1
|
Islam MD, Saha JK, Marufa SS, Kundu TK, Hossain I, Nishino H, Alam MS, Haque MA, Rahman MM. Synthesis, antibacterial activity, in silico ADMET prediction, docking, and molecular dynamics studies of substituted phenyl and furan ring containing thiazole Schiff base derivatives. PLoS One 2025; 20:e0318999. [PMID: 40063584 PMCID: PMC11892886 DOI: 10.1371/journal.pone.0318999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 01/24/2025] [Indexed: 05/13/2025] Open
Abstract
This study synthesized eighteen phenyl and furan rings containing thiazole Schiff base derivatives 2(a-r) in five series, and spectral analyses confirmed their structures. The in vitro antibacterial activities of the synthesized analogs against two gram-positive and two gram-negative bacteria were evaluated by disk diffusion technique. Compounds (2d) and (2n) produced prominently high zone of inhibition with 48.3 ± 0.6 mm and 45.3 ± 0.6 mm against B. subtilis, respectively, compared to standard ceftriaxone (20.0 ± 1.0 mm). However, the antibacterial potency of the compounds with furan ring was more notable than that of phenyl ring-containing derivatives. Molecular docking and dynamic study were performed based on the wet lab outcomes of (2d) and (2n), where both derivatives remained in the binding site of the receptors during the whole simulation time with RMSD and RMSF values below 2 nm. In silico ADMET prediction studies of the synthesized compounds validated their oral bioavailability. A more detailed study of the quantitative structure-activity relationship is required to predict structural modification on bioactivity and MD simulation to understand their therapeutic potential and pharmacokinetics.
Collapse
Affiliation(s)
- Md. Din Islam
- Department of Chemistry, Chittagong University of Engineering & Technology, Chattogram, Bangladesh
| | | | | | | | - Ismail Hossain
- Department of Chemistry, Jagannath University, Dhaka , Bangladesh
| | - Hiroshi Nishino
- Department of Chemistry, Graduate School of Science and Technology, Kumamoto University, Kumamoto, Japan
| | | | - Md. Aminul Haque
- Department of Chemistry, Jagannath University, Dhaka , Bangladesh
| | | |
Collapse
|
2
|
Mehmood H, Haroon M, Khalid M, Akhtar T, Barga AAC, Munawar KS, Alrashidi KA. Exploring the electronic and NLO properties of hydrazinylthiazoles based carboxylates: Synthesis, spectroscopic and DFT studies. J Mol Struct 2025; 1325:141041. [DOI: 10.1016/j.molstruc.2024.141041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
3
|
Zhao X, Di J, Luo D, Verma R, Verma SK, Verma S, Ravindar L, Koshle A, Dewangan HK, Gupta R, Chandra S, Deshpande S, Kamal, Vaishnav Y, Rakesh KP. Thiazole - A promising scaffold for antituberculosis agents and structure-activity relationships studies. Bioorg Chem 2025; 154:108035. [PMID: 39693926 DOI: 10.1016/j.bioorg.2024.108035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/26/2024] [Accepted: 12/03/2024] [Indexed: 12/20/2024]
Abstract
Research on thiazole derivatives has been a popular topic in medicine and one of the most active fields in heterocyclic chemistry. Pharmacological and industrial researchers have been studying thiazole-containing derivatives in great detail because they have a lot of biological uses. These compounds are one of the best examples of a five-membered heterocyclic compound that has a lot of potential and has had a lot of success in recent decades. Investigating viable hybrid designs utilizing thiazole is critical for the development of new anti-tuberculosis medications. This article offers a thorough overview of the latest advancements in thiazole-containing hybrids, offering potential therapeutic applications as anti-TB drugs. We also discussed the structure-activity correlations (SAR) of the powerful thiazole moiety and its several functional groups, along with a few potential molecular targets.
Collapse
Affiliation(s)
- Xuanming Zhao
- Energy Engineering College, Yulin University, Yulin City 71900, China
| | - Jing Di
- Physical Education College, Yulin University, Yulin City 71900, China.
| | - Dingjie Luo
- School of Humanities and Management, Xi'an Traffic Engineering Institute, Xi'an City 710000, China
| | - Rameshwari Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, China
| | - Santosh Kumar Verma
- School of Chemistry and Chemical Engineering, Yulin University, Yulin 719000, Shaanxi, China.
| | - Shekhar Verma
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur 495009, Chhattisgarh, India
| | - Lekkala Ravindar
- Department of Chemical Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, Bangi 43600, Selangor, Malaysia
| | - Anubhuti Koshle
- Department of Chemistry, Shri Rawatpura Sarkar University, Raipur 492015, Chhattisgarh, India
| | - Hitesh Kumar Dewangan
- Department of Chemistry, Shri Rawatpura Sarkar University, Raipur 492015, Chhattisgarh, India
| | - Raksha Gupta
- Department of Chemistry, Shri Rawatpura Sarkar University, Raipur 492015, Chhattisgarh, India
| | - Sunita Chandra
- Department of Chemistry, Shri Rawatpura Sarkar University, Raipur 492015, Chhattisgarh, India
| | - Samta Deshpande
- Department of Applied Chemistry, Shri Shankaracharya Technical Campus, Bhilai Durg-490020, Chhattisgarh, India
| | - Kamal
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Yogesh Vaishnav
- Department of Pharmacy, Guru Ghasidas Vishwavidyalaya (A Central University) Bilaspur 495009, Chhattisgarh, India
| | - Kadalipura P Rakesh
- Department of Radiology, Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
4
|
Hublikar M, Kadu V, Edake N, Raut D, Shirame S, Ahmed MZ, Makam P, Ahmad MS, Meshram RJ, Bhosale R. Design, Synthesis, Anti-Cancer, Anti-Inflammatory and In Silico Studies of 3-Substituted-2-Oxindole Derivatives. Chem Biodivers 2024; 21:e202400844. [PMID: 39078869 DOI: 10.1002/cbdv.202400844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 07/29/2024] [Indexed: 09/25/2024]
Abstract
This study focuses on the design and synthesis of 3-substituted-2-oxindole derivatives aimed at developing dual-active molecules with anti-cancer and anti-inflammatory properties. The molecules were designed with diverse structural and functional features while adhering to Lipinski, Veber, and Leeson criteria. Physicochemical properties were assessed using SWISSADME to ensure drug-likeness and favourable pharmacokinetics. Multistep synthetic procedures were employed for molecule synthesis. In vitro evaluations confirmed the dual activity of the derivatives, with specific emphasis on the significance of dialkyl aminomethyl substitutions for potency against various cell lines. 4 a exhibited GI50 value 3.00E-05 against MDA-MB-231, 4 b has shown GI50 value 2E-05 against MDA-MB-231, 4 c has shown GI50 value 6E-05 against VERO, 4 d has shown GI50 value 8E-05 each against both the MDA-MB-231 and MCF-7 and 4 e has shown GI50 values 2E-05 and 5E-05 each against both the MCF-7 and VERO. The analysis indicates that compounds 3 c (71.19 %), 3 e (66.84 %), and 3 g (63.04 %) exhibited significant anti-inflammatory activity. Additionally, in silico binding free energy analysis and interaction studies revealed significant correlations between in vitro and computational data, identifying compounds 4 d, 4 e, 3 b, 3 i, and 3 e as promising candidates. Key residues such as Glu917, Cys919, Lys920, Glu850, Lys838, and Asp1046 were found to play critical roles in ligand binding and kinase inhibition, providing valuable insights for designing potent VEGFR2 inhibitors. The Quantum Mechanics-based Independent Gradient Model analysis further highlighted the electronic interaction landscape, showing larger attractive peaks and higher electron density gradients for compounds 4 d and 4 e compared to Sunitinib, suggesting stronger and more diverse attractive forces. These findings support the potential of these compounds for further development and optimization in anticancer drug design.
Collapse
Affiliation(s)
- Mahesh Hublikar
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| | - Vikas Kadu
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| | - Nagesh Edake
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| | - Dattatraya Raut
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| | - Sachin Shirame
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| | - Mahammad Z Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parameshwar Makam
- Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand, 248007, India
| | - Md Sibgatullah Ahmad
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 248007, India
| | - Rohan J Meshram
- Bioinformatics Centre, Savitribai Phule Pune University, Pune, Maharashtra, 248007, India
| | - Raghunath Bhosale
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Solapur University, Solapur, Maharashtra, 413255, India
| |
Collapse
|
5
|
de Almeida RS, Freitas PR, Justino de Araujo AC, Tintino SR, Ribeiro-Filho J, Miranda GM, Sigueira GM, Gonçalves SA, Carvalho DT, de Souza TB, Santos Folquitto LRD, Dias DF, Raposo A, Saraiva A, Han H, Coutinho HDM. Liposomal formulation with thiazolic compounds against bacterial efflux pumps. Biomed Pharmacother 2024; 180:117600. [PMID: 39476763 DOI: 10.1016/j.biopha.2024.117600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/12/2024] [Accepted: 10/21/2024] [Indexed: 11/14/2024] Open
Abstract
This study aimed to evaluate the effects of liposome-encapsulated eugenol-based thiazolic derivatives against efflux pump-carrying bacteria. The Minimum Inhibitory Concentration (MIC) was determined to evaluate the antibacterial activity and antibiotic potentiation against Pseudomonas aeruginosa and Staphylococcus aureus, as well as to analyze the inhibition of efflux pumps in S. aureus strains 1199B and K2068 in the ethidium bromide assay. The direct antibacterial activity analysis showed no clinically relevant results since the compounds presented MICs ≥1024 µg/mL. Regarding the analysis of antibiotic potentiation against multidrug-resistant (MDR) strains of S. aureus, compound LF16 reduced norfloxacin MIC from 128 µg/mL to 64 µg/mL. All associated with gentamicin caused a significant antibiotic MIC reduction. None of the compounds could potentate the activity of norfloxacin against P. aeruginosa. However, all of them potentiated the activity of gentamicin against the same strain. Only the LF 26 caused a significant MIC reduction in the ethidium bromide assay, suggesting efflux inhibition in the S. aureus 1199B strain. Similar results were observed with the K2068 strain. Observing antibiotic MIC reduction S. aureus strains carrying the NorA and MepA proteins brought additional evidence of efflux pump inhibition. Our results indicate that while eugenol-based thiazoles didn't exhibit direct activity, they can potentiate the antibiotics activity against MDR strains of P. aeruginosa and S. aureus. Among them, compound LF 26 potentiated the inhibitory effects of ethidium bromide and antibiotics against S. aureus strains carrying the NorA and MepA proteins, indicating a potential role of this class of compounds as efflux pump inhibitors.
Collapse
Affiliation(s)
- Ray Silva de Almeida
- Department of Biological Chemistry, Regional University of Cariri (URCA), Crato, CE 63105-010, Brazil
| | - Priscilla Ramos Freitas
- Department of Biological Chemistry, Regional University of Cariri (URCA), Crato, CE 63105-010, Brazil
| | | | - Saulo Relison Tintino
- Department of Biological Chemistry, Regional University of Cariri (URCA), Crato, CE 63105-010, Brazil
| | - Jaime Ribeiro-Filho
- Oswaldo Cruz Foundation (Fiocruz), Fiocruz Ceará, Eusébio, CE 60180-900, Brazil
| | | | - Gustavo Miguel Sigueira
- Department of Biological Chemistry, Regional University of Cariri (URCA), Crato, CE 63105-010, Brazil
| | - Sheila Alves Gonçalves
- Department of Biological Chemistry, Regional University of Cariri (URCA), Crato, CE 63105-010, Brazil
| | | | | | | | | | - António Raposo
- CBIOS (Research Center for Biosciences and Health Technologies), Universidade Lusófona de Humanidades e Tecnologias, Campo Grande 376, 1749-024 Lisboa, Portugal.
| | - Ariana Saraiva
- Research in Veterinary Medicine (I-MVET), Faculty of Veterinary Medicine, Lisbon University Centre, Lusófona University, Campo Grande 376, 1749-024 Lisboa, Portugal
| | - Heesup Han
- College of Hospitality and Tourism Management, Sejong University, 209 Neungdong-ro, Gwangjin-gu, Seoul 05006, South Korea
| | | |
Collapse
|
6
|
Kassem AF, Sediek AA, Omran MM, Foda DS, Al-Ashmawy AAK. Design, synthesis and in vitro anti-proliferative evaluation of new pyridine-2,3-dihydrothiazole/thiazolidin-4-one hybrids as dual CDK2/GSK3β kinase inhibitors. RSC Adv 2024; 14:31607-31623. [PMID: 39376524 PMCID: PMC11456921 DOI: 10.1039/d4ra06146b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Accepted: 09/17/2024] [Indexed: 10/09/2024] Open
Abstract
Herein, the molecular hybridization drug discovery approach was used in the design and synthesis of twelve novel pyridine-2,3-dihydrothiazole hybrids (2a,b-5a,b and 13a,b-14a,b) and fourteen pyridine-thiazolidin-4-one hybrids (6a,b-12a,b) as anti-proliferative analogues targeting CDK2 and GSK3β kinase inhibition. Almost all of the newly synthesized hybrids, including their precursors (1a,b), were evaluated for their anti-proliferative activity against three human cancer cell lines-MCF-7, HepG2 and HEp-2-as well as normal Vero cell lines. Both compounds 1a (pyridine-thiourea precursor) and 8a (pyridine-5-acetyl-thiazolidin-4-one hybrid) exhibited excellent anti-proliferative activity against HEp-2 (IC50 = 7.5 μg mL-1, 5.9 μg mL-1, respectively). Additionally, 13a (pyridine-5-(p-tolyldiazenyl-2,3-dihydrothiazole)) hybrid demonstrated excellent anti-proliferative activity against HepG2 (IC50 = 9.5 μg mL-1), with an acceptable safety profile against Vero (<45% inhibition at 100 μg mL-1) in the cases of 8a and 13a alone. The three promising anti-proliferative hybrids (1a, 8a, 13a) were selected for the assessment of their in vitro inhibitory kinase activity against CDK2/GSK3β using roscovitine (IC50 = 0.88 μg mL-1) and CHIR-99021 (IC50 = 0.07 μg mL-1) as references, respectively. Compound 13a was the most potent dual CDK2/GSK3β inhibitor (IC50 = 0.396 μg mL-1, 0.118 μg mL-1, respectively) followed by 8a (IC50 = 0.675 μg mL-1, 0.134 μg mL-1, respectively), and the weakest was 1a. To elucidate the mechanism of the most potent anti-proliferative 13a hybrid, further cell cycle analysis was performed revealing that it caused G1 cell cycle arrest and induced apoptosis. Moreover, it resulted in an increase in Bax and caspase-3 with a decrease in Bcl-2 levels in HepG2 cells compared with untreated cells. Finally, in silico drug likeness/ADME prediction for the three potent compounds as well as a molecular docking simulation study were conducted in order to explore the binding affinity and interactions in the binding site of each enzyme, which inspired their usage as anti-proliferative leads for further modification.
Collapse
Affiliation(s)
- Asmaa F Kassem
- Chemistry of Natural and Microbial Products Department, National Research Centre Dokki 12622 Cairo Egypt
| | - Ashraf A Sediek
- Chemical Industries Institute, National Research Centre Dokki 12622 Cairo Egypt
| | - Mervat M Omran
- Pharmacology Unit, Cancer Biology Department, National Cancer Institute, Cairo University Cairo Egypt
| | - Doaa S Foda
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki 12622 Cairo Egypt
| | - Aisha A K Al-Ashmawy
- Therapeutic Chemistry Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre Dokki 12622 Cairo Egypt
| |
Collapse
|
7
|
Faggal SI, El-Dash Y, Sonousi A, Abdou AM, Hassan RA. Design, synthesis, and biological evaluation of novel thiazole derivatives as PI3K/mTOR dual inhibitors. RSC Med Chem 2024:d4md00462k. [PMID: 39345714 PMCID: PMC11427869 DOI: 10.1039/d4md00462k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Accepted: 09/06/2024] [Indexed: 10/01/2024] Open
Abstract
The development of anticancer drugs targeting both PI3K and mTOR pathways is recognized as a promising cancer therapeutic approach. In the current study, we designed and synthesized seventeen new thiazole compounds to investigate their effect on both PI3K and mTOR as well as their anti-apoptotic activity. All the synthesized thiazoles were investigated for their antiproliferative activity on a panel of 60 different cancer cell lines at the National Cancer Institute. Compounds 3b and 3e were selected for further investigation at five dose concentrations due to their effective growth inhibiting activity. Compounds 3b and 3e were further evaluated for their in vitro inhibitory activities against PI3Kα and mTOR compared to alpelisib and dactolisib, respectively as reference drugs. The inhibitory effect of compound 3b on PI3Kα was similar to alpelisib, but it showed weaker inhibitory activity on mTOR compared to dactolisib. Moreover, compound 3b exhibited significantly higher inhibitory activity compared to compound 3e against both PI3Kα and mTOR. The cell cycle analysis showed that compounds 3b and 3e induced G0-G1 phase cell cycle arrest in the leukemia HL-60(TB) cell line. Meanwhile, they significantly increased the total apoptotic activity which was supported by an increase in the level of caspase-3 in leukemia HL-60(TB) cell lines. Molecular docking experiments provided additional explanation for these results by demonstrating the ability of these derivatives to form a network of key interactions, known to be essential for PI3Kα/mTOR inhibitors. All these experimental results suggested that 3b and 3e are potential PI3Kα/mTOR dual inhibitors and could be considered promising lead compounds for the development of anticancer agents.
Collapse
Affiliation(s)
- Samar I Faggal
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Yara El-Dash
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| | - Amr Sonousi
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
- University of Hertfordshire Hosted by Global Academic Foundation New Administrative Capital Cairo Egypt
| | - Amr M Abdou
- Department of Microbiology and Immunology, National Research Centre Dokki, Giza 12622 Egypt
| | - Rasha A Hassan
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Cairo University Kasr El-Aini Street Cairo 11562 Egypt
| |
Collapse
|
8
|
Anaikutti P, Adhikari P, Baskaran S, Selvaraj M, Afzal M, Makam P. Indolyl-4H-Chromene Derivatives as Antibacterial Agents: Synthesis, in Vitro and in Silico Studies. Chem Biodivers 2024; 21:e202301392. [PMID: 38050777 DOI: 10.1002/cbdv.202301392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 12/06/2023]
Abstract
In this study, indolyl-4H-chromene derivatives are designed and synthesised using an eco-friendly multicomponent one-pot synthesis using benzaldehydes, nitroketene N, S-acetals, and indoles combine with InCl3 , a Lewis acid catalyst, and ethanol, an environmentally acceptable solvent. Due to antibiotic resistance, assessed these Indolyl-4H-chromene derivatives for their in vitro antibacterial activity against Gram-positive and Gram-negative bacteria, including Streptococcus pyogenes, Staphylococcus aureus, Clostridium pyrogenes, Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa, using the agar well diffusion method and Minimum Inhibition Concentration (MIC) assay. Three compounds, 4-(1H-indol-3-yl)-6-methoxy-N-methyl-3-nitro-4H-chromen-2-amine, 4-(1H-indol-3-yl)-3-nitro-N-phenyl-4H-chromen-2-amine and 4-(6-Fluoro-1H-Indol-3-yl)-N-methyl-3-nitro-4H-chromen-2-amine showed better zone of inhibition (mm) and Minimum Inhibition Concentration (MIC) values of 10 μg/mL to 25 μg/mL against all bacterial types. The Ki values of 278.60 nM and 2.21 nM for compound 4-(1H-indol-3-yl)-3-nitro-N-phenyl-4H-chromen-2-amine showed improved interactions with DNA gyrase B and topoIV ParE's ATP binding sites in in silico studies.
Collapse
Affiliation(s)
- Parthiban Anaikutti
- Centre for GMP Extraction Facility, National Institute of Pharmaceutical Education and Research (NIPER-G), Guwahati, 781101, Assam, India
| | - Priyanka Adhikari
- Centre for GMP Extraction Facility, National Institute of Pharmaceutical Education and Research (NIPER-G), Guwahati, 781101, Assam, India
| | - Sambath Baskaran
- Department of Chemistry, University of Ulsan, Ulsan, 44776, Republic of, Korea
| | - Mangalaraj Selvaraj
- Department of Chemistry, St. Joseph's College (Autonomous), Tiruchirappalli, 620002, India
| | - Mohd Afzal
- Department of Chemistry, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Parameshwar Makam
- Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand, 248007, India
| |
Collapse
|
9
|
Thrinadh Kumar R, Makam P, Katari NK, Kottalanka RK. A new synthetic approach to cyclic ureas through carbonylation using di- tert-butyl dicarbonate (boc anhydride) via one pot strategy. Org Biomol Chem 2023; 21:7821-7830. [PMID: 37724395 DOI: 10.1039/d3ob01330h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/20/2023]
Abstract
A new approach has been successfully employed to synthesize cyclic ureas via carbonylation, utilizing Boc anhydride and employing K2CO3 as a base along with N,N-dimethylformamide as the solvent. Remarkably high yields were achieved using K2CO3 in conjunction with (Boc)2O, enabling the streamlined preparation of benzimidazolones and 2-benzoxazolones within a single reaction vessel. Significantly, this approach obviates the necessity for using any dangerous reagents, rendering it environmentally friendly, and its key benefit lies in being a metal-free system. The method stands out for its efficiency, concise pathway, optimization from readily accessible starting materials, and ease of execution. The resulting benzimidazolones and 2-benzoxazolones were thoroughly characterized using techniques including LCMS, 1H NMR, and 13C NMR.
Collapse
Affiliation(s)
- Rapeti Thrinadh Kumar
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522213, India.
- Aragen Life Sciences Ltd, 28A, IDA Nacharam, Hyderabad, Telangana-500076, India
| | - Parameshwar Makam
- Department of Chemistry, School of Applied and Life Sciences, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand-248007, India
| | - Naresh Kumar Katari
- Department of Chemistry, GITAM School of Science, GITAM Deemed to be University, Hyderabad, Telangana-502329, India.
| | - Ravi K Kottalanka
- Department of Chemistry, School of Applied Science and Humanities, Vignan's Foundation for Science Technology and Research, Vadlamudi, Guntur, Andhra Pradesh 522213, India.
| |
Collapse
|
10
|
Al-Humaidi J, Gomha SM, Riyadh SM, Ibrahim MS, Zaki MEA, Abolibda TZ, Jefri OA, Abouzied AS. Synthesis, Biological Evaluation, and Molecular Docking of Novel Azolylhydrazonothiazoles as Potential Anticancer Agents. ACS OMEGA 2023; 8:34044-34058. [PMID: 37744790 PMCID: PMC10515364 DOI: 10.1021/acsomega.3c05038] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 08/09/2023] [Indexed: 09/26/2023]
Abstract
A novel set of thiazolylhydrazonothiazoles bearing an indole moiety were synthesized by subjection reactions of carbothioamide derivative and hydrazonoyl chlorides (or α-haloketones). The cytotoxicity of the synthesized compounds was evaluated against the colon carcinoma cell line (HCT-116), liver carcinoma cell line (HepG2), and breast carcinoma cell line (MDA-MB-231), and demonstrated encouraging activity. Furthermore, when representative products were assessed for toxicity against normal cells, minimal toxic effects were observed, indicating their potential safety for use in pharmacological studies. The mechanism of action of the tested products, as inhibitors of the epidermal growth factor receptor tyrosine kinase domain (EGFR TK) protein, was suggested through docking studies that assessed their binding scores and modes, in comparison to a reference standard (W19), thus endorsing their anticancer activity.
Collapse
Affiliation(s)
- Jehan
Y. Al-Humaidi
- Department
of Chemistry, College of Science, Princess
Nourah Bint Abdulrahman University, P.O. .BOX 84428, Riyadh 11671, Saudi Arabia
| | - Sobhi M. Gomha
- Department
of Chemistry, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
| | - Sayed M. Riyadh
- Department
of Chemistry, Faculty of Science, Cairo
University, Cairo 12613, Egypt
| | - Mohamed S. Ibrahim
- Department
of Chemistry, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
| | - Magdi E. A. Zaki
- Department
of Chemistry, Faculty of Science, Imam Mohammad
Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Tariq Z. Abolibda
- Department
of Chemistry, Faculty of Science, Islamic
University of Madinah, Madinah 42351, Saudi Arabia
| | - Ohoud A. Jefri
- Department
of Biological Science, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Amr S. Abouzied
- Department
of Pharmaceutical Chemistry, College of Pharmacy, University of Hail, Hail 81442, Saudi Arabia
- Department
of Pharmaceutical Chemistry, National Organization
for Drug Control and Research (NODCAR), Giza 12311, Egypt
| |
Collapse
|
11
|
Ashmawy FO, Gomha SM, Abdallah MA, Zaki MEA, Al-Hussain SA, El-Desouky MA. Synthesis, In Vitro Evaluation and Molecular Docking Studies of Novel Thiophenyl Thiazolyl-Pyridine Hybrids as Potential Anticancer Agents. Molecules 2023; 28:molecules28114270. [PMID: 37298747 DOI: 10.3390/molecules28114270] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 05/11/2023] [Accepted: 05/15/2023] [Indexed: 06/12/2023] Open
Abstract
Many literature reports revealed the anticancer activity of pyridine and thiazole derivatives, especially in lung cancer. Therefore, a new series of thiazolyl pyridines linked with thiophene moiety via hydrazone group was prepared by one-pot multi-component reaction of (E)-1-(4-methyl-2-(2-(1-(thiophen-2-yl)ethylidene)hydrazinyl)thiazol-5-yl)ethanone with benzaldehyde derivatives and malononitrile in a good yield. Then, compound 5 and the thiazolyl pyridines were investigated for their in vitro anticancer activity against lung cancer (A549) cell line using MTT assay compared to doxorubicin as a reference drug. The structure of all the newly synthesized compounds was established based on spectroscopic data and elemental analyses. For better insight to investigate their mechanism of action on A549 cell line, docking studies were performed, targeting epidermal growth factor receptor (EGFR) tyrosine kinase. The results obtained revealed that the tested compounds displayed excellent anticancer activities against lung cancer cell line except 8c and 8f compared to reference drug. Based on the data obtained, it can be inferred that the novel compounds, as well as their key intermediate, compound 5, demonstrated potent anticancer activity against lung carcinoma by inhibiting EGFR.
Collapse
Affiliation(s)
- Fayza O Ashmawy
- Department of Chemistry, Biochemistry Division, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Sobhi M Gomha
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Magda A Abdallah
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Magdi E A Zaki
- Department of Chemistry, Faculty of Science, Imam Mohammed Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Sami A Al-Hussain
- Department of Chemistry, Faculty of Science, Imam Mohammed Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia
| | - Mohamed A El-Desouky
- Department of Chemistry, Biochemistry Division, Faculty of Science, Cairo University, Giza 12613, Egypt
| |
Collapse
|
12
|
Aggarwal R, Hooda M, Kumar P, Kumar S, Singh S, Chandra R. An expeditious on-water regioselective synthesis of novel arylidene-hydrazinyl-thiazoles as DNA targeting agents. Bioorg Chem 2023; 136:106524. [PMID: 37079989 DOI: 10.1016/j.bioorg.2023.106524] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/25/2023] [Accepted: 04/02/2023] [Indexed: 04/22/2023]
Abstract
A series of twenty novel (E)-arylidene-hydrazinyl-thiazole derivatives has been synthesized employing α-bromo-β-diketones, thiosemicarbazide, and aromatic/heteroaromatic aldehydes with a simple and facile one-pot multicomponent reaction passageway. This organic transformation proceeds efficiently in aqueous media and demonstrated a large functional group tolerance. The structures and stereochemistry of the regioisomeric product were rigorously characterized using heteronuclear 2D NMR experiments. The binding potential of the synthesized analogs with B-DNA dodecamer d(CGCGAATTCGCG)2 was primarily screened using molecular modeling tools and further, mechanistic investigations (either groove or intercalation) were performed using various spectroscopic techniques such as UV-Visible, Fluorescence, and Circular dichroism. The absorption spectra showed a hyperchromic shift in the absorption maxima of ctDNA with successive addition of thiazole derivatives, implying groove binding mode of interactions, further supported by displacement assay and circular dichroism analysis. Furthermore, steady-state fluorescence analysis revealed the static mode of quenching and moderate bindings between the ligand and DNA biomolecule. The competitive studies showed that the derivatives having a pyridinyl (heteroaromatic) group in their structure, bind with the nucleic acid of calf-thymus (ctDNA) more effectively in the minor groove region as compared with the aromatic substitutions.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119 Haryana, India; Council of Scientific and Industrial Research-National Institute of Science Communication and Policy Research, New Delhi 110012, India.
| | - Mona Hooda
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119 Haryana, India
| | - Prince Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119 Haryana, India
| | - Suresh Kumar
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136119 Haryana, India
| | - Snigdha Singh
- Departament of Chemistry, University of Delhi, New Delhi 110007, India
| | - Ramesh Chandra
- Departament of Chemistry, University of Delhi, New Delhi 110007, India
| |
Collapse
|
13
|
Dey S, Das A, Yadav RN, Boruah PJ, Bakli P, Baishya T, Sarkar K, Barman A, Sahu R, Maji B, Paul AK, Hossain MF. Visiblelight-induced ternary electron donor-acceptor complex enabled synthesis of 2-(2-hydrazinyl) thiazole derivatives and the assessment of their antioxidant and antidiabetic therapeutic potential. Org Biomol Chem 2023; 21:1771-1779. [PMID: 36727530 DOI: 10.1039/d2ob02308c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A mild and eco-friendly visible-light-induced synthesis of 2-(2-hydrazinyl) thiazole from readily accessible thiosemicarbazide, carbonyl, and phenacyl bromide in the absence of a metal catalyst and/or any extrinsic photosensitizer is reported. This approach only requires a source of visible light and a green solvent at room temperature to produce the medicinally privileged scaffolds of hydrazinyl-thiazole derivatives in good to outstanding yields. Experimental studies support the in situ formation of a visible-light-absorbing, photosensitized colored ternary EDA complex. The next step is to prepare a pair of radicals in an excited state, which makes it easier to prepare thiazole derivatives through a SET and PCET process. DFT calculations additionally supported the mechanistic analysis of the course of the reaction. The antioxidant and antidiabetic properties of some of the compounds in the synthesized library were tested in vitro. All the investigated compounds demonstrated appreciable antioxidant activity, as evidenced by the reducing power experiment and the IC50 values of the DPPH radical scavenging experiment. Furthermore, the IC50 values for 4c, 4d, and 4g also demonstrated a strong α-amylase inhibitory effect.
Collapse
Affiliation(s)
- Sovan Dey
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| | - Arindam Das
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| | - Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering & Technology, Veer Bahadur Singh Purvanchal University, Jaunpur-222003, U.P, India
| | | | - Prerana Bakli
- Department of Chemistry, NIT, Meghalaya, Shillong-793003, India
| | - Tania Baishya
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India
| | - Koushik Sarkar
- Department of Chemical Sciences, IISER Kolkata, Mohanpur-741246, Nadia, WB, India
| | - Anup Barman
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| | - Ranabir Sahu
- Department of Pharmaceutical Technology, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India
| | - Biplab Maji
- Department of Chemical Sciences, IISER Kolkata, Mohanpur-741246, Nadia, WB, India
| | - Amit Kumar Paul
- Department of Chemistry, NIT, Meghalaya, Shillong-793003, India
| | - Md Firoj Hossain
- Department of Chemistry, University of North Bengal, Raja Rammohunpur, Darjeeling-734013, India.
| |
Collapse
|
14
|
Bhavani GV, Kondapuram SK, Shamsudeen AF, Coumar MS, Selvin J, Kannan T. Synthesis, antitubercular evaluation, and molecular docking studies of hybrid pyridinium salts derived from isoniazid. Drug Dev Res 2023; 84:470-483. [PMID: 36744647 DOI: 10.1002/ddr.22039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 01/08/2023] [Accepted: 01/15/2023] [Indexed: 02/07/2023]
Abstract
In the quest to develop potent inhibitors for Mycobacterium tuberculosis, novel isoniazid-based pyridinium salts were designed, synthesized, and tested for their antimycobacterial activities against the H37 Rv strain of Mycobacterium tuberculosis using rifampicin as a standard. The pyridinium salts 4k, 4l, and 7d showed exceptional antimycobacterial activities with MIC90 at 1 µg/mL. The in vitro cytotoxicity and pharmacokinetics profiles of these compounds were established for the identification of a lead molecule using in vivo efficacy proof-of-concept studies and found that the lead compound 4k possesses LC50 value at 25 µg/mL. The in vitro antimycobacterial activity results were further supported by in silico studies with good binding affinities ranging from -9.8 to -11.6 kcal/mol for 4k, 4l, and 7d with the target oxidoreductase DprE1 enzyme. These results demonstrate that pyridinium salts derived from isoniazid can be a potentially promising pharmacophore for the development of novel antitubercular candidates.
Collapse
Affiliation(s)
| | | | | | | | - Joseph Selvin
- Department of Microbiology, Pondicherry University, Kalapet, Puducherry, India
| | | |
Collapse
|
15
|
Aljohani GF, Abolibda TZ, Alhilal M, Al-Humaidi JY, Alhilal S, Ahmed HA, Gomha SM. Novel thiadiazole-thiazole hybrids: synthesis, molecular docking, and cytotoxicity evaluation against liver cancer cell lines. JOURNAL OF TAIBAH UNIVERSITY FOR SCIENCE 2022. [DOI: 10.1080/16583655.2022.2135805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
- Ghadah F. Aljohani
- Chemistry Department, College of Science, Taibah University, Al-Madinah Al Munawarah, Saudi Arabia
| | - Tariq Z. Abolibda
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
| | - Mohammad Alhilal
- Department of Nursing, Faculty of Health Sciences, Mardin Artuklu University, Mardin, Turkey
| | - Jehan Y. Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Suzan Alhilal
- Department of Chemistry, Faculty of Science, Albaath University, Erzurum, Turkey
| | - Hoda A. Ahmed
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| | - Sobhi M. Gomha
- Chemistry Department, Faculty of Science, Islamic University of Madinah, Madinah, Saudi Arabia
- Department of Chemistry, Faculty of Science, Cairo University, Cairo, Egypt
| |
Collapse
|
16
|
Novel fluorophenyl tethered thiazole and chalcone analogues as potential anti-tubercular agents: Design, synthesis, biological and in silico evaluations. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.134791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
17
|
3-Substituted-2,3-Dihydrothiazole as a promising scaffold to design EGFR inhibitors. Bioorg Chem 2022; 129:106172. [DOI: 10.1016/j.bioorg.2022.106172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/31/2022] [Accepted: 09/18/2022] [Indexed: 11/21/2022]
|
18
|
Indolyl-4H-chromenes: Multicomponent one-pot green synthesis, in vitro and in silico, anticancer and antioxidant studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.133464] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
19
|
Raut DG, Bhosale RB, Lawand AS, Hublikar MG, Kadu VD, Patil SB, Choudhari PB. Syntheses, Molecular Docking and Biological Evaluation of 2-(2- hydrazinyl)thiazoles as Potential Antioxidant, Anti-Inflammatory and Significant Anticancer Agents. RECENT ADVANCES IN INFLAMMATION & ALLERGY DRUG DISCOVERY 2022; 16:96-106. [PMID: 36056853 DOI: 10.2174/2772270816666220902094019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 05/31/2022] [Accepted: 06/06/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Recently, researchers have worked on the development of new methods for the synthesis of bioactive heterocycles using polyethylene glycol as a green solvent. In this context, we report the synthesized 2-(2-hydrazinyl) thiazoles for their in vitro antioxidant, in vitro anti-inflammatory and in vitro anti-cancer activities. OBJECTIVE The objective of the study was to develop novel antioxidant, anti-inflammatory and anti-cancer drugs. METHODS At the outset, the condensation of substituted acetophenones 1, thiosemicarbazide 2, and α-haloketones 3 was carried out using PEG-400 (20 mL) in the presence of 5 mol% glacial acetic acid to afford thiosemicarbazones intermediate. Furthermore, these thiosemicarbazones were reacted with α-haloketones 3 to obtain appropriate 2-(2-hydrazinyl) thiazoles. The synthesized compounds were in vitro tested for their antioxidant, anti-inflammatory, and anti-cancer activity. RESULTS In vitro evaluation report showed that nearly all molecules possessed potential antioxidant activity against 2,2-Diphenyl-1-picrylhydrazyl (DPPH), nitric oxide (NO), superoxide radical (SOR) and hydrogen peroxide (H2O2) radical scavenging activity. Most 2-(2-hydrazinyl) thiazoles derivatives have shown potential anti-inflammatory activity as compared to diclofenac sodium as a reference standard. 2-(2-Hydrazinyl) thiazoles derivatives showed significant anticancer activity for human leukemia cell line K-562 compared to adriamycin as a reference standard. CONCLUSION All tested compounds showed potential 2,2-Diphenyl-1-picrylhydrazyl (DPPH) and nitric oxide (NO) radical scavenging activity. Among the tested series, 4b, 4d and 4e exhibited good hydrogen peroxide and 4b, 4e, 4f and 4g showed excellent superoxide radical scavenging activity. In addition, the 4b, 4e and 4g compounds revealed potent in vitro anti-inflammatory activity against standard diclofenac sodium drug. 2-(2-Hydrazinyl) thiazole derivatives, such as 4c and 4d, showed significant anticancer activity against human leukemia cell line K-562. Thus, these molecules provide an interesting template for the design and development of new antioxidant, anti-inflammatory, and anti-cancer agents.
Collapse
Affiliation(s)
- Dattatraya G Raut
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur - 413255 Maharashtra, India
| | - Raghunath B Bhosale
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur - 413255 Maharashtra, India
| | - Anjana S Lawand
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur - 413255 Maharashtra, India
| | - Mahesh G Hublikar
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur - 413255 Maharashtra, India
| | - Vikas D Kadu
- Organic Chemistry Research Laboratory, School of Chemical Sciences, Punyashlok Ahilyadevi Holkar Solapur University, Solapur - 413255 Maharashtra, India
| | - Sandeep B Patil
- Department of Pharmacology, Dr. Shivajirao Kadam College of Pharmacy Kasbe Digraj, Sangli, Maharashtra, India
| | - Prafulla B Choudhari
- Computational Chemistry Research Lab, Department of Pharmaceutical Chemistry, Bharati Vidyapeeth College of Pharmacy, Kolhapur, 416013 Maharashtra, India
| |
Collapse
|
20
|
Matsa R, Makam P, Anilakumari R, Sundharesan M, Mathew N, Kannan T. Design, synthesis, and in vitro evaluation of thiosemicarbazone derivatives as anti-filarial agents. Exp Parasitol 2022; 241:108363. [PMID: 36007586 DOI: 10.1016/j.exppara.2022.108363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 09/18/2021] [Accepted: 08/17/2022] [Indexed: 11/04/2022]
Abstract
Effective macrofilaricidal drugs are not commercially available, and in an endeavour to find out new macrofilaricidal agents, in this research work, thiosemicarbazone derivatives have been prepared and tested against adult Setaria digitata, a cattle filarial parasite, as a model nematode for the filarial parasite, Wuchereria bancrofti. Lipinski and Veber rules have been used to design these molecules and found out that all the designed molecules show drug-like molecular properties. The in vitro anti-filarial potential of thiosemicarbazones against S. digitata was carried out using worm motility and 3-[4,5-dimethylthiazol-2-yl]-2,5-diphenyl tetrazolium bromide (MTT) reduction colorimetric assays at 100 μg/ml concentration for the incubation period of 24 h. The standard drugs used at present for filaria, Albendazole, Ivermectin and Diethylcarbamazine were not able to kill the adult filarial worms effectively. In contrast, phenyl thiosemicarbazones with trifluoromethyl substitution at 3rd and 4th positions, 2-pyrrolyl, and isatinyl made the adult worms immotile and also showed 69%-83% inhibition in formazan formation an indicator of non viability.
Collapse
Affiliation(s)
- Ramkishore Matsa
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, 605 014, India
| | - Parameshwar Makam
- Chemical Science Research Group, Division of Research and Development, Lovely Professional University, Phagwara, 144411, India
| | - R Anilakumari
- ICMR - Vector Control Research Centre, Indira Nagar, Puducherry, 605006, India
| | - M Sundharesan
- ICMR - Vector Control Research Centre, Indira Nagar, Puducherry, 605006, India
| | - Nisha Mathew
- ICMR - Vector Control Research Centre, Indira Nagar, Puducherry, 605006, India.
| | - Tharanikkarasu Kannan
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry, 605 014, India.
| |
Collapse
|
21
|
Al-Humaidi JY, Badrey MG, Aly AA, Nayl AA, Zayed MEM, Jefri OA, Gomha SM. Evaluation of the Binding Relationship of the RdRp Enzyme to Novel Thiazole/Acid Hydrazone Hybrids Obtainable through Green Synthetic Procedure. Polymers (Basel) 2022; 14:polym14153160. [PMID: 35956675 PMCID: PMC9371204 DOI: 10.3390/polym14153160] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/17/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
The viral RNA-dependent RNA polymerase (RdRp) complex is used by SARS-CoV-2 for genome replication and transcription, making RdRp an interesting target for developing the antiviral treatment. Hence the current work is concerned with the green synthesis, characterization and docking study with the RdRp enzyme of the series of novel and diverse hydrazones and pyrazoles. 4-Methyl-2-(2-(1-phenylethylidene)hydrazineyl)thiazole-5-carbohydrazide was prepared and then condensed with different carbonyl compounds (aldehydes and ketones either carbocyclic aromatic or heterocyclic) afforded the corresponding hydrazide-hydrazones. The combination of the acid hydrazide with bifunctional reagents such as acetylacetone, β-ketoesters (ethyl acetoacetate and ethyl benzoylacetate) resulted in the formation of pyrazole derivatives. The synthesized compounds were all obtained through grinding method using drops of AcOH. Various analytical and spectral analyses were used to determine the structures of the prepared compounds. Molecular Operating Environment (MOE®) version 2014.09 was used to estimate interactions between the prepared thiazole/hydrazone hybrids and RdRp obtained from the protein data bank (PDB: 7bv2) using enzyme-ligand docking for all synthesized derivatives and Remdesivir as a reference. Docking results with the RdRp enzyme revealed that the majority of the investigated drugs bind well to the enzyme via various types of interactions in comparison with the reference drug.
Collapse
Affiliation(s)
- Jehan Y. Al-Humaidi
- Department of Chemistry, College of Science, Princess Nourah bint Abdulrahman University, P.O. BOX 84428, Riyadh 11671, Saudi Arabia;
| | - Mohamed G. Badrey
- Chemistry Department, Faculty of Science, Fayoum University, El-Fayoum 63514, Egypt;
- Chemistry Department, Faculty of Science and Arts-Almandaq, Al-Baha University, Al-Baha 65515, Saudia Arabia
| | - Ashraf A. Aly
- Chemistry Department, Faculty of Science, Organic Division, Minia University, El-Minia 61519, Egypt;
| | - AbdElAziz A. Nayl
- Department of Chemistry, College of Science, Jouf University, Sakaka 72341, Saudi Arabia
- Correspondence: or (A.A.N.); or (S.M.G.)
| | - Mohie E. M. Zayed
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.E.M.Z.); (O.A.J.)
| | - Ohoud A. Jefri
- Department of Chemistry, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia; (M.E.M.Z.); (O.A.J.)
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, Cairo University, Giza 12613, Egypt
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
- Correspondence: or (A.A.N.); or (S.M.G.)
| |
Collapse
|
22
|
Hublikar M, Kadu V, Raut D, Shirame S, Anbarasu S, Al-Muhanna MK, Makam P, Bhosale R. 3-Substituted-2-oxindole derivatives: Design, synthesis and their anti-tuberculosis and radical scavenging dual-action studies. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
23
|
SPIONs as a nanomagnetic catalyst for the synthesis and anti-microbial activity of 2-aminothiazoles derivatives. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
24
|
Mejía Zarate F, Carranza MA, Miquel HT, Bazán-Jiménez A, García-Revilla MA, Martínez JLB. Synthesis and computational characterization of aryl-fluorinated thiazoles; experimental, DFT and molecular coupling studies. J Fluor Chem 2022. [DOI: 10.1016/j.jfluchem.2022.110024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
25
|
Arshad MF, Alam A, Alshammari AA, Alhazza MB, Alzimam IM, Alam MA, Mustafa G, Ansari MS, Alotaibi AM, Alotaibi AA, Kumar S, Asdaq SMB, Imran M, Deb PK, Venugopala KN, Jomah S. Thiazole: A Versatile Standalone Moiety Contributing to the Development of Various Drugs and Biologically Active Agents. Molecules 2022; 27:molecules27133994. [PMID: 35807236 PMCID: PMC9268695 DOI: 10.3390/molecules27133994] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/05/2022] [Accepted: 06/09/2022] [Indexed: 12/10/2022] Open
Abstract
For many decades, the thiazole moiety has been an important heterocycle in the world of chemistry. The thiazole ring consists of sulfur and nitrogen in such a fashion that the pi (π) electrons are free to move from one bond to other bonds rendering aromatic ring properties. On account of its aromaticity, the ring has many reactive positions where donor–acceptor, nucleophilic, oxidation reactions, etc., may take place. Molecules containing a thiazole ring, when entering physiological systems, behave unpredictably and reset the system differently. These molecules may activate/stop the biochemical pathways and enzymes or stimulate/block the receptors in the biological systems. Therefore, medicinal chemists have been focusing their efforts on thiazole-bearing compounds in order to develop novel therapeutic agents for a variety of pathological conditions. This review attempts to inform the readers on three major classes of thiazole-bearing molecules: Thiazoles as treatment drugs, thiazoles in clinical trials, and thiazoles in preclinical and developmental stages. A compilation of preclinical and developmental thiazole-bearing molecules is presented, focusing on their brief synthetic description and preclinical studies relating to structure-based activity analysis. The authors expect that the current review may succeed in drawing the attention of medicinal chemists to finding new leads, which may later be translated into new drugs.
Collapse
Affiliation(s)
- Mohammed F. Arshad
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, U-13, Near Badi Masjid, Pulpehlad Pur, New Delhi 110044, India;
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Aftab Alam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Abdullah Ayed Alshammari
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Mohammed Bader Alhazza
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Ibrahim Mohammed Alzimam
- Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia; (A.A.A.); (M.B.A.); (I.M.A.)
| | - Md Anish Alam
- Department of Research and Scientific Communications, Isthmus Research and Publishing House, U-13, Near Badi Masjid, Pulpehlad Pur, New Delhi 110044, India;
| | - Gulam Mustafa
- Department of Pharmaceutical Sciences, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia;
| | - Md Salahuddin Ansari
- Department of Pharmacy Practice, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia;
| | - Abdulelah M. Alotaibi
- Internee, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Abdullah A. Alotaibi
- Internee, College of Pharmacy (Al-Dawadmi Campus), Shaqra University, Riyadh 11961, Saudi Arabia; (A.M.A.); (A.A.A.)
| | - Suresh Kumar
- Drug Regulatory Affair, Department, Pharma Beistand, New Delhi 110017, India;
| | - Syed Mohammed Basheeruddin Asdaq
- Department of Pharmacy Practice, College of Pharmacy, AlMaarefa University, Dariyah 13713, Saudi Arabia
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Mohd. Imran
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Northern Border University, Rafha 91911, Saudi Arabia
- Correspondence: (M.F.A.); or (S.M.B.A.); (M.I.)
| | - Pran Kishore Deb
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Philadelphia University, Amman 19392, Jordan;
| | - Katharigatta N. Venugopala
- Department of Pharmaceutical Sciences, College of Clinical Pharmacy, King Faisal University, Al-Ahsa 31982, Saudi Arabia;
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, Durban 4001, South Africa
| | - Shahamah Jomah
- Pharmacy Department, Dr. Sulaiman Al-Habib Medical Group, Riyadh 11372, Saudi Arabia;
| |
Collapse
|
26
|
Mahmoud HK, Sayed AR, Abdel-Aziz MM, Gomha SM. Synthesis of New Thiazole Clubbed Imidazo[2,1-b]thiazole Hybrid as Antimycobacterial Agents. Med Chem 2022; 18:1100-1108. [PMID: 35422226 DOI: 10.2174/1573406418666220413095854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/10/2021] [Accepted: 02/01/2022] [Indexed: 11/22/2022]
Abstract
Aims:
The study aims to synthesize bioactive hybrid pharmacophores (thiazole ring and imidazo[2,1-b]thiazole system) by incorporating them to one biological assessment molecular system.
Background:
Literature survey revealed that various imidazo[2,1-b]thiazoles, thiazoles and hydrazones have powerful anti-mycobacterial activity.
Objective:
This study demonstrates the effectiveness of molecular hybridization and the scope for imidazo[2,1-b]thiazole-hydrazone-thiazoles to develop as promising anti-mycobacterial agents.
Method:
Several imidazo[2,1-b]thiazole–hydrazine-thiazoles 5a-g, 7a,b, 9a,b, 11a,b, 13, and 15a,b were generated using a molecular hybridization strategy and assessed against Mycobacterium tuberculosis (ATCC 25618) for their in vitro antituberculous activity.
Result:
Derivative 7b (MIC = 0.98 μg/mL) has shown the most promising anti-mycobacterial activity among the series tested. Brief structure-activity relationship studies found that the thiazole of chlorophenyl or pyridine or coumarin had a significant relation with the anti-mycobacterial activity.
Conclusion:
Promising anti-mycobacterial activity of compound 7b compared with reference drug suggests that this compound may contribute as a lead compound in search of new potential anti-mycobacterial agents.
Collapse
Affiliation(s)
- Huda K. Mahmoud
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
| | - Abdelwahed R. Sayed
- Department of Chemistry, Faculty of Science, KFU, Hofuf, Saudi Arabia
- Department of Chemistry, Faculty of Science, Beni-Suef University, Beni-suef, Egypt
| | - Marwa M. Abdel-Aziz
- Regional Center for Mycology and Biotechnology at Al-Azhar University, Egypt
| | - Sobhi M. Gomha
- Department of Chemistry, Faculty of Science, University of Cairo, Giza, Egypt
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| |
Collapse
|
27
|
Kartsev V, Geronikaki A, Lichitsky B, Komogortsev A, Petrou A, Ivanov M, Glamočlija J, Soković M. Synthesis, biological evaluation and molecular docking studies of thiazolo[4,5‐
b
]pyridin‐5‐ones as antimicrobial agents. J Heterocycl Chem 2022. [DOI: 10.1002/jhet.4491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Athina Geronikaki
- School of Health, Department of Pharmacy Aristotle University of Thessaloniki Greece
| | | | | | - Anthi Petrou
- School of Health, Department of Pharmacy Aristotle University of Thessaloniki Greece
| | - Marija Ivanov
- Mycological Laboratory, Department of Plant Physiology Institute for Biological Research, SinišaStanković‐National Institute of Republic of Serbia,University of Belgrade, BulevarDespotaStefana 142 Belgrade Serbia
| | - Jasmina Glamočlija
- Mycological Laboratory, Department of Plant Physiology Institute for Biological Research, SinišaStanković‐National Institute of Republic of Serbia,University of Belgrade, BulevarDespotaStefana 142 Belgrade Serbia
| | - Marina Soković
- Mycological Laboratory, Department of Plant Physiology Institute for Biological Research, SinišaStanković‐National Institute of Republic of Serbia,University of Belgrade, BulevarDespotaStefana 142 Belgrade Serbia
| |
Collapse
|
28
|
Maganti LHB, Ramesh D, Vijayakumar BG, Khan MIK, Dhayalan A, Kamalraja J, Kannan T. Acetylene containing 2-(2-hydrazinyl)thiazole derivatives: design, synthesis, and in vitro and in silico evaluation of antimycobacterial activity against Mycobacterium tuberculosis. RSC Adv 2022; 12:8771-8782. [PMID: 35424819 PMCID: PMC8984819 DOI: 10.1039/d2ra00928e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022] Open
Abstract
Mycobacterium tuberculosis resistance to commercially available drugs is increasing day by day. To address this issue, various strategies were planned and are being implemented. However, there is a need for new drugs and rapid diagnostic methods. For this endeavour, in this paper, we present the synthesis of acetylene containing 2-(2-hydrazinyl) thiazole derivatives and in vitro evaluation against the H37Rv strain of Mycobacterium tuberculosis. Among the developed 26 acetylene containing 2-(2-hydrazinyl) thiazole derivatives, eight compounds inhibited the growth of Mycobacterium tuberculosis with MIC values ranging from 100 μg ml-1 to 50 μg ml-1. The parent acetylene containing thiosemicarbazones showed promising antimycobacterial activity by inhibiting up to 75% of the Mycobacterium at 50 μg ml-1. In addition, in silico studies were employed to understand the binding mode of all the novel acetylene-containing derivatives against the KasA protein of the Mycobacterium. Interestingly, the KasA protein interactions with the compounds were similar to the interactions of KasA protein with thiolactomycin and rifampicin. Cytotoxicity study results indicate that the compounds tested are non-toxic to human embryonic kidney cells.
Collapse
Affiliation(s)
| | - Deepthi Ramesh
- Department of Chemistry, Pondicherry University Kalapet Puducherry-605014 India +91-413-265 6740 +91-413-265 4411
| | - Balaji Gowrivel Vijayakumar
- Department of Chemistry, Pondicherry University Kalapet Puducherry-605014 India +91-413-265 6740 +91-413-265 4411
| | - Mohd Imran K Khan
- Department of Biotechnology, Pondicherry University Kalapet Puducherry-605014 India
| | - Arunkumar Dhayalan
- Department of Biotechnology, Pondicherry University Kalapet Puducherry-605014 India
| | - Jayabal Kamalraja
- Department of Chemistry, Pondicherry University Kalapet Puducherry-605014 India +91-413-265 6740 +91-413-265 4411
| | - Tharanikkarasu Kannan
- Department of Chemistry, Pondicherry University Kalapet Puducherry-605014 India +91-413-265 6740 +91-413-265 4411
| |
Collapse
|
29
|
Tyagi YK, Jali G, Singh R. Synthesis and Anti-Cancer Applications of Benzimidazole Derivatives - Recent Studies. Anticancer Agents Med Chem 2022; 22:3280-3290. [PMID: 36221180 DOI: 10.2174/1871520622666220429134818] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/13/2022] [Accepted: 02/28/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Cancer is a life-threatening disease. Anti-cancer drugs are the focus of research. The heterocyclic molecules like benzimidazole occupy a central position in searching for novel and effective anti-cancer drugs. The medicinal chemists designed and synthesized several benzimidazole derivatives and conjugates to evaluate them as potential anti-cancer agents. OBJECTIVE The purpose of this compilation of literature is to cover the progress of benzimidazole-based anti-cancer agents, their synthesis, and their evaluation for cancer disease treatment. METHODS The recent literatures have been collected from various search engines and peer-reviewed journals. RESULTS The compounds like benzimidazole derivatives of dehydroabietic acid, piperidyl benzimidazole carboxamide, benzimidazole-quinazolinone hybrids, benzimidazole-thiazole conjugate, and benzimidazole pendant cyanopyrimidine derivatives have been discussed in detail. CONCLUSION This review article will help the medicinal chemists to design and synthesize benzimidazole-based molecules and evaluate them as anti-cancer agents.
Collapse
Affiliation(s)
- Yogesh K Tyagi
- University School of Basic and Applied Sciences, Guru Gobind Singh Indraprastha University, Dwarka, New Delhi, India
| | - Geetan Jali
- Department of Chemistry, Kirori Mal College, University of Delhi, New Delhi, India
| | - Ram Singh
- Department of Applied Chemistry, Delhi Technological University, New Delhi, India
| |
Collapse
|
30
|
Matsa R, Makam P, Sethi G, Thottasseri AA, Kizhakkandiyil AR, Ramadas K, Mariappan V, Pillai AB, Kannan T. Pyridine appended 2-hydrazinylthiazole derivatives: design, synthesis, in vitro and in silico antimycobacterial studies. RSC Adv 2022; 12:18333-18346. [PMID: 35799934 PMCID: PMC9215125 DOI: 10.1039/d2ra02163c] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 06/03/2022] [Indexed: 11/21/2022] Open
Abstract
An array of pyridine appended 2-hydrazinylthiazole derivatives has been synthesized to discover novel chemotherapeutic agents for Mycobacterium tuberculosis (Mtb). The drug-likeness of pyridine appended 2-hydrazinylthiazole derivatives was validated using the Lipinski and Veber rules. The designed thiazole molecules have been synthesized through Hantzsch thiazole methodologies. The in vitro antimycobacterial studies have been conducted using Luciferase reporter phage (LRP) assay. Out of thirty pyridine appended 2-hydrazinylthiazole derivatives, the compounds 2b, 3b, 5b, and 8b have exhibited good antimycobacterial activity against Mtb, an H37Rv strain with the minimum inhibitory concentration in the range of 6.40–7.14 μM. In addition, in vitro cytotoxicity of active molecules has been observed against Human Embryonic Kidney Cell lines (HEK293t) using MTT assay. The compounds 3b and 8b are nontoxic and their cell viability is 87% and 96.71% respectively. The in silico analyses of the pyridine appended 2-hydrazinylthiazole derivatives have been studied to find the mode of binding of the active compounds with KasA protein of Mtb. The active compounds showed a strong binding score (−5.27 to −6.23 kcal mol−1). Thirty novel pyridine-appended 2-hydrazinylthiazole derivatives have been synthesized and tested for their antimycobacterial activity against Mictrobactrium tuberculosis, H37Rv strain.![]()
Collapse
Affiliation(s)
- Ramkishore Matsa
- Department of Chemistry, Pondicherry University, Kalapet, Puducherry 605 014, India
| | - Parameshwar Makam
- Dr Param Laboratories, Plot No. 478, BN. Reddy Nagar, Cherlapally, Hyderabad, Telangana 500 051, India
- Division of Research and Innovation, Department of Chemistry, Uttaranchal University, Arcadia Grant, P.O. Chandanwari, Premnagar, Dehradun, Uttarakhand, 248007, India
| | - Guneswar Sethi
- Centre for Bioinformatics, Pondicherry University, Puducherry 605 014, India
| | | | | | - Krishna Ramadas
- Centre for Bioinformatics, Pondicherry University, Puducherry 605 014, India
| | - Vignesh Mariappan
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India
| | - Agieshkumar Balakrishna Pillai
- Central Inter-Disciplinary Research Facility (CIDRF), Sri Balaji Vidyapeeth (Deemed to be University), Puducherry 607 402, India
| | | |
Collapse
|
31
|
Dawbaa S, Evren AE, Cantürk Z, Yurttaş L. Synthesis of new thiazole derivatives and evaluation of their antimicrobial and cytotoxic activities. PHOSPHORUS SULFUR 2021. [DOI: 10.1080/10426507.2021.1972299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Sam Dawbaa
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
- Department of Pharmacy, Faculty of Medicine and Health Sciences, Thamar University, Dhamar, Yemen
| | - Asaf Evrim Evren
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
- Vocational School of Health Services, Bilecik Şeyh Edebali University, Bilecik, Turkey
| | - Zerrin Cantürk
- Faculty of Pharmacy, Department of Pharmaceutical Microbiology, Anadolu University, Eskişehir, Turkey
| | - Leyla Yurttaş
- Faculty of Pharmacy, Department of Pharmaceutical Chemistry, Anadolu University, Eskişehir, Turkey
| |
Collapse
|
32
|
Synthesis, characterization and DFT calculated properties of electron-rich hydrazinylthiazoles: Experimental and computational synergy. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.131043] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Phenylisoxazole-3/5-Carbaldehyde Isonicotinylhydrazone Derivatives: Synthesis, Characterization, and Antitubercular Activity. J CHEM-NY 2021. [DOI: 10.1155/2021/6014093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Eight new phenylisoxazole isoniazid derivatives, 3-(2′-fluorophenyl)isoxazole-5-carbaldehyde isonicotinylhydrazone (1), 3-(2′-methoxyphenyl)isoxazole-5-carbaldehyde isonicotinylhydrazone (2), 3-(2′-chlorophenyl)isoxazole-5-carbaldehyde isonicotinylhydrazone (3), 3-(3′-clorophenyl)isoxazole-5-carbaldehyde isonicotinylhydrazone (4), 3-(4′-bromophenyl)isoxazole-5-carbaldehyde isonicotinylhydrazone (5), 5-(4′-methoxiphenyl)isoxazole-3-carbaldehyde isonicotinylhydrazone (6), 5-(4′-methylphenyl)isoxazole-3-carbaldehyde isonicotinylhydrazone (7), and 5-(4′-clorophenyl)isoxazole-3-carbaldehyde isonicotinylhydrazone (8), have been synthesized and characterized by FT-IR, 1H-NMR, 13C-NMR, and mass spectral data. The 2D NMR (1H-1H NOESY) analysis of 1 and 2 confirmed that these compounds in acetone-d6 are in the trans(E) isomeric form. This evidence is supported by computational calculations which were performed for compounds 1–8, using DFT/B3LYP level with the 6-311++G(d,p) basis set. The in vitro antituberculous activity of all the synthesized compounds was determined against the Mycobacterium tuberculosis standard strains: sensitive H37Rv (ATCC-27294) and resistant TB DM97. All the compounds exhibited moderate bioactivity (MIC = 0.34–0.41 μM) with respect to the isoniazid drug (MIC = 0.91 μM) against the H37Rv sensitive strain. Compounds 6 (X = 4′-OCH3) and 7 (X = 4′-CH3) with MIC values of 12.41 and 13.06 μM, respectively, were about two times more cytotoxic, compared with isoniazid, against the resistant strain TB DM97.
Collapse
|
34
|
Phenolic Thiazoles with Antioxidant and Antiradical Activity. Synthesis, In Vitro Evaluation, Toxicity, Electrochemical Behavior, Quantum Studies and Antimicrobial Screening. Antioxidants (Basel) 2021; 10:antiox10111707. [PMID: 34829578 PMCID: PMC8615111 DOI: 10.3390/antiox10111707] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 10/19/2021] [Accepted: 10/22/2021] [Indexed: 12/27/2022] Open
Abstract
Oxidative stress represents the underlying cause of many chronic diseases in human; therefore, the development of potent antioxidant compounds for preventing or treating such conditions is useful. Starting from the good antioxidant and antiradical properties identified for the previously reported Dihydroxy-Phenyl-Thiazol-Hydrazinium chloride (DPTH), we synthesized a congeneric series of phenolic thiazoles. The radical scavenging activity, and the antioxidant and chelation potential were assessed in vitro, a series of quantum descriptors were calculated, and the electrochemical behavior of the synthesized compounds was studied to evaluate the impact on the antioxidant and antiradical activities. In addition, their antibacterial and antifungal properties were evaluated against seven aerobic bacterial strains and a strain of C. albicans, and their cytotoxicity was assessed in vitro. Compounds 5a-b, 7a-b and 8a-b presented remarkable antioxidant and antiradical properties, and compounds 5a-b, 7a and 8a displayed good Cu+2 chelating activity. Compounds 7a and 8a were very active against P. aeruginosa ATCC 27853 compared to norfloxacin, and proved less cytotoxic than ascorbic acid against the human keratinocyte cell line (HaCaT cells, CLS-300493). Several phenolic compounds from the synthesized series presented excellent antioxidant activity and notable anti-Pseudomonas potential.
Collapse
|
35
|
Das A, Dey S, Chakraborty S, Barman A, Naresh Yadav R, Gazi R, Jana M, Firoj Hossain M. Metal‐Free One‐Pot Synthesis of 2‐(2‐Hydrazinyl) Thiazole Derivatives Using Graphene Oxide in a Green Solvent and Molecular Docking Studies. ChemistrySelect 2021. [DOI: 10.1002/slct.202102642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Arindam Das
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling 734013 (W.B) India
| | - Sovan Dey
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling 734013 (W.B) India
| | - Sumit Chakraborty
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling 734013 (W.B) India
| | - Anup Barman
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling 734013 (W.B) India
| | - Ram Naresh Yadav
- Department of Chemistry, Faculty of Engineering &Technology Veer Bahadur Singh Purvanchal University Jaunpur 222003 (U.) India
| | - Rabiul Gazi
- Department of Chemistry, Molecular simulation Laboratory National Institute of Technology Rourkela, Rourkela Odisha 769008 India
| | - Madhurima Jana
- Department of Chemistry, Molecular simulation Laboratory National Institute of Technology Rourkela, Rourkela Odisha 769008 India
| | - Md. Firoj Hossain
- Department of Chemistry University of North Bengal, Raja Rammohunpur Darjeeling 734013 (W.B) India
| |
Collapse
|
36
|
Bhujbal N, Gaikwad D, Jagdale Y, Pawar C. Synthesis, antimicrobial and anti‐tubercular activity study of N‐(substituted‐benzyl)‐4‐(trifluoromethyl)thiazole‐2‐sulfonamide and 2‐(N‐(substituted‐benzyl)sulfamoyl)thiazole‐4‐carboxylic acid. J CHIN CHEM SOC-TAIP 2021. [DOI: 10.1002/jccs.202000421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Namdeo Bhujbal
- Department of Chemistry, Chemistry Research Centre Annasaheb Magar Mahavidyalaya, Hadapsar Pune Maharashtra India
| | - Dattatray Gaikwad
- Department of Chemistry Deogiri College Aurangabad Maharashtra India
| | - Yuvraj Jagdale
- Department of Chemistry, Chemistry Research Centre Annasaheb Magar Mahavidyalaya, Hadapsar Pune Maharashtra India
| | - Chandrakant Pawar
- Department of Chemical Technology Dr. Babasaheb Ambedkar Marathwada University Aurangabad Maharashtra India
- Department of Pharmaceutical Chemistry, Discipline of Pharmaceutical Sciences, College of Health Sciences University of KwaZulu‐Natal Westville Campus, Durban South Africa
| |
Collapse
|
37
|
Chopra PKPG, Lambat TL, Mahmood SH, Chaudhary RG, Banerjee S. Sulfamic Acid as Versatile Green Catalyst Used For Synthetic Organic Chemistry: A Comprehensive Update. ChemistrySelect 2021. [DOI: 10.1002/slct.202101635] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Trimurti L. Lambat
- Department of Chemistry Manoharbhai Patel College of Arts Commerce & Science Deori- Gondia 441901 Maharashtra India
| | - Sami H. Mahmood
- Department of Physics The University of Jordan Amman 11942 Jordan & Department of Physics and Astronomy Michigan State University East Lansing MI 48824 USA
| | - Ratiram G. Chaudhary
- P.G. Department of Chemistry S. K. Porwal College Kamptee 441001 Maharashtra India
| | - Subhash Banerjee
- Department of Chemistry Guru Ghasidas Vishwavidyalaya Bilaspur 495009 Chhattisgarh India
| |
Collapse
|
38
|
Fotsing MCD, Njamen D, Tanee Fomum Z, Ndinteh DT. Synthesis of biologically active heterocyclic compounds from allenic and acetylenic nitriles and related compounds. PHYSICAL SCIENCES REVIEWS 2021. [DOI: 10.1515/psr-2020-0210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Abstract
Cyclic and polycyclic compounds containing moieties such as imidazole, pyrazole, isoxazole, thiazoline, oxazine, indole, benzothiazole and benzoxazole benzimidazole are prized molecules because of the various pharmaceutical properties that they display. This led Prof. Landor and co-workers to engage in the synthesis of several of them such as alkylimidazolenes, oxazolines, thiazolines, pyrimidopyrimidines, pyridylpyrazoles, benzoxazines, quinolines, pyrimidobenzimidazoles and pyrimidobenzothiazolones. This review covers the synthesis of biologically active heterocyclic compounds by the Michael addition and the double Michael addition of various amines and diamines on allenic nitriles, acetylenic nitriles, hydroxyacetylenic nitriles, acetylenic acids and acetylenic aldehydes. The heterocycles were obtained in one step reaction and in most cases, did not give side products. A brief discussion on the biological activities of some heterocycles is also provided.
Collapse
Affiliation(s)
- Marthe Carine Djuidje Fotsing
- Department of Chemical Sciences , University of Johannesburg , Doornfontein Campus, P.O. BOX 17011 , Johannesburg , 2028 , South Africa
| | - Dieudonné Njamen
- Department of Animal Biology and Physiology, Laboratory of Animal Physiology , University of Yaoundé I, Faculty of Sciences , P.O. Box , 812 Yaoundé , Yaoundé , Cameroon
| | - Zacharias Tanee Fomum
- Department of Organic Chemistry , University of Yaoundé I, Faculty of Sciences , P.O. Box , 812 Yaoundé , Yaoundé , Cameroon
| | - Derek Tantoh Ndinteh
- Department of Chemical Sciences , University of Johannesburg , Doornfontein Campus, P.O. BOX 17011 , Johannesburg , 2028 , South Africa
| |
Collapse
|
39
|
Hałdys K, Goldeman W, Anger-Góra N, Rossowska J, Latajka R. Monosubstituted Acetophenone Thiosemicarbazones as Potent Inhibitors of Tyrosinase: Synthesis, Inhibitory Studies, and Molecular Docking. Pharmaceuticals (Basel) 2021; 14:ph14010074. [PMID: 33477655 PMCID: PMC7831505 DOI: 10.3390/ph14010074] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 01/06/2021] [Accepted: 01/11/2021] [Indexed: 12/19/2022] Open
Abstract
A set of 12 monosubstituted acetophenone thiosemicarbazone derivatives (TSCs) were synthesized and their inhibitory properties toward tyrosinase activity were tested. Moreover, their ability to inhibit melanogenesis in the B16F10 murine melanoma cell line was studied. In order to investigate the nature of interactions between the enzyme and the inhibitors, molecular docking to the active site was performed. TSCs 5, 6, 8, and 9 revealed a half maximal inhibitory concentration (IC50) below 1 µM. Compound 6 turned out to be the most potent tyrosinase inhibitor. All investigated compounds showed reversible inhibition of competitive or mixed type. The para-substituted TSCs had higher affinity for the enzyme as compared to their ortho- and meta-analogues. All investigated compounds inhibited melanin production in B16F10 cells at the micromolar level. Molecular docking showed that the sulfur atom of the thiourea moiety penetrates the active site and interacts with copper ions. The above outcomes might be helpful in the design of new tyrosinase inhibitors in the food and cosmetic industries.
Collapse
Affiliation(s)
- Katarzyna Hałdys
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Correspondence: (K.H.); (R.L.)
| | - Waldemar Goldeman
- Department of Organic and Medicinal Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland;
| | - Natalia Anger-Góra
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, 53-114 Wrocław, Poland; (N.A.-G.); (J.R.)
| | - Joanna Rossowska
- Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Science, 53-114 Wrocław, Poland; (N.A.-G.); (J.R.)
| | - Rafał Latajka
- Department of Bioorganic Chemistry, Wrocław University of Science and Technology, 50-370 Wrocław, Poland
- Correspondence: (K.H.); (R.L.)
| |
Collapse
|
40
|
El-Din A. Abuo-Rahma G, Hassan A, A. Hassan H, Abdelhamid D. Synthetic Approaches toward Certain Structurally Related Antimicrobial Thiazole Derivatives (2010-2020). HETEROCYCLES 2021. [DOI: 10.3987/rev-21-956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
41
|
Affiliation(s)
- Sovan Dey
- Department of Chemistry University of North Bengal Raja Rammohunpur, Darjeeling 734013
| | - Arindam Das
- Department of Chemistry University of North Bengal Raja Rammohunpur, Darjeeling 734013
| | - Md. Firoj Hossain
- Department of Chemistry University of North Bengal Raja Rammohunpur, Darjeeling 734013
| |
Collapse
|
42
|
Zhang Z, Shu B, Zhang Y, Deora GS, Li QS. 2,4,5-Trisubstituted Thiazole: A Privileged Scaffold in Drug Design and Activity Improvement. Curr Top Med Chem 2020; 20:2535-2577. [DOI: 10.2174/1568026620999200917153856] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 11/22/2022]
Abstract
Thiazole is an important 5-membered heterocyclic compound containing nitrogen and sulfur
atoms with various pharmaceutical applications including anti-inflammatory, anti-cancer, anti-viral, hypoglycemic,
anti-bacterial and anti-fungal activities. Until now, the FDA-approved drugs containing thiazole
moiety have achieved great success such as dasatinib and dabrafenib. In recent years, considerable
research has been focused on thiazole derivatives, especially 2,4,5-trisubstituted thiazole derivatives,
due to their multiple medicinal applications. This review covers related literature in the past 20 years,
which reported the 2,4,5-trisubstituted thiazole as a privileged scaffold in drug design and activity improvement.
Moreover, this review aimed to provide greater insights into the rational design of more potent
pharmaceutical molecules based on 2,4,5-trisubstituted thiazole in the future.
Collapse
Affiliation(s)
- Zhen Zhang
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230601, China
| | - Bing Shu
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, China
| | - Yaodong Zhang
- Henan Provincial Key Laboratory of Children's Genetics and Metabolic Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, Henan, 450018, China
| | - Girdhar Singh Deora
- Monash Institute of Pharmaceutical Sciences, Monash University, Parkville, Victoria 3052, Australia
| | - Qing-Shan Li
- School of Food and Biological Engineering, Key Laboratory of Metabolism and Regulation for Major Diseases of Anhui Higher Education Institutes, Hefei University of Technology, Hefei, Anhui, 230601, China
| |
Collapse
|
43
|
Anaikutti P, Makam P. Dual active 1, 4-dihydropyridine derivatives: Design, green synthesis and in vitro anti-cancer and anti-oxidant studies. Bioorg Chem 2020; 105:104379. [PMID: 33113411 DOI: 10.1016/j.bioorg.2020.104379] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Revised: 09/05/2020] [Accepted: 10/12/2020] [Indexed: 12/11/2022]
Abstract
The present work describes the design of 1,4-dihydropyridines (1,4-DHPs) with diverse variations in structural and functional groups. The physico-chemical properties and drug-like molecule nature evaluations were carried out using SWISSADME. A simple, economical, eco-friendly, water-mediated and Para-Toluene sulfonic acid catalysed multicomponent and one-pot synthetic method from nitroketene N, S- acetals (NMSM) and corresponding aldehydes has been developed. All compounds (6a-u and 13a-h) were subjected to in vitro assays against two important human cancer cell lines Viz. are Laryngeal carcinoma (Hep2) and Lung adenocarcinoma (A549) cells. The reduction level of DPPH (%) used to evaluate the anti-oxidant properties. The 1,4-DHP derivatives, 6o, 6u and 6l displayed the potent anti-cancer activity with IC50 value of 10 µM, 14 µM and 10 µM against the Hep2 and 8 µM, 9 µM and 50 µM against the A549 cells. Similarly, the anti-oxidant properties of 6o, 6l and 6u at a standard concentration of 50 µg, are found to be 70.12%, 63.90% and 59.57% respectively favours the 1,4-DHP derivatives dual activity potentials. The compounds, 6o and 6l found to be equivalent with standard drug, Doxorubicin.
Collapse
Affiliation(s)
- Parthiban Anaikutti
- National Centre for Sustainable Coastal Management, Anna University Campus, Chennai 600025, India
| | - Parameshwar Makam
- Chemical Science Research Group, Division of Research and Development, Lovely Professional University, Phagwara, Punjab 144411. India; Dr. Param Laboratories, Phase-1, IDA, B.N. Reddy Nagar, Cherlapally, Hyderabad, Telangana 500062, India.
| |
Collapse
|
44
|
Adole VA, Pawar TB, Jagdale BS. DFT computational insights into structural, electronic and spectroscopic parameters of 2-(2-Hydrazineyl)thiazole derivatives: a concise theoretical and experimental approach. J Sulphur Chem 2020. [DOI: 10.1080/17415993.2020.1817456] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Vishnu A. Adole
- Department of Chemistry, Arts, Science and Commerce College, Manmad, Nashik, India
| | - Thansing B. Pawar
- Department of Chemistry, Loknete Vyankatrao Hiray Arts, Science and Commerce College Panchavati, Nashik, India
| | - Bapu S. Jagdale
- Department of Chemistry, Arts, Science and Commerce College, Manmad, Nashik, India
| |
Collapse
|
45
|
Srour AM, Ahmed NS, Abd El-Karim SS, Anwar MM, El-Hallouty SM. Design, synthesis, biological evaluation, QSAR analysis and molecular modelling of new thiazol-benzimidazoles as EGFR inhibitors. Bioorg Med Chem 2020; 28:115657. [PMID: 32828424 DOI: 10.1016/j.bmc.2020.115657] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/26/2020] [Accepted: 07/15/2020] [Indexed: 02/06/2023]
Abstract
Heterocyclic rings such as thiazole and benzimidazole are considered as privileged structures, since they constitute several FDA-approved drugs for cancer treatment. In this work, a new set of 2-(2-(substituted) hydrazinyl)-4-(1-methyl-1H-benzo[d]imidazol-2-yl) thiazoles 4a-q were designed as epidermal growth factor receptor (EGFR) inhibitors and synthesized using concise synthetic methods. The new target compounds have been evaluated in vitro for their suppression activity against EGFR TK. Compounds 4n, 4h, 4i, 4a and 4d exhibited significant potency in comparison with erlotinib which served as a reference drug (IC50, 71.67-152.59 nM; IC50 erlotinib, 152.59 nM). Furthermore, MTT assay revealed that compounds 4j, 4a, 4f, 4h, 4n produced the most promising cytotoxic potency against the human breast cancer cell line (MCF-7) (IC50; 5.96-11.91 µM; IC50 erlotinib; 4.15 µM). Compound 4a showed promising activity as EGFR TK inhibitor as well as anti-breast cancer agent. In addition, 4a induced apoptotic effect and cell cycle arrest at G2/M phase preventing the mitotic cycle in MCF-7 cells. Moreover, 4a upregulated the oncogenic parameters; caspase-3, p53, Bax/Bcl-2 as well as it inhibited the level of PARP-1 enzyme. QSAR study was carried out for the new derivatives and it revealed the goodness of the models. Furthermore, molecular docking studies represented the binding modes of the promising compounds in the active pocket of EGFR.
Collapse
Affiliation(s)
- Aladdin M Srour
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Nesreen S Ahmed
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt
| | - Somaia S Abd El-Karim
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Manal M Anwar
- Department of Therapeutic Chemistry, National Research Centre, Dokki, Cairo 12622, Egypt.
| | - Salwa M El-Hallouty
- Drug Bioassay-Cell Culture Laboratory, Department of Pharmacognosy, National Research Centre, Dokki, Giza 12622, Egypt
| |
Collapse
|
46
|
Patel HM, Palkar M, Karpoormath R. Exploring MDR‐TB Inhibitory Potential of 4‐Aminoquinazolines as
Mycobacterium tuberculosis N
‐Acetylglucosamine‐1‐Phosphate Uridyltransferase (GlmU
MTB
) Inhibitors. Chem Biodivers 2020; 17:e2000237. [DOI: 10.1002/cbdv.202000237] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 05/28/2020] [Indexed: 12/11/2022]
Affiliation(s)
- Harun M. Patel
- Department of Pharmaceutical ChemistryUniversity of KwaZulu-Natal (Westville Campus) Private Bag X54001 Durban 4000 South Africa
- Department of Pharmaceutical ChemistryR. C. Patel Institute of Pharmaceutical Education and Research Shirpur, Maharashtra 425405 India
| | - Mahesh Palkar
- Department of Pharmaceutical ChemistryUniversity of KwaZulu-Natal (Westville Campus) Private Bag X54001 Durban 4000 South Africa
| | - Rajshekhar Karpoormath
- Department of Pharmaceutical ChemistryUniversity of KwaZulu-Natal (Westville Campus) Private Bag X54001 Durban 4000 South Africa
| |
Collapse
|
47
|
Ramesh D, Joji A, Vijayakumar BG, Sethumadhavan A, Mani M, Kannan T. Indole chalcones: Design, synthesis, in vitro and in silico evaluation against Mycobacterium tuberculosis. Eur J Med Chem 2020; 198:112358. [DOI: 10.1016/j.ejmech.2020.112358] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/04/2020] [Accepted: 04/16/2020] [Indexed: 12/18/2022]
|
48
|
Hublikar M, Kadu V, Dublad JK, Raut D, Shirame S, Makam P, Bhosale R. (
E
)‐2‐(2‐Allylidenehydrazinyl)thiazole derivatives: Design, green synthesis, in silico and in vitro antimycobacterial and radical scavenging studies. Arch Pharm (Weinheim) 2020; 353:e2000003. [DOI: 10.1002/ardp.202000003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 04/02/2020] [Accepted: 04/08/2020] [Indexed: 01/11/2023]
Affiliation(s)
- Mahesh Hublikar
- Organic Chemistry Research Laboratory, School of Chemical SciencesSolapur University Solapur Maharashtra India
| | - Vikas Kadu
- Organic Chemistry Research Laboratory, School of Chemical SciencesSolapur University Solapur Maharashtra India
| | - Jitender Kumar Dublad
- Protein DNA Interaction GroupCentral European Institute of Technology Brno Czech Republic
| | - Dattatraya Raut
- Organic Chemistry Research Laboratory, School of Chemical SciencesSolapur University Solapur Maharashtra India
| | - Sachin Shirame
- Organic Chemistry Research Laboratory, School of Chemical SciencesSolapur University Solapur Maharashtra India
| | - Parameshwar Makam
- Chemical Science Research Group, Advanced Research Group, Division of Research and DevelopmentLovely Professional University Phagwara Punjab India
| | - Raghunath Bhosale
- Organic Chemistry Research Laboratory, School of Chemical SciencesSolapur University Solapur Maharashtra India
| |
Collapse
|
49
|
Adole VA, More RA, Jagdale BS, Pawar TB, Chobe SS. Efficient Synthesis, Antibacterial, Antifungal, Antioxidant and Cytotoxicity Study of 2‐(2‐Hydrazineyl)thiazole Derivatives. ChemistrySelect 2020. [DOI: 10.1002/slct.201904609] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Vishnu A. Adole
- Research Centre in ChemistryLoknete Vyankatrao Hiray Arts, Science and Commerce College Panchavati, Affiliated to Savitribai Phule Pune University, Pune Nashik 422003 India
| | - Rahul A. More
- Department of MicrobiologyDayanand Science College, Affiliated to Swami Ramanand Teerth Marathwada University, Nanded Latur 413512 India
| | - Bapu S. Jagdale
- Research Centre in ChemistryLoknete Vyankatrao Hiray Arts, Science and Commerce College Panchavati, Affiliated to Savitribai Phule Pune University, Pune Nashik 422003 India
| | - Thansing B. Pawar
- Research Centre in ChemistryLoknete Vyankatrao Hiray Arts, Science and Commerce College Panchavati, Affiliated to Savitribai Phule Pune University, Pune Nashik 422003 India
| | - Santosh S. Chobe
- Research Centre in ChemistryLoknete Vyankatrao Hiray Arts, Science and Commerce College Panchavati, Affiliated to Savitribai Phule Pune University, Pune Nashik 422003 India
| |
Collapse
|
50
|
Hydrazine clubbed 1,3-thiazoles as potent urease inhibitors: design, synthesis and molecular docking studies. Mol Divers 2020; 25:1-13. [PMID: 32095975 DOI: 10.1007/s11030-020-10057-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Accepted: 02/17/2020] [Indexed: 10/24/2022]
Abstract
Synthesis of a novel series of hydrazine clubbed 1,3-thiazoles (5a-m) has been described by reacting hydrazine-1-carbothioamides (3a-k) with α-chloro- or bromo-acetophenones (4a-d) in refluxing ethanol in good to excellent yields (65-86%). Structural confirmation was based upon spectroscopic techniques such as 1H-NMR, 13C-NMR, FT-IR and mass spectrometry. The biological application of these motifs has been demonstrated in terms of their strong urease inhibition activity. The results of in vitro study revealed that all the compounds are the potent inhibitors of urease. The IC50 (ranging in between 110 and 440 nM) values were higher as compared to that of standard, i.e., thiourea (IC50 = 490 ± 10 nM). The synthesized compounds were docked at the active sites of the Jack bean urease enzyme in order to explore the possible binding interactions of enzyme-ligand complexes; the results reinforced the in vitro biological activity results.
Collapse
|