Japan
| | | | - Petro Borysko
- Bienta/Enamine Ltd., 78 Chervonotkatska Street 78, Kyiv, 02094, Ukraine
| | - Sergey Zozulya
- Bienta/Enamine Ltd., 78 Chervonotkatska Street 78, Kyiv, 02094, Ukraine
| | - Nobuaki Yasuo
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Research Fellow of the Japan Society for the Promotion of Science DC1, Tokyo, Japan
| | - Ryunosuke Yoshino
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, 226-8501, Japan.,Advanced Computational Drug Discovery Unit, Tokyo Institute of Technology, J3-23-4259 Nagatsutacho, Midori-ku, Yokohama, 226-8501, Japan.,Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki, 305-8575, Japan
| | - Kazuyoshi Ikeda
- Faculty of Pharmacy, Keio University, 1-5-30 Shibakoen, Minato-ku, Tokyo, 105-8512, Japan
| | - Woong-Hee Shin
- Department of Biological Science, Purdue University, West Lafayette, Indiana, 47907, USA
| | - Daisuke Kihara
- Department of Biological Science, Purdue University, West Lafayette, Indiana, 47907, USA.,Department of Computer Science, Purdue University, Indiana, 47907, USA
| | - Mitsuo Iwadate
- Department of Biological Sciences, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Hideaki Umeyama
- Department of Biological Sciences, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Takaaki Ichikawa
- Department of Biological Sciences, Chuo University, 1-13-27 Kasuga, Bunkyo-ku, Tokyo, 112-8551, Japan
| | - Reiji Teramoto
- Discovery technology research department, Research division, Chugai Pharmaceutical Co.,Ltd., 200, Kajiwara, Kamakura, Kanagawa, 247-8530, Japan
| | - Kun-Yi Hsin
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa, 904-0495, Japan
| | - Vipul Gupta
- The Systems Biology Research Institute, Falcon Building 5F, 5-6-9 Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan
| | - Hiroaki Kitano
- Okinawa Institute of Science and Technology Graduate University, 1919-1 Tancha, Onna-son, Kunigami, Okinawa, 904-0495, Japan.,The Systems Biology Research Institute, Falcon Building 5F, 5-6-9 Shirokanedai, Minato-ku, Tokyo, 108-0071, Japan.,Center for Integrative Medical Sciences, RIKEN, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama City, Kanagawa, 230-0045, Japan
| | - Mika Sakamoto
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Akiko Higuchi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Nobuaki Miura
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan
| | - Kei Yura
- Graduate School of Humanities and Sciences, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan.,Center for Simulation Science and Informational Biology, Ochanomizu University, 2-1-1 Otsuka, Bunkyo-ku, Tokyo, 112-8610, Japan.,School of Advanced Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo, 169-8555, Japan
| | - Masahiro Mochizuki
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, 226-8501, Japan.,IMSBIO Co., Ltd., Level 6 OWL TOWER, 4-21-1 Higashi-Ikebukuro, Toshima-ku, Tokyo, 170-0013, Japan
| | - Chandrasekaran Ramakrishnan
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| | - A Mary Thangakani
- Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| | - D Velmurugan
- CAS in Crystallography and Biophysics and Bioinformatics Facility, University of Madras, Chennai, 600025, Tamilnadu, India
| | - M Michael Gromiha
- Advanced Computational Drug Discovery Unit, Tokyo Institute of Technology, J3-23-4259 Nagatsutacho, Midori-ku, Yokohama, 226-8501, Japan.,Department of Biotechnology, Bhupat Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, 600036, Tamilnadu, India
| | - Itsuo Nakane
- Okazaki City Hall, 2-9 Juo-cho Okazaki, Aichi, 444-8601, Japan
| | - Nanako Uchida
- IQVIA Services Japan K.K., 4-10-18 Takanawa Minato-ku, Tokyo, 108-0074, Japan
| | - Hayase Hakariya
- Institute for Chemical Research, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Training Program of Leaders for Integrated Medical System (LIMS), Kyoto University, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Modong Tan
- Department of Chemistry & Biotechnology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8654, Japan
| | - Hironori K Nakamura
- Biomodeling Research Co., Ltd., 1-704-2 Uedanishi, Tenpaku-ku, Nagoya, 468-0058, Japan
| | - Shogo D Suzuki
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan
| | - Tomoki Ito
- Faculty of Medicine, Akita University, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Masahiro Kawatani
- Faculty of Medicine, Akita University, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kentaroh Kudoh
- Faculty of Medicine, Akita University, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Sakurako Takashina
- Faculty of Medicine, Akita University, 1-1-1 Hondo, Akita, 010-8543, Japan
| | - Kazuki Z Yamamoto
- Isotope Science Center, The University of Tokyo, 2-11- 16, Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Yoshitaka Moriwaki
- Department of Biotechnology, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-8657, Japan
| | - Keita Oda
- Google Japan Inc., 6-10-1 Roppongi, Minato-ku, Tokyo, 106-6126, Japan.,Otemachi Bldg. 3F, 1-6-1, Preferred Networks, Otemachi, Chiyoda-ku, Tokyo, 100-0004, Japan
| | - Daisuke Kobayashi
- Department of Computational Science and Engineering, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Tatsuya Okuno
- Tosei General Hospital, 160 Nishioiwake-cho, Seto, Aichi, 489-8642, Japan
| | - Shintaro Minami
- Department of Complex Systems Science, Graduate School of Information Science, Nagoya University, Furocho, Chikusa, Nagoya, 464-8601, Japan
| | - George Chikenji
- Department of Computational Science and Engineering, Nagoya University, Furocho, Chikusa-ku, Nagoya, 464-8603, Japan
| | - Philip Prathipati
- National Institutes for Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Chioko Nagao
- National Institutes for Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Attayeb Mohsen
- National Institutes for Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Mari Ito
- National Institutes for Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Kenji Mizuguchi
- National Institutes for Biomedical Innovation, Health and Nutrition, Osaka, 567-0085, Japan
| | - Teruki Honma
- Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Advanced Computational Drug Discovery Unit, Tokyo Institute of Technology, J3-23-4259 Nagatsutacho, Midori-ku, Yokohama, 226-8501, Japan.,RIKEN Center for Biosystems Dynamic Research, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan
| | - Takashi Ishida
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, 226-8501, Japan.,Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Advanced Computational Drug Discovery Unit, Tokyo Institute of Technology, J3-23-4259 Nagatsutacho, Midori-ku, Yokohama, 226-8501, Japan
| | - Takatsugu Hirokawa
- Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.,Division of Biomedical Science, Faculty of Medicine, University of Tsukuba, 1-1-1 Tennodai, Tsukuba-shi, Ibaraki, 305-8575, Japan.,Initiative for Parallel Bioinformatics, Level 14 Hibiya Central Building, 1-2-9 Nishi-Shimbashi Minato-Ku, Tokyo, 105-0003, Japan
| | - Yutaka Akiyama
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, 226-8501, Japan.,Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan.,Advanced Computational Drug Discovery Unit, Tokyo Institute of Technology, J3-23-4259 Nagatsutacho, Midori-ku, Yokohama, 226-8501, Japan.,Molecular Profiling Research Center for Drug Discovery, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, 135-0064, Japan.,Initiative for Parallel Bioinformatics, Level 14 Hibiya Central Building, 1-2-9 Nishi-Shimbashi Minato-Ku, Tokyo, 105-0003, Japan
| | - Masakazu Sekijima
- Education Academy of Computational Life Sciences (ACLS), Tokyo Institute of Technology, 4259 Nagatsutacho, Midori-ku, Yokohama, 226-8501, Japan. .,Department of Computer Science, School of Computing, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo, 152-8550, Japan. .,Advanced Computational Drug Discovery Unit, Tokyo Institute of Technology, J3-23-4259 Nagatsutacho, Midori-ku, Yokohama, 226-8501, Japan. .,Initiative for Parallel Bioinformatics, Level 14 Hibiya Central Building, 1-2-9 Nishi-Shimbashi Minato-Ku, Tokyo, 105-0003, Japan.
| |
Collapse
|
14
|
Indole: A privileged scaffold for the design of anti-cancer agents. Eur J Med Chem 2019; 183:111691. [DOI: 10.1016/j.ejmech.2019.111691] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Revised: 09/05/2019] [Accepted: 09/07/2019] [Indexed: 12/21/2022]
|
15
|
Manjula R, Gokhale N, Unni S, Deshmukh P, Reddyrajula R, Srinivas Bharath M, Dalimba U, Padmanabhan B. Design, synthesis, in-vitro evaluation and molecular docking studies of novel indole derivatives as inhibitors of SIRT1 and SIRT2. Bioorg Chem 2019; 92:103281. [DOI: 10.1016/j.bioorg.2019.103281] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 07/29/2019] [Accepted: 09/11/2019] [Indexed: 12/29/2022]
|
16
|
Delman M, Avcı ST, Akçok İ, Kanbur T, Erdal E, Çağır A. Antiproliferative activity of (R)-4'-methylklavuzon on hepatocellular carcinoma cells and EpCAM +/CD133 + cancer stem cells via SIRT1 and Exportin-1 (CRM1) inhibition. Eur J Med Chem 2019; 180:224-237. [PMID: 31306909 DOI: 10.1016/j.ejmech.2019.07.024] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/07/2019] [Accepted: 07/08/2019] [Indexed: 12/12/2022]
Abstract
Cytotoxic effects of (R)-4'-methylklavuzon were investigated on hepatocellular carcinoma cells (HuH-7 and HepG2) and HuH-7 EpCAM+/CD133+ cancer stem cells. IC50 of (R)-4'-methylklavuzon was found as 1.25 μM for HuH-7 parental cells while it was found as 2.50 μM for HuH-7 EpCAM+/CD133+ cancer stem cells. (R)-4'-methylklavuzon tended to show more efficient in vitro cytotoxicity with its lower IC50 values on hepatocellular carcinoma cell lines compared to its lead molecule, goniothalamin and FDA-approved drugs, sorafenib and regorafenib. Cell-based Sirtuin/HDAC enzyme activity measurements revealed that endogenous Sirtuin/HDAC enzymes were reduced by 40% compared to control. SIRT1 protein levels were upregulated indicating triggered DNA repair mechanism. p53 was overexpressed in HepG2 cells. (R)-4'-methylklavuzon inhibited CRM1 protein providing increased retention of p53 and RIOK2 protein in the nucleus. HuH-7 parental and EpCAM+/CD133+ cancer stem cell spheroids lost intact morphology. 3D HepG2 spheroid viabilities were decreased in a correlation with upregulation in p53 protein levels.
Collapse
Affiliation(s)
- Murat Delman
- Department of Biotechnology and Bioengineering, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Sanem Tercan Avcı
- Izmir Biomedicine and Genome Center, 35340, Balcova, Izmir, Turkey; Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey
| | - İsmail Akçok
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Tuğçe Kanbur
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey
| | - Esra Erdal
- Izmir Biomedicine and Genome Center, 35340, Balcova, Izmir, Turkey; Department of Medical Biology and Genetics, Faculty of Medicine, Dokuz Eylul University, 35340, Balcova, Izmir, Turkey.
| | - Ali Çağır
- Department of Chemistry, Faculty of Science, Izmir Institute of Technology, 35430, Urla, Izmir, Turkey.
| |
Collapse
|
17
|
A new and efficient method for the synthesis of 3-(2-nitrophenyl)pyruvic acid derivatives and indoles based on the Reissert reaction. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.09.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
18
|
Indole in the target-based design of anticancer agents: A versatile scaffold with diverse mechanisms. Eur J Med Chem 2018; 150:9-29. [DOI: 10.1016/j.ejmech.2018.02.065] [Citation(s) in RCA: 175] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/13/2018] [Accepted: 02/20/2018] [Indexed: 12/25/2022]
|
19
|
Gokhale N, Dalimba U, Kumsi M. Facile synthesis of indole-pyrimidine hybrids and evaluation of their anticancer and antimicrobial activity. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2015.09.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
20
|
Crocetti L, Schepetkin IA, Ciciani G, Giovannoni MP, Guerrini G, Iacovone A, Khlebnikov AI, Kirpotina LN, Quinn MT, Vergelli C. Synthesis and Pharmacological Evaluation of Indole Derivatives as Deaza Analogues of Potent Human Neutrophil Elastase Inhibitors. Drug Dev Res 2016; 77:285-99. [PMID: 27474878 DOI: 10.1002/ddr.21323] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2016] [Accepted: 07/16/2016] [Indexed: 01/23/2023]
Abstract
Preclinical Research A number of N-benzoylindoles were designed and synthesized as deaza analogs of previously reported potent and selective HNE inhibitors with an indazole scaffold. The new compounds containing substituents and functions that were most active in the previous series were active in the micromolar range (the most potent had IC50 = 3.8 μM) or inactive. These results demonstrated the importance of N-2 in the indazole nucleus. Docking studies performed on several compounds containing the same substituents but with an indole or an indazole scaffold, respectively, highlight interesting aspects concerning the molecule orientation and H-bonding interactions, which could help to explain the lower activity of this new series. Drug Dev Res, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Letizia Crocetti
- NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Igor A Schepetkin
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717
| | - Giovanna Ciciani
- NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Maria Paola Giovannoni
- NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Gabriella Guerrini
- NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Antonella Iacovone
- NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| | - Andrei I Khlebnikov
- Department of Biotechnology and Organic Chemistry, Tomsk Polytechnic University, Tomsk 634050, Russia and Department of Chemistry, Altai State Technical University, Barnaul, Russia
| | - Liliya N Kirpotina
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717
| | - Mark T Quinn
- Department of Microbiology and Immunology, Montana State University, Bozeman, MT, 59717
| | - Claudia Vergelli
- NEUROFARBA, Sezione di Farmaceutica e Nutraceutica, Università degli Studi di Firenze, Via Ugo Schiff 6, 50019 Sesto Fiorentino, Italy
| |
Collapse
|
21
|
Kadioglu O, Efferth T. Peptide aptamer identified by molecular docking targeting translationally controlled tumor protein in leukemia cells. Invest New Drugs 2016; 34:515-21. [DOI: 10.1007/s10637-016-0339-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Accepted: 03/04/2016] [Indexed: 11/29/2022]
|
22
|
|
23
|
Gokhale N, Panathur N, Dalimba U, Nayak PG, Pai KSR. Novel Indole‐Quinazolinone Based Amides as Cytotoxic Agents. J Heterocycl Chem 2016; 53:513-524. [DOI: 10.1002/jhet.2403] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Indole‐quinazolinone hybrids with active amides were synthesized, characterized, and assessed for their cytotoxicity. Two molecules displayed substantial activity in sulphorhodamine B assay method.
Collapse
Affiliation(s)
- Nikhila Gokhale
- Organic Chemistry Laboratory, Department of Chemistry National Institute of Technology Karnataka Surathkal, Srinivasanagar Mangalore 575025 India
| | - Naveen Panathur
- Organic Chemistry Laboratory, Department of Chemistry National Institute of Technology Karnataka Surathkal, Srinivasanagar Mangalore 575025 India
| | - Udayakumar Dalimba
- Organic Chemistry Laboratory, Department of Chemistry National Institute of Technology Karnataka Surathkal, Srinivasanagar Mangalore 575025 India
| | - Pawan G. Nayak
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences Manipal University Manipal 576104 Karnataka
| | - K. Sreedhar Ranganath Pai
- Department of Pharmacology, Manipal College of Pharmaceutical Sciences Manipal University Manipal 576104 Karnataka
| |
Collapse
|
24
|
Pulla VK, Sriram DS, Viswanadha S, Sriram D, Yogeeswari P. Energy-Based Pharmacophore and Three-Dimensional Quantitative Structure–Activity Relationship (3D-QSAR) Modeling Combined with Virtual Screening To Identify Novel Small-Molecule Inhibitors of Silent Mating-Type Information Regulation 2 Homologue 1 (SIRT1). J Chem Inf Model 2016; 56:173-87. [DOI: 10.1021/acs.jcim.5b00220] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Venkat Koushik Pulla
- Computer-Aided
Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science−Pilani, Hyderabad Campus, Hyderabad−500078, Telangana, India
| | - Dinavahi Saketh Sriram
- Computer-Aided
Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science−Pilani, Hyderabad Campus, Hyderabad−500078, Telangana, India
- Incozen Therapeutics
Private Limited, 450, Alexandria Knowledge
Park, Phase-I, Shameerpet, Hyderabad−500078, Telangana, India
| | - Srikant Viswanadha
- Incozen Therapeutics
Private Limited, 450, Alexandria Knowledge
Park, Phase-I, Shameerpet, Hyderabad−500078, Telangana, India
| | - Dharmarajan Sriram
- Computer-Aided
Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science−Pilani, Hyderabad Campus, Hyderabad−500078, Telangana, India
- Yogee’s Bioinnovations
Private Limited, Room 5, Technology
Business Incubator, BITS-Pilani, Hyderabad campus, Shameerpet, Hyderabad−500078, Telangana, India
| | - Perumal Yogeeswari
- Computer-Aided
Drug Design Laboratory, Department of Pharmacy, Birla Institute of Technology and Science−Pilani, Hyderabad Campus, Hyderabad−500078, Telangana, India
- Yogee’s Bioinnovations
Private Limited, Room 5, Technology
Business Incubator, BITS-Pilani, Hyderabad campus, Shameerpet, Hyderabad−500078, Telangana, India
| |
Collapse
|
25
|
Panathur N, Gokhale N, Dalimba U, Koushik PV, Yogeeswari P, Sriram D. New indole–isoxazolone derivatives: Synthesis, characterisation and in vitro SIRT1 inhibition studies. Bioorg Med Chem Lett 2015; 25:2768-72. [DOI: 10.1016/j.bmcl.2015.05.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2015] [Revised: 04/06/2015] [Accepted: 05/08/2015] [Indexed: 10/23/2022]
|
26
|
Pulla VK, Sriram DS, Soni V, Viswanadha S, Sriram D, Yogeeswari P. Targeting NAMPT for Therapeutic Intervention in Cancer and Inflammation: Structure-Based Drug Design and Biological Screening. Chem Biol Drug Des 2015; 86:881-94. [PMID: 25850461 DOI: 10.1111/cbdd.12562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Revised: 03/04/2015] [Accepted: 03/12/2015] [Indexed: 12/26/2022]
Abstract
Nicotinamide phosphoribosyltransferase (NAMPT) is a rate limiting enzyme that plays an important role in the synthesis of nicotinamide adenine dinucleotide (NAD) via a salvage pathway. Along with a role in bioenergetics, NAMPT regulates the activity of proteins such as SIRT-1 that utilize NAD as a cofactor. As NAD metabolism is usually high in diseased conditions, it has been hypothesized and proven that NAMPT is over expressed in various cancers and inflammatory disorders. Inhibitors targeting NAMPT could therefore be useful in treating disorders arising from aberrant NAMPT signalling. In this study, inhibitors against NAMPT were designed using an energy-based pharmacophore strategy and evaluated for efficacy in cellular assays. Besides reducing cellular pools of NAD and NMN, NAMPT inhibitors decreased concentrations of reactive oxygen species as well as mRNA levels of TNFα and IL6, thereby implicating their potential in alleviating the inflammatory process. In addition, reduced NAD levels corroborated with an induction of apoptosis in prostate cancer cell lines.
Collapse
Affiliation(s)
- Venkat K Pulla
- Computer-Aided Drug Design Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, AP, 500078, India
| | - Dinavahi S Sriram
- Computer-Aided Drug Design Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, AP, 500078, India.,Incozen Therapeutics Private Limited, 450, Alexandria Knowledge park, Phase-I, Shameerpet, Hyderabad, AP, 500078, India
| | - Vijay Soni
- Computer-Aided Drug Design Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, AP, 500078, India
| | - Srikant Viswanadha
- Incozen Therapeutics Private Limited, 450, Alexandria Knowledge park, Phase-I, Shameerpet, Hyderabad, AP, 500078, India
| | - Dharmarajan Sriram
- Computer-Aided Drug Design Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, AP, 500078, India
| | - Perumal Yogeeswari
- Computer-Aided Drug Design Lab, Department of Pharmacy, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, AP, 500078, India
| |
Collapse
|
27
|
Gokhale N, Panathur N, Dalimba U, Kumsi M. Indole-3-carbinol and 1,3,4-Oxadiazole Hybrids: Synthesis and Study of Anti-Proliferative and Anti-Microbial Activity. Aust J Chem 2015. [DOI: 10.1071/ch15116] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In the present study, molecular hybrids of indole-3-carbinol and 1,3,4-oxadiazole-2-thiols have been designed and synthesized. The thiol analogues consisted of diversely substituted benzyl and alkyl groups with different electronic properties. The structures of all the newly synthesized scaffolds and target compounds were ascertained using 1H NMR, 13C NMR, mass spectrometry, and elemental analyses. All the final compounds were screened in vitro for their anti-proliferative and anti-microbial activity. Three compounds showed excellent anti-proliferative activity with more than 70 % cell growth inhibition against three cancer cell lines, HepG2 (human liver hepatocellular carcinoma), HeLa (human cervix carcinoma), and MCF-7 (human breast carcinoma). In the anti-microbial studies, compounds with electron-withdrawing fluoro or nitro substituent displayed appreciable activity similar to that of standard drugs. Also, the final compounds are non-toxic to non-cancerous Vero cell line.
Collapse
|