1
|
Haffez H, Elsayed NA, Ahmed MF, Fatahala SS, Khaleel EF, Badi RM, Elkaeed EB, El Hassab MA, Hammad SF, Eldehna WM, Masurier N, El-Haggar R. Novel N-Arylmethyl-aniline/chalcone hybrids as potential VEGFR inhibitors: synthesis, biological evaluations, and molecular dynamic simulations. J Enzyme Inhib Med Chem 2023; 38:2278022. [PMID: 37982203 PMCID: PMC11003488 DOI: 10.1080/14756366.2023.2278022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Accepted: 10/25/2023] [Indexed: 11/21/2023] Open
Abstract
Significant advancements have been made in the domain of targeted anticancer therapy for the management of malignancies in recent times. VEGFR-2 is characterised by its pivotal involvement in angiogenesis and subsequent mechanisms that promote tumour cells survival. Herein, novel N-arylmethyl-aniline/chalcone hybrids 5a-5n were designed and synthesised as potential anticancer and VEGFR-2 inhibitors. The anticancer activity was evaluated at the NCI-USA, resulting in the identification of 10 remarkably potent molecules 5a-5j that were further subjected to the five-dose assays. Thereafter, they were explored for their VEGFR-2 inhibitory activity where 5e and 5h emerged as the most potent inhibitors. 5e and 5h induced apoptosis with cell cycle arrest at the SubG0-G1 phase within HCT-116 cells. Moreover, their impact on some key apoptotic genes was assessed, suggesting caspase-dependent apoptosis. Furthermore, molecular docking and molecular dynamics simulations were conducted to explore the binding modes and stability of the protein-ligand complexes.
Collapse
Affiliation(s)
- Hesham Haffez
- Biochemistry and Molecular Biology Department, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
- Center of Scientific Excellence “Helwan Structural Biology Research, (HSBR)”, Helwan University, Cairo, Egypt
| | - Nosaiba A. Elsayed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
| | - Marwa F. Ahmed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
| | - Samar S. Fatahala
- Pharmaceutical Organic Chemistry Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt
| | - Eman F. Khaleel
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Rehab Mustafa Badi
- Department of Medical Physiology, College of Medicine, King Khalid University, Asir, Saudi Arabia
| | - Eslam B. Elkaeed
- Department of Pharmaceutical Sciences, College of Pharmacy, AlMaarefa University, Riyadh, Saudi Arabia
| | - Mahmoud A. El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Sherif F. Hammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
- Medicinal Chemistry Department, PharmD Program, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Egypt Alexandria
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Radwan El-Haggar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
| |
Collapse
|
2
|
Ahmed MF, El-Haggar R, Almalki AH, Abdullah O, El Hassab MA, Masurier N, Hammad SF. Novel hydrazone-isatin derivatives as potential EGFR inhibitors: Synthesis and in vitro pharmacological profiling. Arch Pharm (Weinheim) 2023; 356:e2300244. [PMID: 37404064 DOI: 10.1002/ardp.202300244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/06/2023]
Abstract
Merging isatin and arylhydrazone moieties constitutes an efficient strategy to access new potential anticancer derivatives. Consequently, 14 hydrazone-isatin derivatives were synthesized and evaluated for their antiproliferative activity against the NCI-60 cancer cell line panel. A kinase assay demonstrated that compound VIIIb inhibited the epidermal growth factor receptor (EGFR), which was confirmed by docking studies, molecular dynamics, and binding free energy calculations. Further characterizations showed that this compound possesses drug-likeness properties, showed a significant decrease of the cell population in the G2/M phase and led to a significant increase in early and late apoptosis, comparable to erlotinib. Also, VIIIb increased the expression of caspase-3 and Bax and decreased the expression of Bcl-2, confirming its potential as a new proapoptotic compound.
Collapse
Affiliation(s)
- Marwa F Ahmed
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Radwan El-Haggar
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
| | - Atiah H Almalki
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, Taif, Saudi Arabia
- Addition and Neuroscience Research Unit, College of Pharmacy, Taif University, Taif, Al-Hawiah, Saudi Arabia
| | - Omeima Abdullah
- Pharmaceutical Chemistry Department, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Mahmoud A El Hassab
- Department of Medicinal Chemistry, Faculty of Pharmacy, King Salman International University (KSIU), South Sinai, Egypt
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247, CNRS, Université de Montpellier, ENSCM, Montpellier, France
| | - Sherif F Hammad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Helwan University, Cairo, Ain Helwan, Egypt
- Basic and Applied Science Institute, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, Egypt
| |
Collapse
|
3
|
Solvent-controlled photosensitized divergent C3-ethoxycarbonylmethylation/hydroxyalkylation of imidazo[1,2-a]pyridines with diethyl bromomalonate. Tetrahedron 2022. [DOI: 10.1016/j.tet.2022.132988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
4
|
Malki Y, Maillard LT, Masurier N. 1,3‐Diazepine Derivatives: Strategies for Synthesis. European J Org Chem 2022. [DOI: 10.1002/ejoc.202100492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yohan Malki
- IBMM Université de Montpellier CNRS ENSCM Montpellier France
| | | | | |
Collapse
|
5
|
Baishya G, Dutta NB. Recent Advances in Direct C−H Trifluoromethylation of N‐Heterocycles. ChemistrySelect 2021. [DOI: 10.1002/slct.202103407] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Gakul Baishya
- Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
| | - Nibedita B. Dutta
- Chemical Sciences & Technology Division CSIR-North East Institute of Science and Technology Jorhat 785006 India
- Academy of Scientific and Innovative Research (AcSIR) Ghaziabad 201002 India
- Rain Forest Research Institute Jorhat 785001 India
| |
Collapse
|
6
|
Qami AE, Jismy B, El Hakmaoui A, Akssira M, Abarbri M. Cu/Pd‐Catalyzed One‐Pot Synthesis of 2‐(1,2,3‐Triazolyl)methyl‐3‐alkynylImidazo[1,2‐
a
]pyridines Involving Sequential SN Reaction/[3+2] Cycloaddition/Sonogashira Coupling Reactions. ChemistrySelect 2021. [DOI: 10.1002/slct.202102228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Abdelkarim El Qami
- Department of chemistry Université de Tours. Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E) EA 6299 Avenue Monge, Faculté des Sciences, Parc de Grandmont 37200 Tours France
- Department of chemistry Université Hassan II de Casablanca Laboratoire de Chimie Physique et de Chimie Bioorganique, URAC 22 BP Casablanca, 146 28800 Mohammedia Morocco
| | - Badr Jismy
- Department of chemistry Université de Tours. Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E) EA 6299 Avenue Monge, Faculté des Sciences, Parc de Grandmont 37200 Tours France
| | - Ahmed El Hakmaoui
- Department of chemistry Université Hassan II de Casablanca Laboratoire de Chimie Physique et de Chimie Bioorganique, URAC 22 BP Casablanca, 146 28800 Mohammedia Morocco
| | - Mohamed Akssira
- Department of chemistry Université Hassan II de Casablanca Laboratoire de Chimie Physique et de Chimie Bioorganique, URAC 22 BP Casablanca, 146 28800 Mohammedia Morocco
| | - Mohamed Abarbri
- Department of chemistry Université de Tours. Laboratoire de Physico-Chimie des Matériaux et des Electrolytes pour l'Energie (PCM2E) EA 6299 Avenue Monge, Faculté des Sciences, Parc de Grandmont 37200 Tours France
| |
Collapse
|
7
|
Malki Y, Martinez J, Masurier N. 1,3-Diazepine: A privileged scaffold in medicinal chemistry. Med Res Rev 2021; 41:2247-2315. [PMID: 33645848 DOI: 10.1002/med.21795] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/20/2021] [Accepted: 02/17/2021] [Indexed: 12/19/2022]
Abstract
Privileged structures have been widely used as effective templates for drug discovery. While benzo-1,4-diazepine constitutes the first historical example of such a structure, the 1,3 analogue is just as rich in terms of applications in medicinal chemistry. The 1,3-diazepine moiety is present in numerous biological active compounds including natural products, and is used to design compounds displaying a large range of biological activities. It is present in the clinically used anticancer compound pentostatin, in several recent FDA approved β-lactamase inhibitors (e.g., avibactam) and also in coformycin, a natural product known as a ring-expanded purine analogue displaying antiviral and anticancer activities. Several other 1,3-diazepine containing compounds have entered into clinical trials. This heterocyclic structure has been and is still widely used in medicinal chemistry to design enzyme inhibitors, GPCR ligands, and so forth. This review endeavours to highlight the main use of the 1,3-diazepine scaffold and its derivatives, and their applications in medicinal chemistry, drug design, and therapy. We will focus more particularly on the development of enzyme inhibitors incorporating this scaffold, with a strong emphasis on the molecular interactions involved in the inhibition mechanism.
Collapse
Affiliation(s)
- Yohan Malki
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean Martinez
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nicolas Masurier
- IBMM, Université de Montpellier, CNRS, ENSCM, Montpellier, France
| |
Collapse
|
8
|
Han L, Huang M, Li Y, Zhang J, Zhu Y, Kim JK, Wu Y. An electrolyte- and catalyst-free electrooxidative sulfonylation of imidazo[1,2-a]pyridines. Org Chem Front 2021. [DOI: 10.1039/d1qo00038a] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An electrolyte- and catalyst-free electrooxidative C–H activation reaction is developed to afford 3-sulfonylated imidazo[1,2-a]pyridines in good to excellent yields.
Collapse
Affiliation(s)
- Lili Han
- College of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Mengmeng Huang
- College of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Yabo Li
- College of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Jianye Zhang
- College of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Yu Zhu
- College of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Jung Keun Kim
- College of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| | - Yangjie Wu
- College of Chemistry
- Henan Key Laboratory of Chemical Biology and Organic Chemistry
- Key Laboratory of Applied Chemistry of Henan Universities
- Zhengzhou University
- Zhengzhou 450052
| |
Collapse
|
9
|
Baccon-Sollier PL, Malki Y, Maye M, Ali LMA, Lichon L, Cuq P, Vincent LA, Masurier N. Imidazopyridine-fused [1,3]diazepinones: modulations of positions 2 to 4 and their impacts on the anti-melanoma activity. J Enzyme Inhib Med Chem 2020; 35:935-949. [PMID: 32249633 PMCID: PMC7170309 DOI: 10.1080/14756366.2020.1748024] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
A series of 19 novel pyrido-imidazodiazepinones, with modulations of positions 2, 3 and 4 of the diazepine ring were synthesised and screened for their in vitro cytotoxic activities against two melanoma cell lines (A375 and MDA-MB-435) and for their potential toxicity against NIH-3T3 non-cancerous cells. Selected compounds were also evaluated on the NCI-60 cell line panel. The SAR study revealed that the molecular volume and the cLogP of compounds modified at position 2 were significantly correlated with the activity of these compounds on melanoma cell lines. Moreover, introduction of a heterocyclic group at position 2 or an azido-alkyl chain at position 4 led to compounds displaying a significantly different activity profile on the NCI-60 cell line panel, compared to phenyl-substituted compounds at position 2 of the diazepinone. This study provides us crucial information for the development of new derivatives active against melanoma.
Collapse
Affiliation(s)
- Paul Le Baccon-Sollier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Yohan Malki
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Morgane Maye
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Lamiaa M A Ali
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France.,Department of Biochemistry, Medical Research Institute, University of Alexandria, Alexandria, Egypt
| | - Laure Lichon
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Laure-Anaïs Vincent
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Universités Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, Montpellier, France
| |
Collapse
|
10
|
Vuillermet F, Bourret J, Pelletier G. Synthesis of Imidazo[1,2-a]pyridines: Triflic Anhydride-Mediated Annulation of 2H-Azirines with 2-Chloropyridines. J Org Chem 2020; 86:388-402. [DOI: 10.1021/acs.joc.0c02148] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Frédéric Vuillermet
- Department of Chemical Sciences, Paraza Pharma Inc., 2525 avenue Marie-Curie, Saint-Laurent, Québec H4S 2E1, Canada
| | - Joanick Bourret
- Department of Chemical Sciences, Paraza Pharma Inc., 2525 avenue Marie-Curie, Saint-Laurent, Québec H4S 2E1, Canada
| | - Guillaume Pelletier
- Department of Chemical Sciences, Paraza Pharma Inc., 2525 avenue Marie-Curie, Saint-Laurent, Québec H4S 2E1, Canada
| |
Collapse
|
11
|
Doufène K, Malki Y, Vincent LA, Cuq P, Devoisselle JM, Masurier N, Aubert-Pouëssel A. Vegetable Oil-based Hybrid Submicron Particles Loaded with JMV5038: A Promising Formulation against Melanoma. J Pharm Sci 2020; 110:1197-1205. [PMID: 33069708 DOI: 10.1016/j.xphs.2020.10.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/12/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
The aim of this work was to carry out a preformulation study on JMV5038 as a new potent cytotoxic agent, and to develop its formulation within vegetable oil-based hybrid submicron particles (HNP) in order to obtain a versatile dosage form against melanoma. JMV5038 was first characterized through physico-chemical tests and it exhibited high melting point and logP value, an important pH-sensitivity that led to the formation of well-identified degradation products at low pH, as well as a substantial solubility value in silylated castor oil (ICO). Then, JMV5038-loaded HNP were formulated through a thermostabilized emulsion process based on the sol-gel cross-linking of ICO. They showed high loading efficiency and their in vitro release kinetic assessed in a biorelevant PBS/octanol biphasic system showed a constant sustained release over one month. The cytotoxic activity and cytocompatibility of HNP were evaluated on A375 melanoma cells and NIH 3T3 cells, respectively. JMV5038-loaded HNP exhibited a slightly enhanced cytotoxic activity of JMV5038 on melanoma cells while demonstrating their safety on NIH 3T3 cells. In conclusion, JMV5038-loaded HNP proved to be an efficient and safe drug subcutaneous delivery system that will be interesting to evaluate through preclinical studies.
Collapse
Affiliation(s)
- Koceïla Doufène
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Yohan Malki
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Laure-Anaïs Vincent
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Pierre Cuq
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Jean-Marie Devoisselle
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron (IBMM), University of Montpellier, CNRS, ENSCM, Montpellier, France
| | - Anne Aubert-Pouëssel
- Institut Charles Gerhardt Montpellier (ICGM), University of Montpellier, CNRS, ENSCM, Montpellier, France.
| |
Collapse
|
12
|
PROteolysis TArgetting Chimeras (PROTACs) Strategy Applied to Kinases: Recent Advances. ADVANCED THERAPEUTICS 2020. [DOI: 10.1002/adtp.202000148] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
13
|
Wang Y, Zhang WX, Xi Z. Carbodiimide-based synthesis of N-heterocycles: moving from two classical reactive sites to chemical bond breaking/forming reaction. Chem Soc Rev 2020; 49:5810-5849. [PMID: 32658233 DOI: 10.1039/c9cs00478e] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Carbodiimides are a unique class of heterocumulene compounds that display distinctive chemical properties. The rich chemistry of carbodiimides has drawn increasing attention from chemists in recent years and has made them exceedingly useful compounds in modern organic chemistry, especially in the synthesis of N-heterocycles. This review has outlined the extensive application of carbodiimides in the synthesis of N-heterocycles from the 1980s to today. A wide range of reactions for the synthesis of various types of N-heterocyclic systems (three-, four-, five-, six-, seven-, larger-membered and fused heterocycles) have been developed on the basis of carbodiimides and their derivatives.
Collapse
Affiliation(s)
- Yang Wang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, 5 Yushan Road, Qingdao 266003, China. and Laboratory for Marine Drugs and Bioproducts, Qingdao National Laboratory for Marine Science and Technology (QNLM), Qingdao 266237, China
| | - Wen-Xiong Zhang
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China.
| | - Zhenfeng Xi
- Beijing National Laboratory for Molecular Sciences, MOE Key Laboratory of Bioorganic Chemistry and Molecular Engineering, College of Chemistry, Peking University, Beijing 100871, China.
| |
Collapse
|
14
|
Iqbal MA, Husain A, Alam O, Khan SA, Ahmad A, Haider MR, Alam MA. Design, synthesis, and biological evaluation of imidazopyridine-linked thiazolidinone as potential anticancer agents. Arch Pharm (Weinheim) 2020; 353:e2000071. [PMID: 32627909 DOI: 10.1002/ardp.202000071] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 01/07/2023]
Abstract
In this study, two series of imidazopyridine-linked thiazolidinone rings (5a-h and 6a-h) constituting 16 new compounds were synthesized and tested for their antiproliferative activity against a panel of three human cancer cell lines, that is, MCF-7 (human breast cancer), A549 (human lung cancer), and DU145 (human prostate cancer). Three compounds, 5h, 6f, and 6h, exhibited remarkable results against all three cell lines, but compound 6h was found to be the most active one against the breast cancer cell line. Among all the synthesized compounds, 6h displayed the highest antioxidant results. Furthermore, the potent compounds 5h, 6f, and 6h showed no signs of toxicity at doses ranging from 50 to 500 mg/kg of animal body weight. The biochemical parameters (SGOT and SGPT) of compound 6h nearly matched the control in hepatotoxicity studies. The molecular docking and MM-GBSADG binding studies are in agreement with the in vitro anticancer and antioxidant activity results. The most promising compound 6h was found to have the highest docking score and binding energy, and its absorption, distribution, metabolism, and excretion (ADME) parameters are in the acceptable range. Thus, it can be concluded that 6h, an imidazopyridine derivative endowed with a thiazolidinone ring system, has the potential to be developed as an anticancer agent.
Collapse
Affiliation(s)
- Md Azhar Iqbal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Asif Husain
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Ozair Alam
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Shah A Khan
- College of Pharmacy, National University of Science and Technology, Muscat, Sultanate of Oman
| | - Aftab Ahmad
- Department of Health Information Technology, Jeddah Community College, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Md Rafi Haider
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, India
| | - Md Aftab Alam
- Department of Pharmaceutics, School of Medical and Allied Sciences, Galgotias University, Greater Noida, India
| |
Collapse
|
15
|
Jin S, Yao H, Lin S, You X, Yang Y, Yan Z. Peroxide-mediated site-specific C–H methylation of imidazo[1,2-a]pyridines and quinoxalin-2(1H)-ones under metal-free conditions. Org Biomol Chem 2020; 18:205-210. [DOI: 10.1039/c9ob02328c] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
An effective approach to realize the direct methylation of imidazo[1,2-a]pyridines and quinoxalin-2(1H)-ones with peroxides under metal-free conditions is described.
Collapse
Affiliation(s)
- Shengzhou Jin
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Hua Yao
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Sen Lin
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Xiaoqing You
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Yao Yang
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| | - Zhaohua Yan
- Department of Chemistry
- Nanchang University
- Nanchang
- P. R. China
| |
Collapse
|
16
|
Tang F, Guan Z, He Y. Metal‐Free Regioselective Carbonylation of Imidazo[1,2‐
a
]pyridines via Photoredox Catalysis using Nitrones. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900202] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Fang Tang
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 China
| | - Zhi Guan
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 China
| | - Yan‐Hong He
- Key Laboratory of Applied Chemistry of Chongqing Municipality School of Chemistry and Chemical EngineeringSouthwest University Chongqing 400715 China
| |
Collapse
|
17
|
Jin S, Xie B, Lin S, Min C, Deng R, Yan Z. Metal-Free Site-Specific Hydroxyalkylation of Imidazo[1,2-a]pyridines with Alcohols through Radical Reaction. Org Lett 2019; 21:3436-3440. [DOI: 10.1021/acs.orglett.9b01212] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shengzhou Jin
- College of Chemistry, Nanchang University, Nanchang 330031, P.R. China
| | - Bo Xie
- College of Chemistry, Nanchang University, Nanchang 330031, P.R. China
| | - Sen Lin
- College of Chemistry, Nanchang University, Nanchang 330031, P.R. China
| | - Cong Min
- College of Chemistry, Nanchang University, Nanchang 330031, P.R. China
| | - Ruihong Deng
- College of Chemistry, Nanchang University, Nanchang 330031, P.R. China
| | - Zhaohua Yan
- College of Chemistry, Nanchang University, Nanchang 330031, P.R. China
| |
Collapse
|
18
|
Liu K, Wu J, Deng Y, Song C, Song W, Lei A. Electrochemical C−H/N−H Oxidative Cross Coupling of Imidazopyridines with Diarylamines to Synthesize Triarylamine Derivatives. ChemElectroChem 2019. [DOI: 10.1002/celc.201900138] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Kun Liu
- College of Chemistry and Molecular Sciences Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Jiarong Wu
- College of Chemistry and Molecular Sciences Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Yuqi Deng
- College of Chemistry and Molecular Sciences Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Chunlan Song
- College of Chemistry and Molecular Sciences Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Wenxu Song
- College of Chemistry and Molecular Sciences Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences Institute for Advanced Studies (IAS)Wuhan University Wuhan 430072 Hubei P. R. China
- National Research Center for Carbohydrate SynthesisJiangxi Normal University Nanchang 330022 Peoples Republic of China
| |
Collapse
|
19
|
Tian X, Song L, Rudolph M, Wang Q, Song X, Rominger F, Hashmi ASK. N-Pyridinyl Sulfilimines as a Source for α-Imino Gold Carbenes: Access to 2-Amino-Substituted N-Fused Imidazoles. Org Lett 2019; 21:1598-1601. [DOI: 10.1021/acs.orglett.9b00140] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Xianhai Tian
- Institut für Organische Chemie, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Lina Song
- Institut für Organische Chemie, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Matthias Rudolph
- Institut für Organische Chemie, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Qian Wang
- Institut für Organische Chemie, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Xinlong Song
- Institut für Organische Chemie, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - Frank Rominger
- Institut für Organische Chemie, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
| | - A. Stephen K. Hashmi
- Institut für Organische Chemie, Universität Heidelberg, Im Neuenheimer Feld 270, Heidelberg 69120, Germany
- Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
20
|
Han S, Gao X, Wu Q, Li J, Zou D, Wu Y, Wu Y. Transition‐Metal‐Free Direct Trifluoromethylation and Perfluoroalkylation of Imidazopyridines under Mild Conditions. Adv Synth Catal 2019. [DOI: 10.1002/adsc.201801541] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Shuaijun Han
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic ChemistryZhengzhou University Zhengzhou People's Republic of China
| | - Xianying Gao
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic ChemistryZhengzhou University Zhengzhou People's Republic of China
| | - Qingsong Wu
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic ChemistryZhengzhou University Zhengzhou People's Republic of China
| | - Jingya Li
- Tetranov Biopharm, LLC.Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou 450052 People's Republic of China
| | - Dapeng Zou
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic ChemistryZhengzhou University Zhengzhou People's Republic of China
| | - Yangjie Wu
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic ChemistryZhengzhou University Zhengzhou People's Republic of China
| | - Yusheng Wu
- The College of Chemistry and Molecular Engineering, Henan Key Laboratory of Chemical Biology and Organic ChemistryZhengzhou University Zhengzhou People's Republic of China
- Tetranov Biopharm, LLC.Collaborative Innovation Center of New Drug Research and Safety Evaluation Zhengzhou 450052 People's Republic of China
- Tetranov International, Inc. 100 Jersey Avenue, Suite A340 New Brunswick NJ 08901 USA
| |
Collapse
|
21
|
Tzani M, Kallitsakis MG, Symeonidis TS, Lykakis IN. Alumina-Supported Gold Nanoparticles as a Bifunctional Catalyst for the Synthesis of 2-Amino-3-arylimidazo[1,2- a]pyridines. ACS OMEGA 2018; 3:17947-17956. [PMID: 31458387 PMCID: PMC6643465 DOI: 10.1021/acsomega.8b03047] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 12/06/2018] [Indexed: 05/31/2023]
Abstract
The bifunctional catalytic efficacy of alumina-supported gold nanoparticles (Au/Al2O3) was investigated for the synthesis of a series of 2-amino-3-aryl-imidazopyridines through the chemoselective reduction of the corresponding 2-nitro-3-aryl-imidazo[1,2-a]pyridines in high isolated yields. This highly efficient protocol was initially applied for the synthesis of 2-nitro-3-aryl imidazo[1,2-a]pyridines via the reaction between 2-aminopyridine and nitroalkenes catalyzed by the present catalytic system Au/Al2O3. Moreover, the heterogeneous surface γ-Al2O3 was also found to catalyze this pathway in a comparable manner. However, only Au/Al2O3 was further proved as the appropriate catalytic system for the selective transfer hydrogenation of the synthesized 2-nitro imidazopyridine derivatives into the corresponding 2-amino-3-aryl imidazo[1,2-a]pyridines using NaBH4 as a hydrogen-donor molecule. In addition, the one-pot two-step reaction between nitroalkenes and aminopyridines in the presence of Au/Al2O3-NaBH4 provided directly the fast and facile synthesis of 2-amino-3-aryl imidazopyridines, highlighting a useful synthetic application of the catalytic protocol.
Collapse
|
22
|
Montanaro S, Wright IA, Batsanov AS, Bryce MR. Synthesis of Tetracyclic 2,3-Dihydro-1,3-diazepines from a Dinitrodibenzothiophene Derivative. J Org Chem 2018; 83:12320-12326. [PMID: 30247912 DOI: 10.1021/acs.joc.8b02029] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Triply fused 1,3-diazepine derivatives have been obtained by acidic reduction of rotationally locked and sterically hindered nitro groups in the presence of an aldehyde or ketone. The nitro groups are sited on adjacent rings of a dicyanodibenzothiophene-5,5-dioxide, which also displays fully reversible two-electron-accepting behavior. The synthesis, crystallographically determined molecular structures, and aspects of the electronic properties of these new molecules are presented.
Collapse
Affiliation(s)
- Stephanie Montanaro
- Department of Chemistry , Durham University , Durham , DH1 3LE , United Kingdom.,Department of Chemistry , Loughborough University , Loughborough , LE11 3TU , United Kingdom
| | - Iain A Wright
- Department of Chemistry , Loughborough University , Loughborough , LE11 3TU , United Kingdom
| | - Andrei S Batsanov
- Department of Chemistry , Durham University , Durham , DH1 3LE , United Kingdom
| | - Martin R Bryce
- Department of Chemistry , Durham University , Durham , DH1 3LE , United Kingdom
| |
Collapse
|
23
|
Almeida GM, Rafique J, Saba S, Siminski T, Mota NSRS, Filho DW, Braga AL, Pedrosa RC, Ourique F. Novel selenylated imidazo[1,2-a]pyridines for breast cancer chemotherapy: Inhibition of cell proliferation by Akt-mediated regulation, DNA cleavage and apoptosis. Biochem Biophys Res Commun 2018; 503:1291-1297. [PMID: 30017191 DOI: 10.1016/j.bbrc.2018.07.039] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 07/07/2018] [Indexed: 12/29/2022]
Abstract
A novel series of selenylated imidazo[1,2-a]pyridines were designed and synthesized with a view to a promising activity against breast cancer cell. The compounds, 7-methyl-3-(naphthalene-1-ylselanyl)-2-phenylimidazo[1,2-a]pyridine, named IP-Se-05, and 3-((2-methoxyphenyl)selanyl)-7-methyl-2-phenylimidazo[1,2-a]pyridine, named IP-Se-06, showed high cytotoxicity for MCF-7 cells (IC50 = 26.0 μM and 12.5 μM, respectively). Both the compounds inhibited the cell proliferation and caused decrease in the number of cells in the G2/M phase of cell cycle. IP-Se-05 and IP-Se-06 were also evaluated for effects on CT-DNA and DNA of MCF-7 cells. The compounds intercalated into CT-DNA and both treatments caused cleavage of DNA in cells. In addition, the compounds induced cell death by apoptosis. However, the presence of (2-methoxyphenyl) selenyl moiety at the imidazo[1,2-a]pyridine (IP-Se-06) appears to have a better antitumor effect with higher cytotoxicity at a lower concentration and caused less necrosis. Overall, the current study established IP-Se-06 more than IP-Se-05 as a potential prototype compound to be employed as an antiproliferative agent for the treatment of breast cancer.
Collapse
Affiliation(s)
- Gabriela M Almeida
- Laboratório de Bioquímica Experimental (LABIOEX), Departamento de Bioquímica, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Jamal Rafique
- Laboratório de Síntese de Substâncias de Selênio Bioativas (LabSelen), Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Sumbal Saba
- Laboratório de Síntese de Substâncias de Selênio Bioativas (LabSelen), Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Tâmila Siminski
- Laboratório de Bioquímica Experimental (LABIOEX), Departamento de Bioquímica, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Nádia S R S Mota
- Laboratório de Bioquímica Experimental (LABIOEX), Departamento de Bioquímica, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Danilo Wilhelm Filho
- Ecology and Zoology Department, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Antonio Luiz Braga
- Laboratório de Síntese de Substâncias de Selênio Bioativas (LabSelen), Departamento de Química, Universidade Federal de Santa Catarina, Florianópolis, 88040-900, SC, Brazil
| | - Rozangela Curi Pedrosa
- Laboratório de Bioquímica Experimental (LABIOEX), Departamento de Bioquímica, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil
| | - Fabiana Ourique
- Laboratório de Bioquímica Experimental (LABIOEX), Departamento de Bioquímica, Universidade Federal de Santa Catarina (UFSC), Florianópolis, SC, Brazil.
| |
Collapse
|
24
|
Chen H, Yi H, Tang Z, Bian C, Zhang H, Lei A. External Oxidant-Free Regioselective Cross Dehydrogenative Coupling of 2-Arylimidazoheterocycles and Azoles with H2
Evolution via Photoredox Catalysis. Adv Synth Catal 2018. [DOI: 10.1002/adsc.201800531] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Hong Chen
- College of Chemistry and Molecular Sciences; Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072 People's Republic of China
| | - Hong Yi
- College of Chemistry and Molecular Sciences; Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072 People's Republic of China
| | - Zilu Tang
- College of Chemistry and Molecular Sciences; Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072 People's Republic of China
| | - Changliang Bian
- College of Chemistry and Molecular Sciences; Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072 People's Republic of China
| | - Heng Zhang
- College of Chemistry and Molecular Sciences; Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072 People's Republic of China
| | - Aiwen Lei
- College of Chemistry and Molecular Sciences; Institute for Advanced Studies (IAS); Wuhan University; Wuhan 430072 People's Republic of China
- National Research Center for Carbohydrate Synthesis; Jiangxi Normal University; Nanchang 330022 People's Republic of China
| |
Collapse
|
25
|
Çapan İ, Servi S. Synthesis of novel aza-heterocyclic derivatives from diester and diacid chlorides having the dibenzobarrelene skeleton. SYNTHETIC COMMUN 2018. [DOI: 10.1080/00397911.2018.1437449] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Affiliation(s)
- İrfan Çapan
- Department of Polymer Technology, Technical Sciences Vocational College, Gazi University, Ankara, Turkey
| | - Süleyman Servi
- Department of Chemistry, Faculty of Science, Fırat University, Elazığ, Turkey
| |
Collapse
|
26
|
Yang Q, Li S, Wang J(J. Cobalt-catalyzed cross-dehydrogenative coupling of imidazo[1,2-a]pyridines with isochroman using molecular oxygen as the oxidant. Org Chem Front 2018. [DOI: 10.1039/c7qo00875a] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A cobalt-catalyzed cross-dehydrogenative coupling of 2-arylimidazo[1,2-a]pyridines with isochroman is developed using molecular oxygen as the oxidant.
Collapse
Affiliation(s)
- Qingjing Yang
- School of Chemistry and Chemical Engineering
- Harbin Institute of Technology
- Harbin
- China
- Department of Chemistry
| | - Sifeng Li
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- China
| | - Jun (Joelle) Wang
- Department of Chemistry
- South University of Science and Technology of China
- Shenzhen
- China
| |
Collapse
|
27
|
Sun K, Mu S, Liu Z, Feng R, Li Y, Pang K, Zhang B. Copper-catalyzed C–N bond formation with imidazo[1,2-a]pyridines. Org Biomol Chem 2018; 16:6655-6658. [DOI: 10.1039/c8ob01853g] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
An efficient Cu-catalyzed C–N bond formation with imidazo[1,2-a]pyridines on the C-3 position via a radical pathway is reported.
Collapse
Affiliation(s)
- Kai Sun
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- P. R. China
| | - Shiqiang Mu
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- P. R. China
| | - Zhenhua Liu
- College of Chemistry
- Chemical Engineering and Materials Science Key Laboratory of Molecular and Nano Probes
- Ministry of Education
- Shandong Normal University
- Jinan
| | - Ranran Feng
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- P. R. China
| | - Yali Li
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- P. R. China
| | - Kui Pang
- College of Chemistry and Chemical Engineering
- Anyang Normal University
- Anyang 455000
- P. R. China
| | - Bing Zhang
- College of chemistry and energy
- Zhengzhou University
- Zhengzhou 450001
- P. R. China
| |
Collapse
|
28
|
Yi F, Zhang S, Zhang L, Yi W, Yu R. CuI/I 2-Mediated Intramolecular Oxidative Cyclization Reaction of N-(2-pyridyl)amidines by the Direct Double C−H Functionalization of a C(sp 3)−H Bond. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700442] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Fengping Yi
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai 201418 P. R. China
| | - Songxing Zhang
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai 201418 P. R. China
| | - Lirong Zhang
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai 201418 P. R. China
| | - Weiyin Yi
- School of Perfume and Aroma Technology; Shanghai Institute of Technology; Shanghai 201418 P. R. China
| | - Rui Yu
- School of Resource and Environmental Sciences; Wuhan University; Wuhan HuBei Province 430000 P. R. China
| |
Collapse
|
29
|
Zhang Z, Ju T, Miao M, Han JL, Zhang YH, Zhu XY, Ye JH, Yu DG, Zhi YG. Transition-Metal-Free Lactonization of sp2 C–H Bonds with CO2. Org Lett 2017; 19:396-399. [DOI: 10.1021/acs.orglett.6b03601] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zhen Zhang
- Chengdu
Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
- University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Tao Ju
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Meng Miao
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jie-Lian Han
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yi-Han Zhang
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Xing-Yong Zhu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Jian-Heng Ye
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Da-Gang Yu
- Key Laboratory of Green Chemistry & Technology of Ministry of Education, College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yong-Gang Zhi
- Chengdu
Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, China
| |
Collapse
|
30
|
Bellet V, Lichon L, Arama DP, Gallud A, Lisowski V, Maillard LT, Garcia M, Martinez J, Masurier N. Imidazopyridine-fused [1,3]-diazepinones part 2: Structure-activity relationships and antiproliferative activity against melanoma cells. Eur J Med Chem 2017; 125:1225-1234. [DOI: 10.1016/j.ejmech.2016.11.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 11/07/2016] [Accepted: 11/10/2016] [Indexed: 02/04/2023]
|
31
|
Tarannum S, Siddiqui ZN. Nano silica-bonded N-propylsulfamic acid as an efficient and environmentally benign catalyst for the synthesis of 1,5-benzodiazepines. MONATSHEFTE FUR CHEMIE 2016. [DOI: 10.1007/s00706-016-1775-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
32
|
|
33
|
Tian X, Song L, Wang M, Lv Z, Wu J, Yu W, Chang J. Synthesis of Novel Imidazo[1,2‐
a
]pyridin‐2‐amines from Arylamines and Nitriles via Sequential Addition and I
2
/KI‐Mediated Oxidative Cyclization. Chemistry 2016; 22:7617-22. [DOI: 10.1002/chem.201600849] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Xianhai Tian
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Lina Song
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Manman Wang
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Zhigang Lv
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Jie Wu
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Wenquan Yu
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P. R. China
| | - Junbiao Chang
- College of Chemistry and Molecular Engineering Zhengzhou University Zhengzhou 450001 P. R. China
- Collaborative Innovation Center of New Drug Research and Safety Evaluation Henan Province Zhengzhou 450001 P. R. China
| |
Collapse
|
34
|
Agnaniet H, Mbot EJ, Keita O, Fehrentz JA, Ankli A, Gallud A, Garcia M, Gary-Bobo M, Lebibi J, Cresteil T, Menut C. Antidiabetic potential of two medicinal plants used in Gabonese folk medicine. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 16:71. [PMID: 26906899 PMCID: PMC4763413 DOI: 10.1186/s12906-016-1052-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Accepted: 02/16/2016] [Indexed: 01/02/2023]
Abstract
BACKGROUND Diabetes mellitus is a metabolic disorder which is rising globally in rich and developing countries. In the African region this rate is the highest, with 20 million diagnosed diabetics. Despite a noticeable progress in the treatment of diabetes mellitus by synthetic drugs, the search for new natural anti-diabetic agents is going on. Nauclea diderrichii (De Wild.) Merr. (ND) and Sarcocephalus pobeguinii Hua ex Pellegr. (SP) are used as traditional medicines in Gabon for the treatment of different diseases, especially in the case of diabetes. The aim of this study was to evaluate the antidiabetic potential of these two medicinal plants traditionally used in Gabon. METHODS Pharmacological (inhibitory action on α and β-glucosidases) and toxicological (effect on human T cell proliferation) studies were conducted on aqueous extracts of ND (leaves and bark) and SP (bark) collected in Gabon. All raw extracts were analyzed by HPTLC and their content in phenolic compounds was determined by using standard method. The most active extracts were submitted to preparative HPLC in order to evidence the most efficient subfractions by biological evaluation. RESULTS The results showed that two extracts from ND were potent α-glucosidase inhibitors, the leaf extract being more active that the bark extract: the first one was more than 60 fold more active than Acarbose, which is an oral medication used to treat type 2 diabetes; the extract from SP bark was less efficient. The HPLC subfractions of the extracts of ND leaves and SP bark were tested in the same experimental conditions. In each case, the most active subfractions still show very potent inhibitory effect on α-glucosidase (80-90% inhibition at 0.1 mg/mL). The most efficient extract, from ND leaves, was also characterized by the highest percentage of phenolic compounds, which suggests a relationship between its inhibitory potential on α-glucosidase and its content in phenolic compounds. Conversely, only a moderate inhibitory activity of the three extracts was observed on β-glucosidase. CONCLUSION These results clearly indicated that active compounds present in N. diderrichii and S. pobeguinii leaves or/and bark were selective and highly potent inhibitors of α-glucosidase and validate their popular use for the treatment of diabetes.
Collapse
Affiliation(s)
- Huguette Agnaniet
- />Laboratoire de Substances Naturelles et de Synthèses Organométalliques (LASNSOM), Université des Sciences et Techniques de Masuku, Faculté des Sciences B.P. 943, Franceville, Gabon
| | - Elvis Jolinom Mbot
- />Laboratoire de Substances Naturelles et de Synthèses Organométalliques (LASNSOM), Université des Sciences et Techniques de Masuku, Faculté des Sciences B.P. 943, Franceville, Gabon
| | - Ousmane Keita
- />Institut des Sciences Appliquées (ISA)-Département de Génie Biologique (GB)-Biochimie-Université des Sciences, des Techniques et des Technologies de Bamako (USTTB) BPE, 423 Bamako - Hamdallaye ACI 2000 - Rue : 405, Porte, 359 Mali
| | - Jean-Alain Fehrentz
- />Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier-ENSCM, Bâtiment E, Faculté de Pharmacie, 15, avenue Charles Flahault BP14491, 34093 Montpellier, cedex 5 France
| | - Anita Ankli
- />CAMAG Laboratory, Sonnenmattstrasse 11, 4132 Muttenz, Switzerland
| | - Audrey Gallud
- />Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier-ENSCM, Bâtiment E, Faculté de Pharmacie, 15, avenue Charles Flahault BP14491, 34093 Montpellier, cedex 5 France
| | - Marcel Garcia
- />Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier-ENSCM, Bâtiment E, Faculté de Pharmacie, 15, avenue Charles Flahault BP14491, 34093 Montpellier, cedex 5 France
| | - Magali Gary-Bobo
- />Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier-ENSCM, Bâtiment E, Faculté de Pharmacie, 15, avenue Charles Flahault BP14491, 34093 Montpellier, cedex 5 France
| | - Jacques Lebibi
- />Laboratoire de Substances Naturelles et de Synthèses Organométalliques (LASNSOM), Université des Sciences et Techniques de Masuku, Faculté des Sciences B.P. 943, Franceville, Gabon
| | - Thierry Cresteil
- />CIBLOT, IPSIT - IFR141, 5 rue Jean Baptiste Clément, 92290 Chatenay-Malabry, France
| | - Chantal Menut
- />Institut des Biomolécules Max Mousseron (IBMM) UMR 5247 CNRS-Université Montpellier-ENSCM, Bâtiment E, Faculté de Pharmacie, 15, avenue Charles Flahault BP14491, 34093 Montpellier, cedex 5 France
| |
Collapse
|
35
|
Liu P, Gao Y, Gu W, Shen Z, Sun P. Regioselective Fluorination of Imidazo[1,2-a]pyridines with Selectfluor in Aqueous Condition. J Org Chem 2015; 80:11559-65. [DOI: 10.1021/acs.joc.5b01961] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Ping Liu
- College
of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory
of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, China
| | - Yongyuan Gao
- College
of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory
of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Weijin Gu
- College
of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory
of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Ziyan Shen
- College
of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory
of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
| | - Peipei Sun
- College
of Chemistry and Materials Science, Jiangsu Provincial Key Laboratory
of Materials Cycling and Pollution Control, Nanjing Normal University, Nanjing 210023, China
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Nanjing 210023, China
| |
Collapse
|
36
|
Arama DP, Soualmia F, Lisowski V, Longevial JF, Bosc E, Maillard LT, Martinez J, Masurier N, El Amri C. Pyrido-imidazodiazepinones as a new class of reversible inhibitors of human kallikrein 7. Eur J Med Chem 2015; 93:202-13. [PMID: 25682203 DOI: 10.1016/j.ejmech.2015.02.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 02/03/2015] [Accepted: 02/06/2015] [Indexed: 10/24/2022]
Abstract
The human tissue kallikrein-7 (KLK7) is a chymotryptic serine protease member of tissue kallikrein family. KLK7 is involved in skin homeostasis and inflammation. Excess of KLK7 activity is also associated with tumor metastasis processes, especially in ovarian carcinomas, prostatic and pancreatic cancers. Development of Kallikrein 7 inhibitors is thus of great interest in oncology but also for treating skin diseases. Most of the developed synthetic inhibitors present several drawbacks such as poor selectivity and unsuitable physico-chemical properties for in vivo use. Recently, we described a practical sequence for the synthesis of imidazopyridine-fused [1,3]-diazepines. Here, we report the identification of pyrido-imidazodiazepinone core as a new potential scaffold to develop selective and competitive inhibitors of kallikrein-related peptidase 7. Structure-activity relationships (SAR), inhibition mechanisms and selectivity as well as cytotoxicity against selected cancer cell lines were investigated.
Collapse
Affiliation(s)
- Dominique P Arama
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Feryel Soualmia
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, 7 Quai St Bernard, F-75005 Paris, France
| | - Vincent Lisowski
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Jean-François Longevial
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Elodie Bosc
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, 7 Quai St Bernard, F-75005 Paris, France
| | - Ludovic T Maillard
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Jean Martinez
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France
| | - Nicolas Masurier
- Institut des Biomolécules Max Mousseron, UMR 5247, CNRS, Université de Montpellier, UFR des Sciences Pharmaceutiques et Biologiques, 15 Avenue Charles Flahault, 34093 Montpellier Cedex 5, France.
| | - Chahrazade El Amri
- Sorbonne Universités, UPMC Univ Paris 06, UMR 8256, B2A, Biological Adaptation and Ageing, Integrated Cellular Ageing and Inflammation, Molecular & Functional Enzymology, 7 Quai St Bernard, F-75005 Paris, France.
| |
Collapse
|
37
|
Liu S, Xi H, Zhang J, Wu X, Gao Q, Wu A. Organopromoted direct synthesis of 6-iodo-3-methylthioimidazo[1,2-a]pyridines via convergent integration of three self-sorting domino sequences. Org Biomol Chem 2015. [DOI: 10.1039/c5ob01313e] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
An NH2CN-promoted convergent integration of three self-sorting domino sequences is described for the construction of 6-iodo-3-methylthioimidazo[1,2-a]pyridines from aryl methyl ketones and 2-aminopyridines.
Collapse
Affiliation(s)
- Shan Liu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Hailing Xi
- State Key Laboratory of NBC Protection for Civilian
- Beijing 102205
- China
| | - Jingjing Zhang
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Xia Wu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Qinghe Gao
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| | - Anxin Wu
- Key Laboratory of Pesticide & Chemical Biology
- Ministry of Education
- College of Chemistry
- Central China Normal University
- Wuhan
| |
Collapse
|