1
|
Shahabadi N, Marzbani A, Hadidi S, Mardani Z. Spectroscopic and molecular docking investigation on the interaction of a water-soluble Cu(II) complex containing diethanolamine and dipicolinic acid ligands with human serum albumin. J Biomol Struct Dyn 2025; 43:3366-3374. [PMID: 38147399 DOI: 10.1080/07391102.2023.2297812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
Under physiological conditions, spectroscopic techniques as well as molecular docking simulation have been used to investigate the binding interaction mechanism between Cu(II) complex containing Pyridine-2,6-dicarboxylic acid (PDCA) and Diethanolamine (DEA) ligands, [Cu(DEA)(PDCA)] and human serum albumin (HSA). UV spectral changes of protein in the presence of the Cu(II) complex suggested the formation of a Protein-Cu(II) complex conjugate with specific new structure. The Cu(II) complex quenches the intrinsic fluorescence of the HSA via a static mechanism in which van der Waals interactions along with hydrogen bonds are fundamental binding forces. Displacement experiments performed by warfarin and ibuprofen site probes predict that the Cu(II) complex is located in subdomain IIA, Sudlow site 1 of HSA. Molecular docking results showed close resemblance with experimental data.
Collapse
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Azadeh Marzbani
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Saba Hadidi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Zahra Mardani
- Inorganic Chemistry Department, Faculty of Chemistry, Urmia University, Urmia, Iran
| |
Collapse
|
2
|
Ana G, Malebari AM, Noorani S, Fayne D, O’Boyle NM, Zisterer DM, Pimentel EF, Endringer DC, Meegan MJ. ( E)-1-(3-(3-Hydroxy-4-Methoxyphenyl)-1-(3,4,5-Trimethoxyphenyl)allyl)-1 H-1,2,4-Triazole and Related Compounds: Their Synthesis and Biological Evaluation as Novel Antimitotic Agents Targeting Breast Cancer. Pharmaceuticals (Basel) 2025; 18:118. [PMID: 39861179 PMCID: PMC11769294 DOI: 10.3390/ph18010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: The synthesis of (E)-1-(1,3-diphenylallyl)-1H-1,2,4-triazoles and related compounds as anti-mitotic agents with activity in breast cancer was investigated. These compounds were designed as hybrids of the microtubule-targeting chalcones, indanones, and the aromatase inhibitor letrozole. Methods: A panel of 29 compounds was synthesized and examined by a preliminary screening in estrogen receptor (ER) and progesterone receptor (PR)-positive MCF-7 breast cancer cells together with cell cycle analysis and tubulin polymerization inhibition. Results: (E)-5-(3-(1H-1,2,4-triazol-1-yl)-3-(3,4,5-trimethoxyphenyl)prop-1-en-1-yl)-2-methoxyphenol 22b was identified as a potent antiproliferative compound with an IC50 value of 0.39 mM in MCF-7 breast cancer cells, 0.77 mM in triple-negative MDA-MB-231 breast cancer cells, and 0.37 mM in leukemia HL-60 cells. In addition, compound 22b demonstrated potent activity in the sub-micromolar range against the NCI 60 cancer cell line panel including prostate, melanoma, colon, leukemia, and non-small cell lung cancers. G2/M phase cell cycle arrest and the induction of apoptosis in MCF-7 cells together with inhibition of tubulin polymerization were demonstrated. Immunofluorescence studies confirmed that compound 22b targeted tubulin in MCF-7 cells, while computational docking studies predicted binding conformations for 22b in the colchicine binding site of tubulin. Compound 22b also selectively inhibited aromatase. Conclusions: Based on the results obtained, these novel compounds are suitable candidates for further investigation as antiproliferative microtubule-targeting agents for breast cancer.
Collapse
Affiliation(s)
- Gloria Ana
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Azizah M. Malebari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Sara Noorani
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Darren Fayne
- Molecular Design Group, School of Chemical Sciences, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
- DCU Life Sciences Institute, Dublin City University, Glasnevin, D09 V209 Dublin, Ireland
| | - Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Daniela M. Zisterer
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, 152-160 Pearse Street, D02 R590 Dublin, Ireland
| | - Elisangela Flavia Pimentel
- Department of Pharmaceutical Sciences, University Vila Velha, Av. Comissário José Dantas de Melo, n°21, Boa Vista, Vila Velha CEP 29102-920, Brazil
| | - Denise Coutinho Endringer
- Department of Pharmaceutical Sciences, University Vila Velha, Av. Comissário José Dantas de Melo, n°21, Boa Vista, Vila Velha CEP 29102-920, Brazil
| | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| |
Collapse
|
3
|
Manea YK, Qashqoosh MTA, Rezakazemi M. In Vitro Hemoglobin Binding and Molecular Docking of Synthesized Chitosan-Based Drug-Carrying Nanocomposite for Ciprofloxacin-HCl Drug Delivery System. ACS OMEGA 2024; 9:6339-6354. [PMID: 38371765 PMCID: PMC10870405 DOI: 10.1021/acsomega.3c04632] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 12/27/2023] [Accepted: 12/28/2023] [Indexed: 02/20/2024]
Abstract
Understanding the intermolecular interactions between antibiotic drugs and hemoglobin is crucial in biological systems. The current study aimed to investigate the preparation of chitosan/polysorbate-80/tripolyphosphate (CS-PS/TPP) nanocomposite as a potential drug carrier for Ciprofloxacin-HCl drug (CFX), intended for controlled release formulation and further used to interact with bovine hemoglobin. Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis-differential thermal analysis (TGA-DTA), scanning electron microscopy (SEM), dynamic light scattering (DLS), and X-ray diffraction analyses were used to characterize the CS-PS/TPP nanocomposite and its CFX-loaded nanocomposite. The second series of biophysical properties were performed on the Ciprofloxacin-loaded CS-PS/TPP (NCFX) for interaction with bovine hemoglobin (BHb). The interactions of (CFX and NCFX) with redox protein hemoglobin were investigated for the first time through a series of in vitro experimental techniques to provide comprehensive knowledge of the drug-protein binding interactions. Additionally, the effect of inclusion of PS-80 on the CFX-BHb interaction was also studied at different concentrations using fluorescence spectroscopy, ultraviolet-visible (UV-Vis) spectroscopy, and circular dichroism (CD) under physiological conditions. The binding process of CFX and NCFX was spontaneous, and the fluorescence of BHb was quenched due to the static mechanism formation of the (CFX/BHb) and (NCFX/BHb) complexes. Thermodynamic parameters ΔG, ΔH, and ΔS at various temperatures indicate that the hydrogen bonding and van der Waals forces play a major role in the CFX-BHb association.
Collapse
Affiliation(s)
| | - Mohsen T. A. Qashqoosh
- Department
of Chemistry, University of Aden, P.O. Box 6312 Aden, Yemen
- Department
of Chemistry, Aligarh Muslim University, Aligarh 202002, India
| | - Mashallah Rezakazemi
- Faculty
of Chemical and Materials Engineering, Shahrood
University of Technology, P.O. Box 3619995161 Shahrood, Iran
| |
Collapse
|
4
|
Zhou YH, Wang Y, Zhang HZ. Synthesis, Antimicrobial Evaluation, and Interaction of Emodin Alkyl Azoles with DNA and HSA. Med Chem 2024; 20:422-433. [PMID: 38351695 DOI: 10.2174/0115734064283049240124115544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/06/2023] [Accepted: 01/09/2024] [Indexed: 07/09/2024]
Abstract
OBJECTIVE This study aimed to overcome the growing antibiotic resistance. Moreover, the new series of emodin alkyl azoles were synthesized. METHOD The novel emodin alkyl azoles were synthesized using commercial emodin and azoles by alkylation. The NMR and HRMS spectra were employed to confirm the structures of novel prepared compounds. The in vitro antibacterial and antifungal activities of the prepared emodin compounds were studied by the 96-well plate method. The binding behavior between emodin 4-nitro imidazole compound 3c and S. aureus DNA was researched using an ultraviolet-visible spectrophotometer. Furthermore, fluorescence spectrometry was used to explore the interaction with human serum albumin (HSA). RESULTS The in vitro antimicrobial results displayed that compound 3c gave relatively strong activities with MIC values of 4-16 μg/mL. Notably, this compound exhibited 2-fold more potent activity against S. aureus (MIC = 4 μg/mL) and E. coli (MIC = 8 μg/mL) strains than clinical drug Chloromycin (MIC = 8 and 16 μg/mL). The UV-vis absorption spectroscopy showed that 4-nitro imidazole emodin 3c could form the 3c-DNA complex by intercalating into S. aureus DNA, inhibiting antimicrobial activities. The simulation results displayed that the emodin 3c and DNA complex were formed by hydrogen bonds. The spectral experiment demonstrated that compound 3c could be transported by human serum albumin (HSA) via hydrogen bonds. The molecular simulation found that the hydroxyl group and the nitroimidazole ring of the emodin compound showed an important role in transportation behavior. CONCLUSION This work may supply useful directions for the exploration of novel antimicrobial agents.
Collapse
Affiliation(s)
- Yu-Hang Zhou
- School of Medicine, Linyi University, Linyi 276000, China
| | - Ying Wang
- School of Medicine, Linyi University, Linyi 276000, China
| | - Hui-Zhen Zhang
- School of Medicine, Linyi University, Linyi 276000, China
| |
Collapse
|
5
|
Wang HG, Zhang HZ. Emodin Alcohols: Design, Synthesis, Biological Evaluation and Multitargeting Studies with DNA, RNA, and HSA. Curr Med Chem 2024; 31:2788-2808. [PMID: 37183459 DOI: 10.2174/0929867330666230512161856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 02/04/2023] [Accepted: 03/05/2023] [Indexed: 05/16/2023]
Abstract
OBJECTIVE A series of novel emodin alcohols were designed and prepared in an effort to overcome the increasing microorganism resistance. METHODS Novel emodin alcohols were prepared from commercial emodin and different nitrogen-containing heterocycles via different synthetic strategies, such as O-alkylation and N-alkylation. The antimicrobial activity of synthesized emodin compounds was evaluated in vitro by a two-fold serial dilution technique. The interaction of emodin compound 3d with biomolecule was researched using UV-vis spectroscopic method and fluorescence spectroscopy. RESULTS Emodin compound 3d containing 2-methyl-5-nitro imidazole ring showed relatively good antimicrobial activity. Notably, it exhibited equivalent activity against S. aureus in comparison to the reference drug norfloxacin (MIC = 4 μg/mL). The combination of strong active compound 3d with reference drugs showed better antimicrobial activity with less dosage and a broader antimicrobial spectrum than their separate use. Further research displayed that emodin compound 3d could intercalate into S. aureus DNA to form the 3d-DNA complex, which might correlate with the inhibitory activity. The hydrogen bonds were found between S. aureus DNA gyrase and strong active compound 3d during the docking research, which were in accordance with the spectral experiment results. The interaction with yeast RNA of compound 3d could also form a complex via hydrogen bonds. The hydrogen bonds were found to play a major role in the transportation of emodin compound 3d by human serum albumin (HSA), as confirmed by molecular simulation. CONCLUSION This work provides a promising starting point to optimize the structures of emodin derivatives as potent antimicrobial agents.
Collapse
Affiliation(s)
- Hai-Guang Wang
- School of Pharmacy, Linyi University, Linyi 276000, China
| | - Hui-Zhen Zhang
- School of Pharmacy, Linyi University, Linyi 276000, China
| |
Collapse
|
6
|
Samreen HS, Hussain A, Yar M, Alshammari MB, Ayub K, Adeel M, Tariq M, Lateef M, Bakht MA, Rasool F. Photophysical and biological aspects of α, β-unsaturated ketones: Experimental and in silico approach. J Biochem Mol Toxicol 2023; 37:e23433. [PMID: 37394811 DOI: 10.1002/jbt.23433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 04/04/2023] [Accepted: 06/12/2023] [Indexed: 07/04/2023]
Abstract
In this work, four fluorinated α, β-unsaturated ketones named as 3-(3-bromophenyl)-1-(3-(trifluoromethyl)phenyl)prop-2-en-1-one (1), 3-(4-methoxyphenyl)-1-(3-(trifluoromethyl)phenyl) prop-2-en-1-one (2), 3-(3-bromo-5-chloro-2-hydroxyphenyl)-1-(3-(trifluoromethyl)phenyl) prop-2-en-1-one (3) and 3-(2-hydroxy-5-methylphenyl)-1-(3-(trifluoromethyl)phenyl)prop-2-en-1-one (4) were synthesized by Claisen-Schmidt reaction. The synthesized molecules were then characterized through ultraviolet-visible spectroscopy (UV-Vis), Fourier transform infrared (FTIR), 1 H-NMR, 13 C-NMR, and mass spectrometry. The antioxidant potential, Urease inhibition, and interaction of compounds 1-4 with Salmon sperm DNA were experimentally explored and supported by molecular docking studies. The synthesized compounds strongly interact with SS-DNA through intercalative mode. It was noticed that compound 1 served as potent Urease inhibitor while compound 4 as better antioxidant among synthesized compounds. Moreover, frontier molecular orbitals, nonlinear optical (NLO) properties, natural bond orbitals, molecular electrostatic potential, natural population analysis, and photophysical properties of synthesized compounds were accomplished through density functional theory and time-dependent density functional theory. The band gap of all the compounds have been worked out using Taucs method. In addition to that, a precise comparative account of UV and IR data obtained from theoretical and experimental findings showed good agreement between theoretical and experimental data. The findings of our studies reflected that compounds 1-4 possess better NLO properties than Urea standard and the band gap data also reflected their prospective use towards optoelectronic materials. The better NLO behavior of compounds was attributed to the noncentrosymmetric structure of synthesized compounds.
Collapse
Affiliation(s)
- Hafiza Saba Samreen
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Ajaz Hussain
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Muhammad Yar
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Mohammed Battah Alshammari
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdul Aziz university, Al-Kharj, Saudi Arabia
| | - Khurshid Ayub
- Department of Chemistry, COMSATS Institute of Information Technology, Abbottabad, Pakistan
| | - Muhammad Adeel
- Institute of Chemical Sciences, Gomal University, Dera Ismaeel Khan, Pakistan
| | - Muhammad Tariq
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| | - Mehreen Lateef
- Multidisciplinary Research Laboratories, Bahria University Medical and Dental College, Karachi, Pakistan
| | - Mohammed Afroz Bakht
- Department of Chemistry, College of Science and Humanities, Prince Sattam bin Abdul Aziz university, Al-Kharj, Saudi Arabia
| | - Faiz Rasool
- Institute of Chemical Sciences, Bahauddin Zakariya University, Multan, Pakistan
| |
Collapse
|
7
|
A Study on Repositioning Nalidixic Acid via Lanthanide Complexation: Synthesis, Characterization, Cytotoxicity and DNA/Protein Binding Studies. Pharmaceuticals (Basel) 2022; 15:ph15081010. [PMID: 36015158 PMCID: PMC9412414 DOI: 10.3390/ph15081010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 08/11/2022] [Accepted: 08/13/2022] [Indexed: 11/30/2022] Open
Abstract
“Drug repositioning” is a modern strategy used to uncover new applications for out-of-date drugs. In this context, nalidixic acid, the first member of the quinolone class with limited use today, has been selected to obtain nine new metal complexes with lanthanide cations (La3+, Sm3+, Eu3+, Gd3+, Tb3+); the experimental data suggest that the quinolone acts as a bidentate ligand, binding to the metal ion via the keto and carboxylate oxygen atoms, findings that are supported by DFT calculations. The cytotoxic activity of the complexes has been studied using the tumoral cell lines, MDA-MB-231 and LoVo, and a normal cell line, HUVEC. The most active compounds of the series display selective activity against LoVo. Their affinity for DNA and the manner of binding have been tested using UV–Vis spectroscopy and competitive binding studies; our results indicate that major and minor groove binding play a significant role in these interactions. The affinity towards serum proteins has also been evaluated, the complexes displaying higher affinity towards albumin than apotransferrin.
Collapse
|
8
|
N-Phenacyldibromobenzimidazoles—Synthesis Optimization and Evaluation of Their Cytotoxic Activity. Molecules 2022; 27:molecules27144349. [PMID: 35889223 PMCID: PMC9315981 DOI: 10.3390/molecules27144349] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/27/2022] [Accepted: 07/05/2022] [Indexed: 02/01/2023] Open
Abstract
Antifungal N-phenacyl derivatives of 4,6- and 5,6-dibromobenzimidazoles are interesting substrates in the synthesis of new antimycotics. Unfortunately, their application is limited by the low synthesis yields and time-consuming separation procedure. In this paper, we present the optimization of the synthesis conditions and purification methods of N-phenacyldibromobenzimidazoles. The reactions were carried out in various base solvent-systems including K2CO3, NaH, KOH, t-BuOK, MeONa, NaHCO3, Et3N, Cs2CO3, DBU, DIPEA, or DABCO as a base, and MeCN, DMF, THF, DMSO, or dioxane as a solvent. The progress of the reaction was monitored using HPLC analysis. The best results were reached when the reactions were carried out in an NaHCO3–MeCN system at reflux for 24 h. Additionally, the cytotoxic activity of the synthesized compounds against MCF-7 (breast adenocarcinoma), A-549 (lung adenocarcinoma), CCRF-CEM (acute lymphoblastic leukemia), and MRC-5 (normal lung fibroblasts) was evaluated. We observed that the studied cell lines differed in sensitivity to the tested compounds with MCF-7 cells being the most sensitive, while A-549 cells were the least sensitive. Moreover, the cytotoxicity of the tested derivatives towards CCRF-CEM cells increased with the number of chlorine or fluorine substituents. Furthermore, some of the active compounds, i.e., 2-(5,6-dibromo-1H-benzimidazol-1-yl)-1-(3,4-dichlorophenyl)ethanone (4f), 2-(4,6-dibromo-1H-benzimidazol-1-yl)-1-(2,4,6-trichlorophenyl)ethanone (5g), and 2-(4,6-dibromo-1H-benzimidazol-1-yl)-1-(2,4,6-trifluorophenyl)ethanone (5j) demonstrated pro-apoptotic properties against leukemic cells with derivative 5g being the most effective.
Collapse
|
9
|
Mirković M, Radović M, Stanković D, Vranješ-Đurić S, Janković D, Petrović D, Mihajlović-Lalić LE, Prijović Ž, Milanović Z. Co(III), Ni(II) and Cu(II) complexes with a tetradentate Schiff base ligand: synthesis, characterization, electrochemical behavior, binding assessment and in vitro cytotoxicity. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2032683] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
- Marija Mirković
- “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Magdalena Radović
- “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Dalibor Stanković
- “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
- Faculty of Chemistry, University of Belgrade, Belgrade, Serbia
| | - Sanja Vranješ-Đurić
- “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Drina Janković
- “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Djordje Petrović
- “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | | | - Željko Prijović
- “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| | - Zorana Milanović
- “VINČA” Institute of Nuclear Sciences - National Institute of the Republic of Serbia, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
10
|
Al‐Rifai NM, Mubarak MS. α‐Substituted Chalcones: A Key Review. ChemistrySelect 2021. [DOI: 10.1002/slct.202103325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Nafisah M. Al‐Rifai
- Pharmaceutical and chemical engineering department School of Medical Sciences German-Jordanian University, P.O. Box 35247 Amman 111800 Jordan
| | | |
Collapse
|
11
|
Ning ZW, Zhang HZ, Zhou CH. Design, Synthesis and Antimicrobial Evaluation of Novel Benzimidazole-incorporated Naphthalimide Derivatives As Salmonella typhimurium DNA Intercalators, and Combination Researches. Med Chem 2021; 18:544-557. [PMID: 34254924 DOI: 10.2174/1573406417666210712105922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/25/2021] [Accepted: 05/05/2021] [Indexed: 11/22/2022]
Abstract
OBJECTIVE A series of novel benzimidazole-incorporated naphthalimide derivatives were designed and prepared to overcome the increasing antibiotic resistance. METHOD The target novel benzimidazole-incorporated naphthalimide derivatives were synthesized from commercial 4-bromo-1,8-naphthalic anhydride and o-phenylene diamine by aminolysis, N-alkylation, and so on. The antimicrobial activity of the synthesized compounds was evaluated in vitro by a two-fold serial dilution technique. The interaction of compound 10g with Salmonella typhimurium DNA was studied using UV-vis spectroscopic methods. RESULTS Compound 10g bearing a 2,4-dichlorobenzyl moiety exhibited the best antimicrobial activities in this series relatively, especially it gave the comparable action against Salmonella typhimurium compared to the reference drug Norfloxacin (MIC = 4 mg/mL). Further research showed that compound 10g could effectively intercalate into the Salmonella typhimurium DNA to form the 10g-DNA complex, which might correlate with the inhibitory activity. Molecular docking results demonstrated that naphthalimide compound 10g could interact with base-pairs of DNA hexamer duplex by p-p stacking. Additionally, the combinations of the solid active combination with clinical drugs gave better antimicrobial efficiency with less dosage and broader antimicrobial spectrum than the separated use alone. Notably, these combined systems were more sensitive to Fluconazole-insensitive M. ruber. CONCLUSION This work opened up a good starting point to optimize the structures of benzimidazole-incorporated naphthalimide derivatives as potent antimicrobial agents.
Collapse
Affiliation(s)
- Zhi-Wei Ning
- School of Pharmacy, Linyi University, Linyi 276000, China
| | - Hui-Zhen Zhang
- School of Pharmacy, Linyi University, Linyi 276000, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
12
|
Fu L, Liu G, Zhao D, Yuan L, Lu K. Interaction of two peptide drugs with biomacromolecules analyzed by molecular docking and multi-spectroscopic methods. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2021; 255:119673. [PMID: 33751958 DOI: 10.1016/j.saa.2021.119673] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 02/08/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Peptide drugs, which are mainly used for the treatment of AIDS, myeloma, and breast cancer, have evolved rapidly owing to their high efficacy and low side effects. The interaction mechanisms of two peptide drugs with two biological macromolecules (protein and DNA), which are of great significance in disease prevention and drug design, were investigated using molecular docking, fluorescence spectroscopy, circular dichroism (CD) spectroscopy, UV-visible spectroscopy and viscosity measurements. The interaction between a series of common drugs and ovalbumin (OVA) was simulated by molecular docking, and two peptide drugs with the highest energy values, namely atazanavir and carfilzomib, were selected; the binding energy values of these drugs with OVA were -59.20 and -55.93 kcal/mol, respectively. The Kb values of the interaction of the two drugs with OVA/DNA were in the range of 104-107 M-1, and the binding affinity of the drugs was stronger with OVA than with DNA. Hydrogen bonds and van der Waals forces were very important for the binding between drugs and OVA through molecular docking studies, and it was consistent with experimental results (ΔH < 0, ΔH < 0). The synchronous fluorescence spectrum showed that the interaction caused a change to the original structure of OVA, and atazanavir had a greater effect on OVA than carfilzomib. CD spectrum analysis also demonstrated that the conformation of OVA changed slightly. The interaction between atazanavir and DNA was mainly driven by hydrophobic forces (ΔH > 0 and ΔH > 0), whereas the major interaction forces involved in the binding of carfilzomib with DNA were hydrogen bonds and van der Waals forces. DNA melting studies, UV-visible spectroscopy, CD spectroscopy and viscosity measurements established that the interaction between the drugs and DNA was groove binding.
Collapse
Affiliation(s)
- Linna Fu
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China; School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China
| | - Guangbin Liu
- Chemical College, Zhengzhou University, Zhengzhou 450001, China
| | - Dongxin Zhao
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Libo Yuan
- School of Chemistry and Chemical Engineering, Henan University of Technology, Zhengzhou 450001, China
| | - Kui Lu
- School of Chemical Engineering and Food Science, Zhengzhou University of Technology, Zhengzhou 450044, China.
| |
Collapse
|
13
|
Novel chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids as potential antibacterial repressors against methicillin-resistant Staphylococcus aureus. Eur J Med Chem 2021; 222:113628. [PMID: 34139627 DOI: 10.1016/j.ejmech.2021.113628] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/03/2021] [Accepted: 06/03/2021] [Indexed: 12/22/2022]
Abstract
The increasing resistance of methicillin-resistant Staphylococcus aureus (MRSA) to antibiotics has led to a growing effort to design and synthesize novel structural candidates of chalcone-conjugated, multi-flexible end-group coumarin thiazole hybrids with outstanding bacteriostatic potential. Bioactivity screening showed that hybrid 5i, which was modified with methoxybenzene, exerted a significant inhibitory activity against MRSA (MIC = 0.004 mM), which was 6 times better than the anti-MRSA activity of the reference drug norfloxacin (MIC = 0.025 mM). Compound 5i neither conferred apparent resistance onto MRSA strains even after multiple passages nor triggered evident toxicity to human hepatocyte LO2 cells and normal mammalian cells (RAW 264.7). Molecular docking showed that highly active molecule 5i might bind to DNA gyrase by forming stable hydrogen bonds. In addition, molecular electrostatic potential surfaces were developed to explain the high antibacterial activity of the target compounds. Furthermore, preliminary mechanism studies suggested that hybrid 5i could disrupt the bacterial membrane of MRSA and insert itself into MRSA DNA to impede its replication, thus possibly becoming a potential antibacterial repressor against MRSA.
Collapse
|
14
|
Rai P, Chettri P, Kar S, Nagar MA, Srivastava S, Golakoti NR. Synthesis, characterization and structure–activity relationship of non-linear optical response of chalcone derivatives with in silico insights. CHEMICAL PAPERS 2021. [DOI: 10.1007/s11696-020-01487-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
15
|
Rashid F, Zaib S, Ibrar A, Ejaz SA, Saeed A, Iqbal J, Khan I. New Hybrid Scaffolds Based on Carbazole-Chalcones as Potent Anticancer Agents. Anticancer Agents Med Chem 2021; 21:1082-1091. [PMID: 32698741 DOI: 10.2174/1871520620666200721110732] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/25/2020] [Accepted: 06/30/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND OBJECTIVES Despite various technological advances for the treatment of cancer, the identification of new chemical entities with potent anticancer effects remain an indispensable requirement of the time due to multi-drug resistance exhibited by previously developed anticancer drugs. Particularly, the hybrid drugs incorporating two individual bioactive pharmacophores present medicinally important structural leads, thus improving the pharmacodynamic profile of the drug molecules. The antiproliferative and pro-apoptotic activity of the carbazole-chalcone hybrids on human breast and cervical cancer cells will be examined. MATERIALS AND METHODS To overcome such complications, in the current study, we evaluated the cytotoxic effects of carbazole-chalcone hybrids on human breast adenocarcinoma (MCF-7), cervical adenocarcinoma (HeLa) cells and normal cells, i.e., Baby Hamster Kidney cells (BHK-21) using MTT (dimethyl-2-thiazolyl-2,5- diphenyl-2H-tetrazolium bromide) assay. The mechanistic studies were performed on potent compound 4g by fluorescent microscopic studies, release of Lactate Dehydrogenase (LDH) and mitochondrial membrane potential, activation of caspase-9 and -3 and flow cytometric analysis. RESULTS As revealed by MTT assay, compound 4g was identified as the most potent derivative among the tested series with IC50 values of 5.64 and 29.15μM against HeLa and MCF-7 cells, respectively. The results were compared with cisplatin. Fluorescent microscopic studies using 4',6-diamidino-2-phenylindole (DAPI) and Propidium Iodide (PI) staining confirmed the occurrence of apoptosis in HeLa cells treated with the most active compound 4g. Moreover, compound 4g also triggered the release of Lactate Dehydrogenase (LDH) in treated HeLa and MCF-7 cells while a fluorescence assay displayed a remarkable increase in the activity of caspase-9 and -3. Moreover, flow cytometric results revealed that compound 4g caused G0/G1 arrest in the treated HeLa cells. CONCLUSION Our results demonstrated that the compound 4g possesses chemotherapeutic properties against breast cancer and cervical adenocarcinoma cells, thus warranting further research to test the anticancer potential of this compound at preclinical and clinical level.
Collapse
Affiliation(s)
- Faisal Rashid
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Sumera Zaib
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Aliya Ibrar
- Department of Chemistry, Faculty of Science, The University of Haripur, Haripur, KPK-22620, Pakistan
| | - Syeda A Ejaz
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Aamer Saeed
- Department of Chemistry, Quaid-i-Azam University, Islamabad-45320, Pakistan
| | - Jamshed Iqbal
- Centre for Advanced Drug Research, COMSATS University Islamabad, Abbottabad Campus, Abbottabad-22060, Pakistan
| | - Imtiaz Khan
- Department of Chemistry and Manchester Institute of Biotechnology, The University of Manchester, 131 Princess Street, Manchester M1 7DN, United Kingdom
| |
Collapse
|
16
|
Liang XY, Battini N, Sui YF, Ansari MF, Gan LL, Zhou CH. Aloe-emodin derived azoles as a new structural type of potential antibacterial agents: design, synthesis, and evaluation of the action on membrane, DNA, and MRSA DNA isomerase. RSC Med Chem 2021; 12:602-608. [PMID: 34046631 PMCID: PMC8128066 DOI: 10.1039/d0md00429d] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Accepted: 01/25/2021] [Indexed: 12/30/2022] Open
Abstract
As serious global drug resistance motivated the exploration of new structural drugs, we developed a type of novel structural aloe-emodin azoles as potential antibacterial agents in this work. Some target aloe-emodin azoles displayed effective activity against the tested strains, especially tetrazolyl aloe-emodin 4b showed a low MIC value of 2 μg mL-1 towards MRSA, being more efficient than the reference drug norfloxacin (MIC = 8 μg mL-1). Also, the active molecule 4b exhibited low cytotoxicity against LO2 cells with no distinct tendency to induce the concerned resistance towards MRSA. The tetrazolyl derivative 4b was preliminarily investigated for the possible mechanism; it was revealed that tetrazolyl derivative 4b could both disrupt the integrity of MRSA membrane and form 4b-DNA supramolecular complex by intercalating into DNA. Moreover, tetrazolyl aloe-emodin 4b could bind with MRSA DNA isomerase at multiple sites through hydrogen bonds in molecular simulation.
Collapse
Affiliation(s)
- Xin-Yuan Liang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Yan-Fei Sui
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| | - Lin-Ling Gan
- Chongqing Engineering Research Center of Pharmaceutical Sciences, School of Pharmacy, Chongqing Medical and Pharmaceutical College Chongqing 401331 PR China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing (Southwest University), Ministry of Education, School of Chemistry and Chemical Engineering, Southwest University Chongqing 400715 PR China +86 23 68254967 +86 23 68254967
| |
Collapse
|
17
|
Wang J, Ansari MF, Zhou CH. Unique para-aminobenzenesulfonyl oxadiazoles as novel structural potential membrane active antibacterial agents towards drug-resistant methicillin resistant Staphylococcus aureus. Bioorg Med Chem Lett 2021; 41:127995. [PMID: 33775834 DOI: 10.1016/j.bmcl.2021.127995] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022]
Abstract
A class of structurally unique para-aminobenzenesulfonyl oxadiazoles as new potential antimicrobial agents was designed and synthesized from acetanilide. Some target para-aminobenzenesulfonyl oxadiazoles showed antibacterial potency. Noticeably, hexyl derivative 8b (MIC = 1 μg/mL) was more active than norfloxacin against drug resistant MRSA. Compound 8b was able to disturb the membrane effectively and intercalate into deoxyribonucleic acid (DNA) to form a steady 8b-DNA complex, which might be responsible for bacterial metabolic inactivation. Molecular docking indicated that 8b could interact with DNA topoisomerase IV through noncovalent interactions to form a supramolecular complex and hinder the function of this enzyme. These results indicated that hexyl derivative 8b deserved further investigation as a new lead compound.
Collapse
Affiliation(s)
- Juan Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, PR China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, PR China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Luminescence Analysis and Molecular Sensing, Ministry of Education, Southwest University, Chongqing 400715, PR China.
| |
Collapse
|
18
|
Salehi B, Quispe C, Chamkhi I, El Omari N, Balahbib A, Sharifi-Rad J, Bouyahya A, Akram M, Iqbal M, Docea AO, Caruntu C, Leyva-Gómez G, Dey A, Martorell M, Calina D, López V, Les F. Pharmacological Properties of Chalcones: A Review of Preclinical Including Molecular Mechanisms and Clinical Evidence. Front Pharmacol 2021; 11:592654. [PMID: 33536909 PMCID: PMC7849684 DOI: 10.3389/fphar.2020.592654] [Citation(s) in RCA: 149] [Impact Index Per Article: 37.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/12/2020] [Indexed: 12/11/2022] Open
Abstract
Chalcones are among the leading bioactive flavonoids with a therapeutic potential implicated to an array of bioactivities investigated by a series of preclinical and clinical studies. In this article, different scientific databases were searched to retrieve studies depicting the biological activities of chalcones and their derivatives. This review comprehensively describes preclinical studies on chalcones and their derivatives describing their immense significance as antidiabetic, anticancer, anti-inflammatory, antimicrobial, antioxidant, antiparasitic, psychoactive, and neuroprotective agents. Besides, clinical trials revealed their use in the treatment of chronic venous insufficiency, skin conditions, and cancer. Bioavailability studies on chalcones and derivatives indicate possible hindrance and improvement in relation to its nutraceutical and pharmaceutical applications. Multifaceted and complex underlying mechanisms of chalcone actions demonstrated their ability to modulate a number of cancer cell lines, to inhibit a number of pathological microorganisms and parasites, and to control a number of signaling molecules and cascades related to disease modification. Clinical studies on chalcones revealed general absence of adverse effects besides reducing the clinical signs and symptoms with decent bioavailability. Further studies are needed to elucidate their structure activity, toxicity concerns, cellular basis of mode of action, and interactions with other molecules.
Collapse
Affiliation(s)
- Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Iquique, Chile
| | - Imane Chamkhi
- Faculty of Sciences, Mohammed V University of Rabat, Rabat, Morocco.,Laboratory of Plant-Microbe Interactions, AgroBioSciences, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Nasreddine El Omari
- Laboratory of Histology, Embryology, and Cytogenetic, Faculty of Medicine and Pharmacy, Mohammed V University in Rabat, Rabat, Morocco
| | - Abdelaali Balahbib
- Laboratory of Zoology and General Biology, Faculty of Sciences, Mohammed V University in Rabat, Rabat, Morocco
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| | - Abdelhakim Bouyahya
- Laboratory of Human Pathologies Biology, Department of Biology, Faculty of Sciences, and Genomic Center of Human Pathologies, Faculty of Medicine and Pharmacy, Mohammed V University Rabat, Rabat, Morocco
| | - Muhammad Akram
- Department of Eastern Medicine, Government College University, Faisalabad, Pakistan
| | - Mehwish Iqbal
- Institute of Health Management, Dow University of Health Sciences, Karachi, Pakistan
| | - Anca Oana Docea
- Department of Toxicology, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Constantin Caruntu
- Department of Physiology, "Carol Davila" University of Medicine and Pharmacy, Bucharest, Romania.,Department of Dermatology, "Prof. N.C. Paulescu" National Institute of Diabetes, Nutrition, and Metabolic Diseases, Bucharest, Romania
| | - Gerardo Leyva-Gómez
- Departamento De Farmacia, Facultad De Química, Universidad Nacional Autónoma De México, Ciudad De México, Mexico
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, Kolkata, India
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, and Centre for Healthy Living, University of Concepción, Concepción, Chile.,Unidad De Desarrollo Tecnológico, UDT, Universidad De Concepción, Concepción, Chile
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - Víctor López
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain.,Instituto Agroalimentario De Aragón-IA2 CITA-Universidad De Zaragoza, Zaragoza, Spain
| | - Francisco Les
- Department of Pharmacy, Faculty of Health Sciences, Universidad San Jorge, Zaragoza, Spain.,Instituto Agroalimentario De Aragón-IA2 CITA-Universidad De Zaragoza, Zaragoza, Spain
| |
Collapse
|
19
|
Tian T, Zhu Z, Ding Y, Li G, Li N, Shen T. Synthesis and Cytotoxic Evaluation of Sanjoseolide and Representative Analogues. ACS OMEGA 2020; 5:33478-33483. [PMID: 33403310 PMCID: PMC7774250 DOI: 10.1021/acsomega.0c05546] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Accepted: 12/03/2020] [Indexed: 06/12/2023]
Abstract
The first total synthesis of sanjoseolide (1), which was originally obtained from Dalea frutescens A, was achieved via an efficient route with a longest linear sequence of six steps from the commercially available 2,4-dihydroxyacetophenone in 8.6% overall yield. Meanwhile, a series of sanjoseolide representative analogues were synthesized and assessed for their antiproliferative potency against cancer cells of different origins. Compound 8e inhibited the survival of all tested cancer cell lines in a dose-dependent manner, the IC50 values of the treatment were about 12.8 μM for human cholangiocarcinoma cell lines RBE and 12.7 μM for human cholangiocarcinoma cell lines HCCC-9810, which was more active than sanjoseolide (1). Analysis of the structure-activity relationships revealed that the presence of a trifluoromethyl group may be beneficial in terms of both RBE and HCCC-9810 inhibition.
Collapse
Affiliation(s)
| | | | - Yalong Ding
- School of Chemical and Biological
Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China
| | - Guoli Li
- School of Chemical and Biological
Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China
| | - Nan Li
- School of Chemical and Biological
Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China
| | - Tong Shen
- School of Chemical and Biological
Engineering, Lanzhou Jiaotong University, Lanzhou, Gansu 730070, P. R. China
| |
Collapse
|
20
|
Rozmer Z, Bernardes A, Pérez CN, Perjési P. Study on the Interaction of 4'-Hydroxychalcones and their Mannich Derivatives with Calf Thymus DNA by TLC and Spectroscopic Methods, a DNA Cleavage Study. THE OPEN MEDICINAL CHEMISTRY JOURNAL 2020. [DOI: 10.2174/1874104502014010122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Phenolic Mannich bases derived from hydroxychalcones show remarkable cytotoxic potencies towards cancer cell lines. However, the exact mechanism of action is still partially uncleared.
Objective:
Interaction of two hydroxychalcones and their Mannich derivatives with calf thymus DNA (ctDNA) has been investigated.
Methods:
Thin-layer chromatography and UV-Vis spectroscopic method were used for studying the interaction. The binding constant has been determined by UV-Vis spectrophotometric titration. The DNA cleavage activity of the compounds was studied by agarose gel electrophoresis.
Results:
Interaction of the compounds with ctDNA exhibited relatively high intrinsic binding constant (4-5x104 M-1). The results indicate existence of weak, non-covalent interactions between the investigated derivatives with ctDNA. Some compounds showed a slight DNA cleavage activity with pBR322.
Conclusion:
The obtained results provide additional knowledge on the previously documented cytotoxicity against tumor cell lines of the hydroxychalcones and their Mannich-derivatives.
Collapse
|
21
|
Maciuca AM, Munteanu AC, Mihaila M, Badea M, Olar R, Nitulescu GM, Munteanu CVA, Bostan M, Uivarosi V. Rare-Earth Metal Complexes of the Antibacterial Drug Oxolinic Acid: Synthesis, Characterization, DNA/Protein Binding and Cytotoxicity Studies. Molecules 2020; 25:molecules25225418. [PMID: 33228104 PMCID: PMC7699381 DOI: 10.3390/molecules25225418] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 11/14/2020] [Accepted: 11/17/2020] [Indexed: 01/04/2023] Open
Abstract
"Drug repositioning" is a current trend which proved useful in the search for new applications for existing, failed, no longer in use or abandoned drugs, particularly when addressing issues such as bacterial or cancer cells resistance to current therapeutic approaches. In this context, six new complexes of the first-generation quinolone oxolinic acid with rare-earth metal cations (Y3+, La3+, Sm3+, Eu3+, Gd3+, Tb3+) have been synthesized and characterized. The experimental data suggest that the quinolone acts as a bidentate ligand, binding to the metal ion via the keto and carboxylate oxygen atoms; these findings are supported by DFT (density functional theory) calculations for the Sm3+ complex. The cytotoxic activity of the complexes, as well as the ligand, has been studied on MDA-MB 231 (human breast adenocarcinoma), LoVo (human colon adenocarcinoma) and HUVEC (normal human umbilical vein endothelial cells) cell lines. UV-Vis spectroscopy and competitive binding studies show that the complexes display binding affinities (Kb) towards double stranded DNA in the range of 9.33 × 104 - 10.72 × 105. Major and minor groove-binding most likely play a significant role in the interactions of the complexes with DNA. Moreover, the complexes bind human serum albumin more avidly than apo-transferrin.
Collapse
Affiliation(s)
- Ana-Madalina Maciuca
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St, 020956 Bucharest, Romania;
| | - Alexandra-Cristina Munteanu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St, 020956 Bucharest, Romania;
- Correspondence: (A.-C.M.); (V.U.); Tel.: +4-021-318-0742 (V.U.); Fax: +4-021-318-0750 (V.U.)
| | - Mirela Mihaila
- Center of Immunology, Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Ave, 030304 Bucharest, Romania; (M.M.); (M.B.)
| | - Mihaela Badea
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str, 050663 Bucharest, Romania; (M.B.); (R.O.)
| | - Rodica Olar
- Department of Inorganic Chemistry, Faculty of Chemistry, University of Bucharest, 90-92 Panduri Str, 050663 Bucharest, Romania; (M.B.); (R.O.)
| | - George Mihai Nitulescu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia Str, 020956 Bucharest, Romania;
| | - Cristian V. A. Munteanu
- Department of Bioinformatics and Structural Biochemistry, Institute of Biochemistry of the Romanian Academy (IBRA), 296 Spl. Independenţei, 060031 Bucharest, Romania;
| | - Marinela Bostan
- Center of Immunology, Stefan S. Nicolau Institute of Virology, 285 Mihai Bravu Ave, 030304 Bucharest, Romania; (M.M.); (M.B.)
| | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy, Carol Davila University of Medicine and Pharmacy, 6 Traian Vuia St, 020956 Bucharest, Romania;
- Correspondence: (A.-C.M.); (V.U.); Tel.: +4-021-318-0742 (V.U.); Fax: +4-021-318-0750 (V.U.)
| |
Collapse
|
22
|
Aggarwal R, Sumran G. An insight on medicinal attributes of 1,2,4-triazoles. Eur J Med Chem 2020; 205:112652. [PMID: 32771798 PMCID: PMC7384432 DOI: 10.1016/j.ejmech.2020.112652] [Citation(s) in RCA: 155] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 07/04/2020] [Accepted: 07/07/2020] [Indexed: 02/01/2023]
Abstract
The present review aims to summarize the pharmacological profile of 1,2,4-triazole, one of the emerging privileged scaffold, as antifungal, antibacterial, anticancer, anticonvulsant, antituberculosis, antiviral, antiparasitic, analgesic and anti-inflammatory agents, etc. along with structure-activity relationship. The comprehensive compilation of work carried out in the last decade on 1,2,4-triazole nucleus will provide inevitable scope for researchers for the advancement of novel potential drug candidates having better efficacy and selectivity.
Collapse
Affiliation(s)
- Ranjana Aggarwal
- Department of Chemistry, Kurukshetra University, Kurukshetra, 136 119, India; CSIR-National Institute of Science Technology and Development Studies, New Delhi, India.
| | - Garima Sumran
- Department of Chemistry, D. A. V. College (Lahore), Ambala City, 134 003, Haryana, India.
| |
Collapse
|
23
|
An unexpected discovery toward novel membrane active sulfonyl thiazoles as potential MRSA DNA intercalators. Future Med Chem 2020; 12:1709-1727. [DOI: 10.4155/fmc-2019-0303] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Aim: With the increasing emergence of drug-resistant bacteria, the need for new antimicrobial agents has become extremely urgent. This work was to develop sulfonyl thiazoles as potential antibacterial agents. Results & methodology: Novel hybrids of sulfonyl thiazoles were developed from commercial acetanilide and acetylthiazole. Hybrids 6e and 6f displayed excellent inhibitory efficacy against clinical methicillin-resistant Staphylococcus aureus (MRSA) (minimum inhibitory concentration = 1 μg/ml) without obvious toxicity toward normal mammalian cells (RAW 264.7). The combination uses were found to improve the antimicrobial ability. Further preliminary antibacterial mechanism experiments showed that the active molecule 6f could effectively interfere with MRSA membrane and insert into MRSA DNA. Conclusion: Compounds 6e and 6f could serve as potential DNA-targeting templates toward the development of promising antimicrobial agents.
Collapse
|
24
|
Ge X, Xu Z. 1,2,4-Triazole hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus. Arch Pharm (Weinheim) 2020; 354:e2000223. [PMID: 32985011 DOI: 10.1002/ardp.202000223] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 02/03/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA) has developed numerous mechanisms of virulence and strategies to evade the human immune system, and it can be transmitted between humans, animals, and the environment. Thus, MRSA is an important cause of morbidity and mortality in both hospitals and in the community, creating an urgent demand for the development of novel anti-MRSA candidates. The 1,2,4-triazole nucleus is a bioisostere of amide, ester, and carboxylic acid, and the 1,2,4-triazole ring is found in many compounds with diverse biological effects. 1,2,4-Triazole derivatives could exert their antibacterial activity through inhibition of efflux pumps, filamentous temperature-sensitive protein Z, penicillin-binding protein, DNA gyrase, and topoisomerase IV, and they play an important role in the discovery of novel antibacterial agents. Among them, 1,2,4-triazole hybrids, which have the potential to exert dual/multiple mechanisms of action, possess a promising broad-spectrum antibacterial activity against a panel of clinically important drug-resistant pathogens including MRSA. This review outlines the recent developments of 1,2,4-triazole hybrids with a potential anti-MRSA activity, covering articles published between 2010 and 2020. The mechanisms of action, critical aspects of their design, and structure-activity relationships are also discussed.
Collapse
Affiliation(s)
- Xuemei Ge
- Department of Food Science and Technology, College of Light Industry Science and Engineering, Nanjing Forestry University, Nanjing, China
| | - Zhi Xu
- School of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
25
|
Synthesis, In Silico and In Vitro Evaluation for Acetylcholinesterase and BACE-1 Inhibitory Activity of Some N-Substituted-4-Phenothiazine-Chalcones. Molecules 2020; 25:molecules25173916. [PMID: 32867308 PMCID: PMC7504348 DOI: 10.3390/molecules25173916] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/24/2020] [Accepted: 08/24/2020] [Indexed: 11/25/2022] Open
Abstract
Acetylcholinesterase (AChE) and beta-secretase (BACE-1) are two attractive targets in the discovery of novel substances that could control multiple aspects of Alzheimer’s disease (AD). Chalcones are the flavonoid derivatives with diverse bioactivities, including AChE and BACE-1 inhibition. In this study, a series of N-substituted-4-phenothiazine-chalcones was synthesized and tested for AChE and BACE-1 inhibitory activities. In silico models, including two-dimensional quantitative structure–activity relationship (2D-QSAR) for AChE and BACE-1 inhibitors, and molecular docking investigation, were developed to elucidate the experimental process. The results indicated that 13 chalcone derivatives were synthesized with relatively high yields (39–81%). The bioactivities of these substances were examined with pIC50 3.73–5.96 (AChE) and 5.20–6.81 (BACE-1). Eleven of synthesized chalcones had completely new structures. Two substances AC4 and AC12 exhibited the highest biological activities on both AChE and BACE-1. These substances could be employed for further researches. In addition to this, the present study results suggested that, by using a combination of two types of predictive models, 2D-QSAR and molecular docking, it was possible to estimate the biological activities of the prepared compounds with relatively high accuracy.
Collapse
|
26
|
Shahabadi N, Zendehcheshm S, Momeni BZ, Abbasi R. Antiproliferative activity and human serum albumin binding propensity of [SnMe2Cl2(bu2bpy)]: multi-spectroscopic analysis, atomic force microscopy, and computational studies. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1775821] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Affiliation(s)
- Nahid Shahabadi
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
- Medical Biology Research Center (MBRC), Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Saba Zendehcheshm
- Department of Inorganic Chemistry, Faculty of Chemistry, Razi University, Kermanshah, Iran
| | - Badri Z Momeni
- Faculty of Chemistry, KN Toosi University of Technology, Tehran, Iran
| | - Reyhaneh Abbasi
- Faculty of Chemistry, KN Toosi University of Technology, Tehran, Iran
| |
Collapse
|
27
|
Sui YF, Li D, Wang J, Bheemanaboina RRY, Ansari MF, Gan LL, Zhou CH. Design and biological evaluation of a novel type of potential multi-targeting antimicrobial sulfanilamide hybrids in combination of pyrimidine and azoles. Bioorg Med Chem Lett 2020; 30:126982. [DOI: 10.1016/j.bmcl.2020.126982] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/03/2020] [Accepted: 01/17/2020] [Indexed: 12/12/2022]
|
28
|
New chalcone-type compounds and 2-pyrazoline derivatives: synthesis and caspase-dependent anticancer activity. Future Med Chem 2020; 12:493-509. [PMID: 32100558 DOI: 10.4155/fmc-2019-0342] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Aim: There is a continuous and urgent need for new anticancer agents with novel structures and target selectivity. Methods & results: The anticancer activity of the prepared compounds was assessed against human lung (A549) and stomach (AGS) cancer cell lines and evaluated in the noncancer human lung fibroblast (MRC-5) cell line. 2-Pyrazolines were devoid of toxicity in all cell lines used, chalcones bearing a β-(benz)imidazole moiety being toxic toward AGS cell line. Mechanistic studies showed that these compounds trigger loss of cell viability and mitochondrial membrane potential, while eliciting morphological traits compatible with regulated cell death, which was ultimately shown to derive from caspase activation, specifically caspase-3. Conclusion: Chalcones 1-3 have been identified as new and promising anticancer agents toward the AGS cell line.
Collapse
|
29
|
Mani Chandrika KVS, Sharma S. Promising antifungal agents: A minireview. Bioorg Med Chem 2020; 28:115398. [PMID: 32115335 DOI: 10.1016/j.bmc.2020.115398] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 02/14/2020] [Accepted: 02/19/2020] [Indexed: 11/24/2022]
Abstract
In the recent past, prevalence of life threatening fungal diseases have increased rapidly in immune-compromised cases such as acquired immunodeficiency syndrome (AIDS), cancer, organ transplant etc. Side by side, the appearance of drug resistance to the presently available antifungal therapeutics is on a rapid rise. It has become a top priority for the academia and pharmaceutical industries to develop new antifungal agents able to combat this resistance, and at the same time, possess potential broad spectrum of activity and minimum toxicity. An understanding of the pharmacological interactions between antifungal agents and their targets offers opportunities for design of new therapeutics. This review discusses the various methodology of drug design, structure activity relationships (SARs), and mode of action of variety of new antifungal agents.
Collapse
Affiliation(s)
- K V S Mani Chandrika
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Anantapur Campus, Anantapur 515001, A.P., India
| | - Sahida Sharma
- Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Anantapur Campus, Anantapur 515001, A.P., India.
| |
Collapse
|
30
|
Recent developments of chalcones as potential antibacterial agents in medicinal chemistry. Eur J Med Chem 2020; 187:111980. [DOI: 10.1016/j.ejmech.2019.111980] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 12/13/2019] [Accepted: 12/16/2019] [Indexed: 12/31/2022]
|
31
|
Henry EJ, Bird SJ, Gowland P, Collins M, Cassella JP. Ferrocenyl chalcone derivatives as possible antimicrobial agents. J Antibiot (Tokyo) 2020; 73:299-308. [PMID: 31988484 DOI: 10.1038/s41429-020-0280-y] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/06/2020] [Accepted: 01/13/2020] [Indexed: 11/09/2022]
Abstract
The swift spread of infections caused by drug-resistant bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), has quickly become a worldwide concern as infections spread from healthcare settings to the wider community. While ferrocenyl chalcones, which are chalcone derivatives with antimicrobial activity, have gained attention from researchers, further study is needed to assess their cytotoxicity. Ten newly developed chalcones, in which ring A was replaced with a ferrocenyl moiety and ring B contained increasing alkyl chain lengths from 1 to 10 carbons, were assessed. Using twofold broth microdilution, the minimum inhibitory concentration (MIC) of five of the ten compounds were lower against Gram-positive organisms (MICs from 0.008 mg ml-1 to 0.063 mg ml-1) than Gram-negative organisms (MICs = 0.125 mg ml-1). These novel ferrocenyl chalcone compounds were effective against three types of clinically isolated drug-resistant S. aureus, including an MRSA, and against other non-resistant clinically isolated and laboratory-adapted Gram-positive bacteria. The same compounds inhibited growth in non-resistant bacteria by potentially obstructing cellular respiration in Gram-positive bacteria. Images obtained through scanning electron microscopy revealed fully lysed bacterial cells once exposed to a selected compound that showed activity. The results indicate that these newly developed compounds could be important antimicrobial agents in the treatment of infections from clinically resistant bacteria.
Collapse
Affiliation(s)
- Elecia J Henry
- School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent, Staffordshire, ST4 2DF, UK. .,Department of Food Production, University of the West Indies, Frank Stockdale Building, St. Augustine, Trinidad and Tobago.
| | - Susan J Bird
- School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent, Staffordshire, ST4 2DF, UK
| | - Pauline Gowland
- School of Life Sciences and Education, Staffordshire University, Stoke-on-Trent, Staffordshire, ST4 2DF, UK
| | - Michael Collins
- Chesterfield Royal Hospital NHS Foundation Trust, Chesterfield Road, Calow, Chesterfield, Derbyshire, S44 5BL, UK
| | - John P Cassella
- School of Law, Policing and Forensics, Staffordshire University, Stoke-on-Trent, Staffordshire, ST4 2DF, UK
| |
Collapse
|
32
|
Ba XX, Gao T, Yang M, Jiang P, Jiang FL, Liu Y. Thermodynamics of the Interaction Between Graphene Quantum Dots with Human Serum Albumin and γ-Globulins. J SOLUTION CHEM 2020. [DOI: 10.1007/s10953-019-00941-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
33
|
Zheng H, Wan P, Qi S, Chen H, Zhai H. Investigating the interaction between DNA-templated gold nanoclusters and HSA via spectroscopy. NEW J CHEM 2020. [DOI: 10.1039/d0nj02075c] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Gold nanoclusters (AuNCs) have attracted great attention in bioimaging and drug transportation due to their biocompatibility, but a few studies have shown their potential toxicity.
Collapse
Affiliation(s)
- Huanhuan Zheng
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Pengfei Wan
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Shengda Qi
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Hongli Chen
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| | - Honglin Zhai
- College of Chemistry and Chemical Engineering
- Lanzhou University
- Lanzhou 730000
- People's Republic of China
| |
Collapse
|
34
|
Kazmi M, Khan I, Khan A, Halim SA, Saeed A, Mehsud S, Al-Harrasi A, Ibrar A. Developing new hybrid scaffold for urease inhibition based on carbazole-chalcone conjugates: Synthesis, assessment of therapeutic potential and computational docking analysis. Bioorg Med Chem 2019; 27:115123. [DOI: 10.1016/j.bmc.2019.115123] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 09/11/2019] [Accepted: 09/14/2019] [Indexed: 12/11/2022]
|
35
|
Xu M, Wu P, Shen F, Ji J, Rakesh KP. Chalcone derivatives and their antibacterial activities: Current development. Bioorg Chem 2019; 91:103133. [PMID: 31374524 DOI: 10.1016/j.bioorg.2019.103133] [Citation(s) in RCA: 128] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 06/27/2019] [Accepted: 07/18/2019] [Indexed: 12/17/2022]
Abstract
The increase in antibiotic resistance due to various factors has encouraged the look for novel compounds which are active against multidrug-resistant pathogens. In this framework, chalcone-based compounds showed a diversity of pharmacological properties, and its derivatives possess a high degree of structural diversity, and it is helpful for the discovery of new therapeutic agents. The growing resistance to antibiotics worldwide has endangered their efficacy. This has led to a surging interest in the discovery of new antibacterial agents. Thus, there is an urgent need for new antibacterial drug candidates with increased strength, new targets, low cost, superior pharmacokinetic properties, and minimum side effects. The present review concluded and focuses on the recent developments in the area of medicinal chemistry to explore the diverse chemical structures of potent antibacterial agents and also describes its structure-activity relationships studies. The various synthetic structures leading to this class of neutral protective compound is common and additional structural optimization is promising for potential drug discovery and development.
Collapse
Affiliation(s)
- Man Xu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Piye Wu
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Fan Shen
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - Jiayou Ji
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China
| | - K P Rakesh
- Engineering Research Center of Environmental Materials and Membrane Technology of Hubei Province, School of Materials Science and Engineering, Wuhan Institute of Technology, Wuhan 430205, PR China.
| |
Collapse
|
36
|
Wang LL, Battini N, Bheemanaboina RRY, Ansari MF, Chen JP, Xie YP, Cai GX, Zhang SL, Zhou CH. A new exploration towards aminothiazolquinolone oximes as potentially multi-targeting antibacterial agents: Design, synthesis and evaluation acting on microbes, DNA, HSA and topoisomerase IV. Eur J Med Chem 2019; 179:166-181. [PMID: 31254919 DOI: 10.1016/j.ejmech.2019.06.046] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2019] [Revised: 06/15/2019] [Accepted: 06/16/2019] [Indexed: 01/26/2023]
Abstract
This work did a new exploration towards aminothiazolquinolone oximes as potentially multi-targeting antimicrobial agents. A class of novel hybrids of quinolone, aminothiazole, piperazine and oxime fragments were designed for the first time, conveniently synthesized as well as characterized by 1H NMR, 13C NMR and HRMS spectra. Biological activity showed that some of the synthesized compounds exhibited good antimicrobial activities in comparison with the reference drugs. Especially, O-methyl oxime derivative 10b displayed excellent inhibitory efficacy against MRSA and S. aureus 25923 with MIC values of 0.009 and 0.017 mM, respectively. Further studies indicated that the highly active compound 10b showed low toxicity toward BEAS-2B and A549 cell lines and no obvious propensity to trigger the development of bacterial resistance. Quantum chemical studies have also been conducted and rationally explained the structural features essential for activity. The preliminarily mechanism exploration revealed that compound 10b could not only exert efficient membrane permeability by interfering with the integrity of cells, bind with topoisomerase IV-DNA complex through hydrogen bonds and π-π stacking, but also form a steady biosupramolecular complex by intercalating into DNA to exert the efficient antibacterial activity. The supramolecular interaction between compound 10b and human serum albumin (HSA) was a static quenching, and the binding process was spontaneous, where hydrogen bonds and van der Waals force played vital roles in the supramolecular transportation of the active compound 10b by HSA.
Collapse
Affiliation(s)
- Liang-Liang Wang
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Mohammad Fawad Ansari
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Jin-Ping Chen
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Yun-Peng Xie
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
| | - Gui-Xin Cai
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| | - Shao-Lin Zhang
- School of Pharmaceutical Sciences, Chongqing Key Laboratory of Natural Product Synthesis and Drug Research, Chongqing University, Chongqing, 401331, China.
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China.
| |
Collapse
|
37
|
Fang B, Xiao Z, Qiu Y, Shu S, Chen X, Chen X, Zhuang F, Zhao Y, Liang G, Liu Z. Synthesis and Anti-inflammatory Evaluation of ( R)-, ( S)-, and (±)-Sanjuanolide Isolated from Dalea frutescens. JOURNAL OF NATURAL PRODUCTS 2019; 82:748-755. [PMID: 30896163 DOI: 10.1021/acs.jnatprod.8b00596] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The known chalcone (±)-sanjuanolide (1) can be isolated from Dalea frutescens. This study presents a convergent strategy for the first total synthesis of ( R)-, ( S)-, and (±)-sanjuanolide (1). The key step for synthesizing ( R)- and ( S)-1 was a Corey-Bakshi-Shibata enantioselective carbonyl reduction to construct the C-2″ configuration. ( R)-1 efficiently inhibited the lipopolysaccharides (LPS)-induced expression of tumor necrosis factor alpha (TNF-α) and interleukin-6 (IL-6), while ( S)-1 produced no significant anti-inflammatory effect. ( R)-1 also effectively inhibited the mRNA expression of several inflammatory cytokines after the LPS challenge in vitro. The synthesis and biological properties of these compounds have confirmed ( R)-sanjuanolide and (±)-sanjuanolide as promising new leads for developing anti-inflammatory agents.
Collapse
Affiliation(s)
- Bo Fang
- Chemical Biology Research Center at School of Pharmaceutical Sciences , Wenzhou Medical University , 1210 University Town , Wenzhou , Zhejiang 325035 , People's Republic of China
| | - Zhongxiang Xiao
- Department of Pharmacy, Affiliated Yueqing Hospital , Wenzhou Medical University , Wenzhou , Zhejiang 325035 , People's Republic of China
| | - Yinda Qiu
- College of Life and Environmental Science , Wenzhou University , Wenzhou , Zhejiang 325035 , People's Republic of China
| | - Sheng Shu
- Chemical Biology Research Center at School of Pharmaceutical Sciences , Wenzhou Medical University , 1210 University Town , Wenzhou , Zhejiang 325035 , People's Republic of China
| | - Xianxin Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences , Wenzhou Medical University , 1210 University Town , Wenzhou , Zhejiang 325035 , People's Republic of China
| | - Xiaojing Chen
- Chemical Biology Research Center at School of Pharmaceutical Sciences , Wenzhou Medical University , 1210 University Town , Wenzhou , Zhejiang 325035 , People's Republic of China
| | - Fei Zhuang
- Chemical Biology Research Center at School of Pharmaceutical Sciences , Wenzhou Medical University , 1210 University Town , Wenzhou , Zhejiang 325035 , People's Republic of China
| | - Yunjie Zhao
- Chemical Biology Research Center at School of Pharmaceutical Sciences , Wenzhou Medical University , 1210 University Town , Wenzhou , Zhejiang 325035 , People's Republic of China
| | - Guang Liang
- Chemical Biology Research Center at School of Pharmaceutical Sciences , Wenzhou Medical University , 1210 University Town , Wenzhou , Zhejiang 325035 , People's Republic of China
| | - Zhiguo Liu
- Chemical Biology Research Center at School of Pharmaceutical Sciences , Wenzhou Medical University , 1210 University Town , Wenzhou , Zhejiang 325035 , People's Republic of China
| |
Collapse
|
38
|
Abdelgawad N, Ismail MF, Hekal MH, Marzouk MI. Design, Synthesis, and Evaluation of Some Novel Heterocycles Bearing Pyrazole Moiety as Potential Anticancer Agents. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Nancy Abdelgawad
- Chemistry Department, Faculty of ScienceAin Shams University Abbassia Cairo 11566 Egypt
| | - Mahmoud F. Ismail
- Chemistry Department, Faculty of ScienceAin Shams University Abbassia Cairo 11566 Egypt
| | - Mohamed H. Hekal
- Chemistry Department, Faculty of ScienceAin Shams University Abbassia Cairo 11566 Egypt
| | - Magda I. Marzouk
- Chemistry Department, Faculty of ScienceAin Shams University Abbassia Cairo 11566 Egypt
| |
Collapse
|
39
|
Song XQ, Wang ZG, Wang Y, Huang YY, Sun YX, Ouyang Y, Xie CZ, Xu JY. Syntheses, characterization, DNA/HSA binding ability and antitumor activities of a family of isostructural binuclear lanthanide complexes containing hydrazine Schiff base. J Biomol Struct Dyn 2019; 38:733-743. [DOI: 10.1080/07391102.2019.1587511] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Xue-Qing Song
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Zhi-Gang Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Yang Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Yu-Ying Huang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Yu-Xuan Sun
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| | - Yan Ouyang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, P. R. China
| | - Cheng-Zhi Xie
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin, P. R. China
| | - Jing-Yuan Xu
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, P. R. China
| |
Collapse
|
40
|
Riaz S, Iqbal M, Ullah R, Zahra R, Chotana GA, Faisal A, Saleem RSZ. Synthesis and evaluation of novel α-substituted chalcones with potent anti-cancer activities and ability to overcome multidrug resistance. Bioorg Chem 2019; 87:123-135. [PMID: 30884306 DOI: 10.1016/j.bioorg.2019.03.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2019] [Revised: 02/24/2019] [Accepted: 03/06/2019] [Indexed: 02/06/2023]
Abstract
A series of forty α-substituted chalcones were synthesized and screened for their antiproliferative activities against HCT116 (colorectal) and HCC1954 (breast) cancer cell lines. Compounds 5a and 5e were found to be the most potent compounds with GI50 values of 0.63 µM and 0.725 µM in HCC1954 cell line and 0.69 µM and 1.59 µM in HCT116 cell line, respectively. Both compounds induced a G2/M cell cycle arrest and caused apoptotic cell death in HCT116 cells as shown by the induction of PARP cleavage. The compounds also stabilized p53 in a dose-dependent manner in HCT116 cells following 24-hour treatment. Furthermore, both 5a and 5e were able to overcome multidrug resistance in two MDR-1 overexpressing multidrug resistant cell lines.
Collapse
Affiliation(s)
- Sharon Riaz
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Maheen Iqbal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Rahim Ullah
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Rida Zahra
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Ghayoor Abbas Chotana
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan
| | - Amir Faisal
- Department of Biology, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan.
| | - Rahman Shah Zaib Saleem
- Department of Chemistry and Chemical Engineering, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences, Lahore 54792, Pakistan.
| |
Collapse
|
41
|
Tang X, Su S, Chen M, He J, Xia R, Guo T, Chen Y, Zhang C, Wang J, Xue W. Novel chalcone derivatives containing a 1,2,4-triazine moiety: design, synthesis, antibacterial and antiviral activities. RSC Adv 2019; 9:6011-6020. [PMID: 35517271 PMCID: PMC9060900 DOI: 10.1039/c9ra00618d] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 02/06/2019] [Indexed: 11/21/2022] Open
Abstract
A series of novel chalcone derivatives containing the 1,2,4-triazine moiety were synthesized and their structures were confirmed by 1H NMR, 13C NMR and elemental analyses. Antiviral bioassays revealed that most of the compounds exhibited good antiviral activity against tobacco mosaic virus (TMV) at a concentration of 500 μg mL-1. The designated compound 4l was 50% effective in terms of curative and protective activities against TMV with 50% effective concentrations (EC50) of 10.9 and 79.4 μg mL-1, which were better than those of ningnanmycin (81.4 and 82.2 μg mL-1). Microscale thermophoresis (MST) also showed that the binding of compound 4l to coat protein (TMV-CP) yielded a K d value of 0.275 ± 0.160 μmol L-1, which was better than that of ningnanmycin (0.523 ± 0.250 μmol L-1). At the same time, molecular docking studies for 4l with TMV-CP (PDB code:1EI7) showed that the compound was embedded well in the pocket between the two subunits of TMV-CP. Meanwhile, compound 4a demonstrated excellent antibacterial activities against Ralstonia solanacearum (R. solanacearum), with an EC50 value of 0.1 μg mL-1, which was better than that of thiodiazole-copper (36.1 μg mL-1) and bismerthiazol (49.5 μg mL-1). The compounds act by causing folding and deformation of the bacterial cell membrane as observed using scanning electron microscopy (SEM). The chalcone derivatives thus synthesized could become potential alternative templates for novel antiviral and antibacterial agents.
Collapse
Affiliation(s)
- Xu Tang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 China +86-851-88292090 +86-851-88292090
| | - Shijun Su
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 China +86-851-88292090 +86-851-88292090
| | - Mei Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 China +86-851-88292090 +86-851-88292090
| | - Jun He
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 China +86-851-88292090 +86-851-88292090
| | - Rongjiao Xia
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 China +86-851-88292090 +86-851-88292090
| | - Tao Guo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 China +86-851-88292090 +86-851-88292090
| | - Ying Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 China +86-851-88292090 +86-851-88292090
| | - Cheng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 China +86-851-88292090 +86-851-88292090
| | - Jun Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 China +86-851-88292090 +86-851-88292090
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University Guiyang 550025 China +86-851-88292090 +86-851-88292090
| |
Collapse
|
42
|
Liu H, Guo C, Guo S, Wang L, Shi D. Design and Synthesis of a Fluorescent Probe with a Large Stokes Shift for Detecting Thiophenols and Its Application in Water Samples and Living Cells. Molecules 2019; 24:375. [PMID: 30669672 PMCID: PMC6359167 DOI: 10.3390/molecules24020375] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/18/2019] [Accepted: 01/21/2019] [Indexed: 12/13/2022] Open
Abstract
A turn-on florescent probe (probe-KCP) was developed for highly selective detection of thiophenols based on a donor-excited photo-induced electron transfer mechanism. Herein, the synthesis of the probe, a chalcone derivative, through a simple straightforward combination of a carbazole-chalcone fluorophore with a 2,4-dinitrophenyl functional group. In a kinetic study of the probe-KCP for thiophenols, the probe displayed a short response time (~30 min) and significant fluorescence enhancement. In selection and competition experiments, the probe-KCP exhibited excellent selectivity for thiophenols over glutathione (GSH), cysteine (Cys), sodium hydrosulfide (NaSH), and ethanethiol (C₂H₅SH) in addition to common anions and metal ions. Using the designed probe, we successfully monitored and quantified thiophenols, which are highly toxic. This turn-on fluorescence probe features a remarkably large Stokes shift (130 nm) and a short response time (30 min), and it is highly selective and sensitive (~160-fold) in the detection of thiophenols, with marked fluorescence in the presence of thiophenols. probe-KCP responds to thiophenols with a good range of linearity (0⁻15 μM) and a detection limit of 28 nM (R² = 0.9946) over other tested species mentioned including aliphatic thiols, thiophenol analogues, common anions, and metal ions. The potential applications of this carbazole-chalcone fluorescent probe was successfully used to determine of thiophenols in real water samples and living cells with good performance and low cytotoxicity. Therefore, this probe has great potential application in environment and biological samples.
Collapse
Affiliation(s)
- Hua Liu
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Chuanlong Guo
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| | - Shuju Guo
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Lijun Wang
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| | - Dayong Shi
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China.
- Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
- Center for Ocean Mega-Science, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
43
|
Hu YY, Yadav Bheemanaboina RR, Battini N, Zhou CH. Sulfonamide-Derived Four-Component Molecular Hybrids as Novel DNA-Targeting Membrane Active Potentiators against Clinical Escherichia coli. Mol Pharm 2019; 16:1036-1052. [DOI: 10.1021/acs.molpharmaceut.8b01021] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yuan-Yuan Hu
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Rammohan R. Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry, Key Laboratory of Applied Chemistry of Chongqing Municipality, School of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715, China
| |
Collapse
|
44
|
Zhang M, Prior AM, Maddox MM, Shen WJ, Hevener KE, Bruhn DF, Lee RB, Singh AP, Reinicke J, Simmons CJ, Hurdle JG, Lee RE, Sun D. Pharmacophore Modeling, Synthesis, and Antibacterial Evaluation of Chalcones and Derivatives. ACS OMEGA 2018; 3:18343-18360. [PMID: 30613820 PMCID: PMC6312637 DOI: 10.1021/acsomega.8b03174] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/13/2018] [Indexed: 06/09/2023]
Abstract
A series of novel chalcone and thiol-Michael addition analogues was synthesized and tested against Mycobacterium tuberculosis and other clinically significant bacterial pathogens. Previously reported chalcone-like antibacterials (1a-c and 2) were used as a training set to generate a pharmacophore model. The chalcone derivative hit compound 3 was subsequently identified through a pharmacophore-based virtual screen of the Specs library of >200 000 compounds. Among the newly synthesized chalcones and thiol-Michael addition analogues, chalcones 6r and 6s were active (minimum inhibitory concentrations (MICs) = 1.56-6.25 μg/mL) against Gram-positive pathogens Bacillus anthracis and Staphylococcus aureus [methicillin-susceptible S. aureus (MSSA) and methicillin-resistant S. aureus (MRSA)]. The chalcone thiol-Michael addition derivatives 7j-m showed good to excellent antibacterial activities (MICs = 0.78-6.25 μg/mL) against Enterococcus faecalis, B. anthracis, and S. aureus. Interestingly, the amine-Michael addition analogue 12a showed promising anti-MRSA activity (MIC = 1.56 μg/mL) with a selectivity index of 14 toward mammalian Vero cells. In addition, evaluation of selected compounds against biofilm and planktonic S. aureus (MSSA and MRSA) revealed that 12a exhibited bactericidal activities in these assays, which was overall superior to vancomycin. These properties may result from the compounds dissipating the proton motive force of bacterial membranes.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Pharmaceutical
Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, 34 Rainbow Drive, Hilo, Hawaii 96720, United States
| | - Allan M. Prior
- Department of Pharmaceutical
Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, 34 Rainbow Drive, Hilo, Hawaii 96720, United States
| | - Marcus M. Maddox
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Wan-Jou Shen
- Center for
Infectious and Inflammatory Diseases, Texas
A&M Health Science Center, 2121 West Holcombe Boulevard, Houston, Texas 77030, United States
| | - Kirk E. Hevener
- Department of Pharmaceutical Sciences,
College of Pharmacy, University of Tennessee
Health Science Center, Memphis, Tennessee 38163, United States
| | - David F. Bruhn
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Robin B. Lee
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Aman P. Singh
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Justin Reinicke
- Department of Pharmaceutical
Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, 34 Rainbow Drive, Hilo, Hawaii 96720, United States
| | - Charles J. Simmons
- Department of Chemistry, University of Hawai’i at Hilo, Hilo, Hawaii 96720, United States
| | - Julian G. Hurdle
- Center for
Infectious and Inflammatory Diseases, Texas
A&M Health Science Center, 2121 West Holcombe Boulevard, Houston, Texas 77030, United States
| | - Richard E. Lee
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, MS#1000, Memphis, Tennessee 38105, United States
| | - Dianqing Sun
- Department of Pharmaceutical
Sciences, The Daniel K. Inouye College of Pharmacy, University of Hawai’i at Hilo, 34 Rainbow Drive, Hilo, Hawaii 96720, United States
| |
Collapse
|
45
|
Li MY, Xiao CQ, Xu ZQ, Yin MM, Yang QQ, Yin YL, Liu Y. Role of surface charge on the interaction between carbon nanodots and human serum albumin. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2018; 204:484-494. [PMID: 29966904 DOI: 10.1016/j.saa.2018.06.082] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Revised: 06/11/2018] [Accepted: 06/21/2018] [Indexed: 06/08/2023]
Abstract
Carbon nanodots (Cdots) have aroused widespread concerns in the field of biomedical applications. In order to achieve better implications of behavior of Cdots in the biological environment, an array of spectroscopic, electrochemical and calorimetric techniques were performed to study the interaction of Cdots possessing different charges with human serum albumin (HSA) in physiological condition. Two polymer, polyethylene glycol (PEG) and polyetherimide (PEI), were applied to passivate the bare Cdots to achieve the Cdots with different surface charge, namely negatively charged PEG Cdots and positively charged PEI Cdots. The fluorescence of HSA was obviously quenched by both Cdots in a charge-independent behavior through a dynamic collision mechanism. Moreover, the association affinity of PEG Cdots or PEI Cdots bound to HSA was very close to each other. In addition, PEG Cdots with diverse content exhibited little effects on the secondary structure of HSA while only high content of PEI Cdots induced obvious conformation perturbation of HSA. The electrostatic forces dominate the association between HSA and PEI Cdots while the association of PEG Cdots to HSA is initiated by hydrophobic and van der Waals forces. Furthermore, the results of isothermal titration calorimetry revealed that both the interaction was driven by favorable entropy and enthalpy, which confirmed that these association processes are thermodynamically spontaneous. Finally, the sites marker competitive experiment showed that the association sites of Cdots with HSA exhibit a charge dependent manner, namely PEG Cdots effectively occupy the site I of HSA while the association sites of PEI Cdots are mainly located in site II.
Collapse
Affiliation(s)
- Meng-Ying Li
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, PR China
| | - Chang-Qing Xiao
- Hubei Key Laboratory of Purification and Application of Plant Anticancer Active Ingredients, School of Chemistry and Life Sciences, Hubei University of Education, Wuhan 430205, PR China
| | - Zi-Qiang Xu
- Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry-of-Education Key Laboratory for the Green Preparation and Application of Functional Materials, Hubei Key Laboratory of Polymer Materials, School of Materials Science & Engineering, Hubei University, Wuhan 430062, PR China.
| | - Miao-Miao Yin
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Qi-Qi Yang
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yu-Lin Yin
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China
| | - Yi Liu
- State Key Laboratory of Virology & Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, PR China; College of Chemistry and Material Sciences, Guangxi Teachers Education University, Nanning 530001, PR China; College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, PR China.
| |
Collapse
|
46
|
Munteanu AC, Badea M, Olar R, Silvestro L, Mihaila M, Brasoveanu LI, Musat MG, Andries A, Uivarosi V. Cytotoxicity studies, DNA interaction and protein binding of new Al (III), Ga (III) and In (III) complexes with 5-hydroxyflavone. Appl Organomet Chem 2018. [DOI: 10.1002/aoc.4579] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Alexandra-Cristina Munteanu
- Department of General and Inorganic Chemistry, Faculty of Pharmacy; Carol Davila University of Medicine and Pharmacy; 6 Traian Vuia Str Bucharest 020956 Romania
| | - Mihaela Badea
- Department of Inorganic Chemistry, Faculty of Chemistry; University of Bucharest; 90-92 Panduri Str Bucharest 050663 Romania
| | - Rodica Olar
- Department of Inorganic Chemistry, Faculty of Chemistry; University of Bucharest; 90-92 Panduri Str Bucharest 050663 Romania
| | - Luigi Silvestro
- PharmaServ. International SRL; 52 Sabinelor Str Bucharest 050853 Romania
| | - Mirela Mihaila
- Center of Immunology; Stefan S. Nicolau Institute of Virology; 285 Mihai Bravu Ave Bucharest 030304 Romania
| | - Lorelei Irina Brasoveanu
- Center of Immunology; Stefan S. Nicolau Institute of Virology; 285 Mihai Bravu Ave Bucharest 030304 Romania
| | - Mihaela Georgiana Musat
- Department of Biochemistry, Faculty of Pharmacy; Carol Davila University of Medicine and Pharmacy; 6 Traian Vuia Str Bucharest 020956 Romania
| | - Adrian Andries
- Department of Industrial Drugs and Pharmaceutical Biotechnology, Faculty of Pharmacy; Carol Davila University of Medicine and Pharmacy; 6 Traian Vuia Str. Bucharest 020956 Romania
| | - Valentina Uivarosi
- Department of General and Inorganic Chemistry, Faculty of Pharmacy; Carol Davila University of Medicine and Pharmacy; 6 Traian Vuia Str Bucharest 020956 Romania
| |
Collapse
|
47
|
Maddili SK, Li ZZ, Kannekanti VK, Bheemanaboina RRY, Tuniki B, Tangadanchu VKR, Zhou CH. Azoalkyl ether imidazo[2,1- b ]benzothiazoles as potentially antimicrobial agents with novel structural skeleton. Bioorg Med Chem Lett 2018; 28:2426-2431. [DOI: 10.1016/j.bmcl.2018.06.016] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/08/2018] [Accepted: 06/10/2018] [Indexed: 12/30/2022]
|
48
|
Li D, Bheemanaboina RRY, Battini N, Tangadanchu VKR, Fang XF, Zhou CH. Novel organophosphorus aminopyrimidines as unique structural DNA-targeting membrane active inhibitors towards drug-resistant methicillin-resistant Staphylococcus aureus. MEDCHEMCOMM 2018; 9:1529-1537. [PMID: 30288226 DOI: 10.1039/c8md00301g] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/29/2018] [Indexed: 12/18/2022]
Abstract
A series of novel unique structural organophosphorus aminopyrimidines were developed as potential DNA-targeting membrane active inhibitors through an efficient one-pot procedure from aldehydes, phosphonate and aminopyrimidine. The biological assay revealed that some of the prepared compounds displayed antibacterial activities. In particular, imidazole derivative 2c exhibited more potent inhibitory activity against MRSA with an MIC value of 4 μg mL-1 in comparison with the clinical drugs chloromycin and norfloxacin. Experiments revealed that the active molecule 2c had the ability to rapidly kill the tested strains without obviously triggering the development of bacterial resistance, showed low toxicity to L929 cells and could disturb the cell membrane. The molecular docking study discovered that compound 2c could bind with DNA gyrase via hydrogen bonds and other weak interactions. Further exploration disclosed that the active molecule 2c could also effectively intercalate into MRSA DNA and form a steady 2c-DNA supramolecular complex, which might further block DNA replication to exert powerful antibacterial effects.
Collapse
Affiliation(s)
- Di Li
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Rammohan R Yadav Bheemanaboina
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Narsaiah Battini
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Vijai Kumar Reddy Tangadanchu
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Xian-Fu Fang
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| | - Cheng-He Zhou
- Institute of Bioorganic & Medicinal Chemistry , Key Laboratory of Applied Chemistry of Chongqing Municipality , School of Chemistry and Chemical Engineering , Southwest University , Chongqing 400715 , PR China . ; ; Tel: +86 23 68254967
| |
Collapse
|
49
|
Badalkhani-Khamseh F, Ebrahim-Habibi A, Hadipour NL. Influence of dendrimer surface chemistry and pH on the binding and release pattern of chalcone studied by molecular dynamics simulations. J Mol Recognit 2018; 32:e2757. [DOI: 10.1002/jmr.2757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2017] [Revised: 05/05/2018] [Accepted: 06/22/2018] [Indexed: 12/19/2022]
Affiliation(s)
| | - Azadeh Ebrahim-Habibi
- Biosensor Research Center, Endocrinology and Metabolism Molecular-Cellular Sciences Institute; Tehran University of Medical Sciences; Tehran Iran
- Endocrinology and Metabolism Research Center, Endocrinology and Metabolism Clinical Sciences Institute; Tehran University of Medical Sciences; Tehran Iran
| | - Nasser L. Hadipour
- Department of Physical Chemistry; Tarbiat Modares University; Tehran Iran
| |
Collapse
|
50
|
Szulczyk D, Dobrowolski MA, Roszkowski P, Bielenica A, Stefańska J, Koliński M, Kmiecik S, Jóźwiak M, Wrzosek M, Olejarz W, Struga M. Design and synthesis of novel 1H-tetrazol-5-amine based potent antimicrobial agents: DNA topoisomerase IV and gyrase affinity evaluation supported by molecular docking studies. Eur J Med Chem 2018; 156:631-640. [PMID: 30031974 DOI: 10.1016/j.ejmech.2018.07.041] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 07/11/2018] [Accepted: 07/15/2018] [Indexed: 12/27/2022]
Abstract
A total of 14 of 1,5-disubstituted tetrazole derivatives were prepared by reacting appropriate thiourea and sodium azide in the presence of mercury (II) chloride and triethylamine. All compounds were evaluated in vitro for their antimicrobial activity. Derivatives 10 and 11 showed the highest inhibition against Gram-positive and Gram-negative strains (standard and hospital strains). The observed minimal inhibitory concentrations values were in the range of 1-208 μM (0.25-64 μg/ml). Inhibitory activity of 1,5-tetrazole derivatives 10 and 11 against gyrase and topoisomerase IV isolated from S. aureus was studied. Evaluation was supported by molecular docking studies for all synthesized derivatives and reference ciprofloxacin. Moreover, selected tetrazoles (2, 3, 5, 6, 8, 9, 10 and 11) were evaluated for their cytotoxicity. All tested compounds are non-cytotoxic against HaCaT and A549 cells (CC50 ≤ 60 μM).
Collapse
Affiliation(s)
- Daniel Szulczyk
- Chair and Department of Biochemistry, Medical University, 02-097 Warszawa, Poland.
| | | | - Piotr Roszkowski
- Faculty of Chemistry, University of Warsaw, Pasteura 1, 02-093 Warsaw, Poland
| | - Anna Bielenica
- Chair and Department of Biochemistry, Medical University, 02-097 Warszawa, Poland
| | - Joanna Stefańska
- Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; Department of Pharmaceutical Microbiology, Medical University, 02-007 Warszawa, Poland
| | - Michał Koliński
- Bioinformatics Laboratory, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-106 Warsaw, Poland
| | - Sebastian Kmiecik
- Biological and Chemical Research Centre, Faculty of Chemistry, University of Warsaw, 02-089 Warsaw, Poland
| | - Michał Jóźwiak
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warszawa, Poland; Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland; Department of Biochemistry, Second Faculty of Medicine, Medical University of Warsaw, 02-097 Warszawa, Poland
| | - Małgorzata Wrzosek
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warszawa, Poland; Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Wioletta Olejarz
- Department of Biochemistry and Pharmacogenomics, Faculty of Pharmacy, Medical University of Warsaw, 02-097 Warszawa, Poland; Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| | - Marta Struga
- Chair and Department of Biochemistry, Medical University, 02-097 Warszawa, Poland; Laboratory of Centre for Preclinical Research, Medical University of Warsaw, Banacha 1B, 02-097 Warsaw, Poland
| |
Collapse
|