1
|
Thissera B, Soldatou S, Belbahri L, Ebel R, Jaspars M, Rateb ME. Unconventional approaches for the induction of microbial natural products. J Appl Microbiol 2025; 136:lxaf014. [PMID: 39794282 DOI: 10.1093/jambio/lxaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 12/11/2024] [Accepted: 01/09/2025] [Indexed: 01/13/2025]
Abstract
Expansion of the microbial drug discovery pipeline has been impeded by a limited and skewed appreciation of the microbial world and its full chemical capabilities and by an inability to induce silent biosynthetic gene clusters (BGCs). Typically, these silent genes are not expressed under standard laboratory conditions, instead requiring particular interventions to activate them. Genetic, physical, and chemical strategies have been employed to trigger these BGCs, and some have resulted in the induction of novel secondary metabolites. This review encompasses a wide range of literature and emphasizes selected successful induction of microbial secondary metabolites examples through unconventional approaches such as quorum sensing, epigenetic modulation, and ribosome engineering. Whenever applicable, we will also discuss their mechanisms and optimizations to improve the microbial drug discovery process.
Collapse
Affiliation(s)
- Bathini Thissera
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, High Street, Paisley PA1 2BE, Scotland, UK
| | - Sylvia Soldatou
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK
| | - Lassaad Belbahri
- University Institute of Teacher Education (IUFE), University of Geneva, 24 Rue du Général-Dufour, 1211 Geneva, Switzerland
| | - Rainer Ebel
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK
| | - Marcel Jaspars
- Department of Chemistry, Marine Biodiscovery Centre, University of Aberdeen, Meston Walk, Aberdeen AB24 3UE, UK
| | - Mostafa E Rateb
- School of Computing, Engineering & Physical Sciences, University of the West of Scotland, High Street, Paisley PA1 2BE, Scotland, UK
| |
Collapse
|
2
|
Armstrong DW, Berthod A. Occurrence of D-amino acids in natural products. NATURAL PRODUCTS AND BIOPROSPECTING 2023; 13:47. [PMID: 37932633 PMCID: PMC10628113 DOI: 10.1007/s13659-023-00412-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 10/19/2023] [Indexed: 11/08/2023]
Abstract
Since the identified standard genetic code contains 61 triplet codons of three bases for the 20 L-proteinogenic amino acids (AAs), no D-AA should be found in natural products. This is not what is observed in the living world. D-AAs are found in numerous natural compounds produced by bacteria, algae, fungi, or marine animals, and even vertebrates. A review of the literature indicated the existence of at least 132 peptide natural compounds in which D-AAs are an essential part of their structure. All compounds are listed, numbered and described herein. The two biosynthetic routes leading to the presence of D-AA in natural products are: non-ribosomal peptide synthesis (NRPS), and ribosomally synthesized and post-translationally modified peptide (RiPP) synthesis which are described. The methods used to identify the AA chirality within naturally occurring peptides are briefly discussed. The biological activity of an all-L synthetic peptide is most often completely different from that of the D-containing natural compounds. Analyzing the selected natural compounds showed that D-Ala, D-Val, D-Leu and D-Ser are the most commonly encountered D-AAs closely followed by the non-proteinogenic D-allo-Thr. D-Lys and D-Met were the least prevalent D-AAs in naturally occurring compounds.
Collapse
Affiliation(s)
- Daniel W Armstrong
- Department of Chemistry and Biochemistry, University of Texas at Arlington, Arlington, TX, 76019, USA.
| | - Alain Berthod
- Institut des Sciences Analytiques, CNRS, University of Lyon 1, 69100, Villeurbanne, France
| |
Collapse
|
3
|
Narita K. [Synthetic Study on Bicyclic Depsipeptides Containing an Intramolecular Disulfide Bond]. YAKUGAKU ZASSHI 2022; 142:917-926. [PMID: 36047217 DOI: 10.1248/yakushi.22-00091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bicyclic depsipeptide natural products containing an intramolecular disulfide bond are potent histone deacetylase (HDAC) inhibitors. Among them, FK228 (romidepsin) is approved for treating cutaneous T-cell lymphoma and peripheral T-cell lymphoma. This study focused on developing a new synthesis method for producing this class of natural products for use as HDAC inhibitors with high efficacy and low toxicity. In this paper, the total syntheses of FK228 as well as spiruchostatins A and B are described. The synthesis routes include a convergent way to assemble seco-acids via the amide condensation of amine segments with carboxylic acid segments. The syntheses of C4- and C7-modified FK228 analogs (FK-A1 to FK-A8) are also described. The evaluation of HDAC and cell growth inhibitory activities of the synthesized analogs revealed novel aspects of their structure-activity relationship. Potent and highly isoform-selective HDAC1 inhibitors were identified. Furthermore, the analogs showed phosphatidylinositol 3-kinase (PI3K) inhibitory activity. Structural optimization of the analogs as HDAC/PI3K dual inhibitors led to the identification of FK-A11 as the most potent analog.
Collapse
Affiliation(s)
- Koichi Narita
- Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| |
Collapse
|
4
|
Conte M, Fontana E, Nebbioso A, Altucci L. Marine-Derived Secondary Metabolites as Promising Epigenetic Bio-Compounds for Anticancer Therapy. Mar Drugs 2020; 19:md19010015. [PMID: 33396307 PMCID: PMC7824531 DOI: 10.3390/md19010015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 12/22/2020] [Accepted: 12/28/2020] [Indexed: 12/12/2022] Open
Abstract
Sessile organisms such as seaweeds, corals, and sponges continuously adapt to both abiotic and biotic components of the ecosystem. This extremely complex and dynamic process often results in different forms of competition to ensure the maintenance of an ecological niche suitable for survival. A high percentage of marine species have evolved to synthesize biologically active molecules, termed secondary metabolites, as a defense mechanism against the external environment. These natural products and their derivatives may play modulatory roles in the epigenome and in disease-associated epigenetic machinery. Epigenetic modifications also represent a form of adaptation to the environment and confer a competitive advantage to marine species by mediating the production of complex chemical molecules with potential clinical implications. Bioactive compounds are able to interfere with epigenetic targets by regulating key transcriptional factors involved in the hallmarks of cancer through orchestrated molecular mechanisms, which also establish signaling interactions of the tumor microenvironment crucial to cancer phenotypes. In this review, we discuss the current understanding of secondary metabolites derived from marine organisms and their synthetic derivatives as epigenetic modulators, highlighting advantages and limitations, as well as potential strategies to improve cancer treatment.
Collapse
|
5
|
Montalvo-Casimiro M, González-Barrios R, Meraz-Rodriguez MA, Juárez-González VT, Arriaga-Canon C, Herrera LA. Epidrug Repurposing: Discovering New Faces of Old Acquaintances in Cancer Therapy. Front Oncol 2020; 10:605386. [PMID: 33312959 PMCID: PMC7708379 DOI: 10.3389/fonc.2020.605386] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Accepted: 10/15/2020] [Indexed: 12/13/2022] Open
Abstract
Gene mutations are strongly associated with tumor progression and are well known in cancer development. However, recently discovered epigenetic alterations have shown the potential to greatly influence tumoral response to therapy regimens. Such epigenetic alterations have proven to be dynamic, and thus could be restored. Due to their reversible nature, the promising opportunity to improve chemotherapy response using epigenetic therapy has arisen. Beyond helping to understand the biology of the disease, the use of modern clinical epigenetics is being incorporated into the management of the cancer patient. Potential epidrug candidates can be found through a process known as drug repositioning or repurposing, a promising strategy for the discovery of novel potential targets in already approved drugs. At present, novel epidrug candidates have been identified in preclinical studies and some others are currently being tested in clinical trials, ready to be repositioned. This epidrug repurposing could circumvent the classic paradigm where the main focus is the development of agents with one indication only, while giving patients lower cost therapies and a novel precision medical approach to optimize treatment efficacy and reduce toxicity. This review focuses on the main approved epidrugs, and their druggable targets, that are currently being used in cancer therapy. Also, we highlight the importance of epidrug repurposing by the rediscovery of known chemical entities that may enhance epigenetic therapy in cancer, contributing to the development of precision medicine in oncology.
Collapse
Affiliation(s)
- Michel Montalvo-Casimiro
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Rodrigo González-Barrios
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Marco Antonio Meraz-Rodriguez
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | | | - Cristian Arriaga-Canon
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
| | - Luis A. Herrera
- Unidad de Investigación Biomédica en Cáncer, Instituto Nacional de Cancerología-Instituto de Investigaciones Biomédicas, UNAM, Mexico City, Mexico
- Instituto Nacional de Medicina Genómica, Mexico City, Mexico
| |
Collapse
|
6
|
Brosowsky J, Lutterbeck M, Liebich A, Keller M, Herp D, Vogelmann A, Jung M, Breit B. Syntheses of Thailandepsin B Pseudo-Natural Products: Access to New Highly Potent HDAC Inhibitors via Late-Stage Modification. Chemistry 2020; 26:16241-16245. [PMID: 32725698 PMCID: PMC7756392 DOI: 10.1002/chem.202002449] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Indexed: 01/08/2023]
Abstract
New Thailandepsin B pseudo‐natural products have been prepared. Our synthetic strategy offers the possibility to introduce varying warheads via late stage modification. Additionally, it gives access to the asymmetric branched allylic ester moiety of the natural product in a highly diastereoselective manner applying rhodium‐catalyzed hydrooxycarbonylation. The newly developed pseudo‐natural products are extremely potent and selective HDAC inhibitors. The non‐proteinogenic amino acid d‐norleucine was obtained enantioselectively by a recently developed method of rhodium‐catalyzed hydroamination.
Collapse
Affiliation(s)
- Jana Brosowsky
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Monika Lutterbeck
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Amelie Liebich
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Manfred Keller
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| | - Daniel Herp
- Institut für Pharmazeutische WissenschaftenAlbert-Ludwigs-Universität FreiburgAlbertstr. 2579104FreiburgGermany
| | - Anja Vogelmann
- Institut für Pharmazeutische WissenschaftenAlbert-Ludwigs-Universität FreiburgAlbertstr. 2579104FreiburgGermany
| | - Manfred Jung
- Institut für Pharmazeutische WissenschaftenAlbert-Ludwigs-Universität FreiburgAlbertstr. 2579104FreiburgGermany
| | - Bernhard Breit
- Institut für Organische ChemieAlbert-Ludwigs-Universität FreiburgAlbertstr. 2179104FreiburgGermany
| |
Collapse
|
7
|
Krishna S, Lakra AD, Shukla N, Khan S, Mishra DP, Ahmed S, Siddiqi MI. Identification of potential histone deacetylase1 (HDAC1) inhibitors using multistep virtual screening approach including SVM model, pharmacophore modeling, molecular docking and biological evaluation. J Biomol Struct Dyn 2019; 38:3280-3295. [DOI: 10.1080/07391102.2019.1654925] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Affiliation(s)
- Shagun Krishna
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Amar Deep Lakra
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Nidhi Shukla
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Saman Khan
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Durga Prasad Mishra
- Endocrinology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Shakil Ahmed
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| | - Mohammad Imran Siddiqi
- Molecular & Structural Biology Division, CSIR-Central Drug Research Institute, Lucknow, India
| |
Collapse
|
8
|
Lascano S, Lopez M, Arimondo PB. Natural Products and Chemical Biology Tools: Alternatives to Target Epigenetic Mechanisms in Cancers. CHEM REC 2018; 18:1854-1876. [PMID: 30537358 DOI: 10.1002/tcr.201800133] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 11/05/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
Abstract
DNA methylation and histone acetylation are widely studied epigenetic modifications. They are involved in numerous pathologies such as cancer, neurological disease, inflammation, obesity, etc. Since the discovery of the epigenome, numerous compounds have been developed to reverse DNA methylation and histone acetylation aberrant profile in diseases. Among them several were inspired by Nature and have a great interest as therapeutic molecules. In the quest of finding new ways to target epigenetic mechanisms, the use of chemical tools is a powerful strategy to better understand epigenetic mechanisms in biological systems. In this review we will present natural products reported as DNMT or HDAC inhibitors for anticancer treatments. We will then discuss the use of chemical tools that have been used in order to explore the epigenome.
Collapse
Affiliation(s)
- Santiago Lascano
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier-ENSCM, 240 avenue du Prof. E. Jeanbrau, 34296, Montpellier cedex 5, France
| | - Marie Lopez
- Institut des Biomolécules Max Mousseron (IBMM), UMR 5247 CNRS-Université de Montpellier-ENSCM, 240 avenue du Prof. E. Jeanbrau, 34296, Montpellier cedex 5, France
| | - Paola B Arimondo
- Epigenetic Chemical Biology, Institut Pasteur, CNRS UMR3523, 28 rue du Docteur Roux, 75724, Paris cedex 15, France
| |
Collapse
|
9
|
Zagni C, Floresta G, Monciino G, Rescifina A. The Search for Potent, Small-Molecule HDACIs in Cancer Treatment: A Decade After Vorinostat. Med Res Rev 2017; 37:1373-1428. [PMID: 28181261 DOI: 10.1002/med.21437] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 12/05/2016] [Accepted: 12/12/2016] [Indexed: 12/12/2022]
Abstract
Histone deacetylases (HDACs) play a crucial role in the remodeling of chromatin, and are involved in the epigenetic regulation of gene expression. In the last decade, inhibition of HDACs came out as a target for specific epigenetic changes associated with cancer and other diseases. Until now, more than 20 HDAC inhibitors (HDACIs) have entered clinical studies, and some of them (e.g., vorinostat, romidepsin) have been approved for the treatment of cutaneous T-cell lymphoma. This review provides an overview of current knowledge, progress, and molecular mechanisms of HDACIs, covering a period from 2011 until 2015.
Collapse
Affiliation(s)
- Chiara Zagni
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giuseppe Floresta
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy.,Dipartimento di Scienze Chimiche, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Giulia Monciino
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| | - Antonio Rescifina
- Dipartimento di Scienze del Farmaco, Università degli Studi di Catania, Viale Andrea Doria 6, 95125, Catania, Italy
| |
Collapse
|
10
|
Narita K, Katoh T. Total Synthesis of Thailandepsin B, a Potent HDAC Inhibitor Isolated from a Microorganism. Chem Pharm Bull (Tokyo) 2017; 64:913-7. [PMID: 27373645 DOI: 10.1248/cpb.c16-00060] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Thailandepsin B, a bicyclic depsipeptide histone deacetylase inhibitor, was efficiently synthesized in 51% overall yield in eight steps, starting from commercially available D-norleucine methyl ester and known (S,E)-3-(4-methoxybenzyloxy)-7-(tritylthio)hept-4-enoic acid. The method features a convergent approach in which the corresponding seco-acid, a key precursor in macrolactonization, is directly assembled through the condensation of a D-allo-isoleucine-D-cysteine-containing segment with a D-norleucine-containing segment.
Collapse
Affiliation(s)
- Koichi Narita
- Laboratory of Synthetic and Medicinal Chemistry, Faculty of Pharmaceutical Sciences, Tohoku Medical and Pharmaceutical University
| | | |
Collapse
|
11
|
Maolanon AR, Kristensen HME, Leman LJ, Ghadiri MR, Olsen CA. Natural and Synthetic Macrocyclic Inhibitors of the Histone Deacetylase Enzymes. Chembiochem 2016; 18:5-49. [DOI: 10.1002/cbic.201600519] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Indexed: 12/18/2022]
Affiliation(s)
- Alex R. Maolanon
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Helle M. E. Kristensen
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| | - Luke J. Leman
- Department of Chemistry; The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - M. Reza Ghadiri
- Department of Chemistry; The Skaggs Institute for Chemical Biology; The Scripps Research Institute; 10550 North Torrey Pines Road La Jolla CA 92037 USA
| | - Christian A. Olsen
- Center for Biopharmaceuticals and; Department of Drug Design and Pharmacology; University of Copenhagen; Universitetsparken 2 2100 Copenhagen Denmark
| |
Collapse
|
12
|
Narita K, Katoh Y, Ojima KI, Dan S, Yamori T, Ito A, Yoshida M, Katoh T. Total Synthesis of the Depsipeptide FR901375 and Preliminary Evaluation of Its Biological Activity. European J Org Chem 2016. [DOI: 10.1002/ejoc.201601023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Koichi Narita
- Laboratory of Synthetic and Medicinal Chemistry; Faculty of Pharmaceutical Sciences; Tohoku Medical and Pharmaceutical University; 4-4-1 Komatsushima, Aoba-ku 981-8558 Sendai Japan
| | - Yuya Katoh
- Laboratory of Synthetic and Medicinal Chemistry; Faculty of Pharmaceutical Sciences; Tohoku Medical and Pharmaceutical University; 4-4-1 Komatsushima, Aoba-ku 981-8558 Sendai Japan
| | - Ken-ichi Ojima
- Laboratory of Synthetic and Medicinal Chemistry; Faculty of Pharmaceutical Sciences; Tohoku Medical and Pharmaceutical University; 4-4-1 Komatsushima, Aoba-ku 981-8558 Sendai Japan
| | - Singo Dan
- Division of Molecular Pharmacology; Cancer Chemotherapy Centre; Japanese Foundation for Cancer Research; 3-8-31 Ariake, Koto-ku 135-8550 Tokyo Japan
| | - Takao Yamori
- Division of Molecular Pharmacology; Cancer Chemotherapy Centre; Japanese Foundation for Cancer Research; 3-8-31 Ariake, Koto-ku 135-8550 Tokyo Japan
- Pharmaceuticals and Medical Devices Agency (PMDA); 3-3-2 Kasumigaseki, Chiyoda-ku 100-0013 Tokyo Japan
| | - Akihiro Ito
- RIKEN; Chemical Genetics Laboratory; 2-1 Hirosawa 351-0198 Wako-shi Saitama Japan
| | - Minoru Yoshida
- RIKEN; Chemical Genetics Laboratory; 2-1 Hirosawa 351-0198 Wako-shi Saitama Japan
| | - Tadashi Katoh
- Laboratory of Synthetic and Medicinal Chemistry; Faculty of Pharmaceutical Sciences; Tohoku Medical and Pharmaceutical University; 4-4-1 Komatsushima, Aoba-ku 981-8558 Sendai Japan
| |
Collapse
|
13
|
Narita K, Matsuhara K, Itoh J, Akiyama Y, Dan S, Yamori T, Ito A, Yoshida M, Katoh T. Synthesis and biological evaluation of novel FK228 analogues as potential isoform selective HDAC inhibitors. Eur J Med Chem 2016; 121:592-609. [DOI: 10.1016/j.ejmech.2016.05.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Revised: 05/14/2016] [Accepted: 05/16/2016] [Indexed: 11/25/2022]
|