1
|
Pu J, Ren X, Tuerhong A, Lei D, Sun P, Yan S, Jin L, Pan L. Synthesis and Fungicidal Activities of Coumarin Derivatives as Succinate Dehydrogenase Inhibitors. Chem Biodivers 2025; 22:e202402542. [PMID: 39632352 DOI: 10.1002/cbdv.202402542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Revised: 11/16/2024] [Accepted: 12/03/2024] [Indexed: 12/07/2024]
Abstract
Succinate dehydrogenase inhibitors (SDHIs) have been developed to the fastest growing family of fungicides. To develop novel succinate dehydrogenase (SDH) inhibitors, 27 novel non-amides coumarin derivatives were designed, synthesized, and characterized. The bioassay revealed that most of the target compounds exhibited significant antifungal activity against Botrytis cinerea in vitro. Notably, compounds 1a and 2c with EC50 values of 0.92 and 0.52 µg/mL, respectively, which were better than that of positive control chlorothalonil (EC50 = 3.14 µg/mL). Moreover, in vivo antifungal assay results showed that compound 2c could observably inhibit the growth of B. cinerea on Kuerla pears with remarkable protective at a dosage of 200 µg/mL. The scanning electron microscopy (SEM) and transmission electron microscopy (TEM) investigation indicated that compound 2c significantly damaged the cell structures of B. cinerea mycelium. Three-dimensional quantitative structure-activity relationship (3D-QSAR) models were analyzed for structure-activity relationships of all target compounds. Furthermore, molecular docking revealed that compound 2c was able to bind closely to the receptor protein of SDH. Enzyme activity analysis also further verified its inhibitory effect. These results demonstrated that compound 2c may be potential candidate for novel SDH inhibitors, and these results afforded further valuable reference for SDHIs discovery.
Collapse
Affiliation(s)
- Jiangping Pu
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Xingyu Ren
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Adalat Tuerhong
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Dongyu Lei
- Department of Physiology, Preclinical School, Xinjiang Medical University, Urumqi, China
| | - Pengzhi Sun
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Sichang Yan
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Lu Jin
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, China
| | - Le Pan
- College of Chemistry and Chemical Engineering, Xinjiang Agricultural University, Urumqi, China
| |
Collapse
|
2
|
Jaiswal S, Verma K, Srivastva A, Arya N, Dwivedi J, Sharma S. Green Synthetic and Pharmacological Developments in the Hybrid Quinazolinone Moiety: An Updated Review. Curr Top Med Chem 2025; 25:493-532. [PMID: 39162270 DOI: 10.2174/0115680266313354240807051401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/17/2024] [Accepted: 07/11/2024] [Indexed: 08/21/2024]
Abstract
Bicyclic quinazolinone constitutes an important class of organic framework enveloping numerous biological properties which enthused organic and medicinal chemists to explore green synthetic strategies for the construction of quinazolinone hybrids with significantly improved pharmacodynamics and pharmacokinetic profiles. In this perspective, the present review summarizes the most recent green synthetic strategies, biological properties, structure-activity relationship, and molecular docking studies of the 4-quinazolinone-based scaffold. This review provides deeper insight into the hit-to-lead synthesis of quinazolinone derivatives in the development of clinically important therapeutic candidates.
Collapse
Affiliation(s)
- Shivangi Jaiswal
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Kanika Verma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Anamika Srivastva
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Nikilesh Arya
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Jaya Dwivedi
- Department of Chemistry, Banasthali Vidyapith, Banasthali, Rajasthan, India
| | - Swapnil Sharma
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, Rajasthan, India
| |
Collapse
|
3
|
Wu N, Yang Y, Tian G, An L, Liu S, Yan T, Yi M, Bao X. Synthesis, X-ray Crystal Structure, and Antimicrobial Studies of New Quinazolin-4(3 H)-one Derivatives Containing the 1,2,4-Triazolo[3,4- b][1,3,4]thiadiazole Moiety and 4-Piperidinyl Linker. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:19277-19287. [PMID: 38038681 DOI: 10.1021/acs.jafc.3c03670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/02/2023]
Abstract
A total of 35 new quinazolinone derivatives bearing the 1,2,4-triazolo[3,4-b][1,3,4]thiadiazole scaffold and the 4-piperidinyl linker were designed, prepared, and assessed for their antibacterial and antifungal activities. Among these derivatives, the chemical structure of compound F5 was clearly verified via single-crystal X-ray diffraction analysis. The experimental results revealed that some of the compounds displayed good even excellent inhibitory effects toward the tested phytopathogenic bacteria. For instance, compound F33 was capable of strongly inhibiting Xanthomonas oryzae pv. oryzae (Xoo) in vitro with an EC50 (half-maximal effective concentration) value of 4.1 μg/mL, about 16-fold more effective than the commercialized bactericide bismerthiazol. Significantly, this compound also effectively suppressed the proliferation of Xoo in the potted rice plants, showing a good in vivo protection efficacy of 47.6% at 200 μg/mL. Subsequently, the antibacterial mechanisms of compound F33 were explored by means of different biophysical and biochemical methods. Last, some of the compounds were found to possess relatively good antifungal activities in vitro, like compound F19 against Phytophthora nicotianae (with an inhibition rate of 67.2% at 50 μg/mL). In a word, the current experimental results imply that the 4-piperidinyl-bridged quinazolinone-1,2,4-triazolo[3,4-b][1,3,4]thiadiazole derivatives possess potential as lead compounds for developing more efficient anti-Xoo bactericides.
Collapse
Affiliation(s)
- Nan Wu
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Yehui Yang
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Guangmin Tian
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Lian An
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Songsong Liu
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Taisen Yan
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Mingyan Yi
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| | - Xiaoping Bao
- National Key Laboratory of Green Pesticides, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang 550025, PR China
| |
Collapse
|
4
|
Sultana R, Ali A, Twala C, Mehandi R, Rana M, Yameen D, Abid M, Rahisuddin. Synthesis, spectral characterization of pyrazole derived Schiff base analogs: molecular dynamic simulation, antibacterial and DNA binding studies. J Biomol Struct Dyn 2023; 41:13724-13751. [PMID: 36826451 DOI: 10.1080/07391102.2023.2179541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 02/06/2023] [Indexed: 02/25/2023]
Abstract
We have synthesized the pyrazole-bearing Schiff base derivatives (5a-5e) and (6a-6h) then the structural confirmation was supported by various spectral analyses. The antibacterial activity of all analogs was screened against bacterial strains Staphylococcus aureus, Bacillus subtilis, Enterococcus faecalis, Escherichia coli, Klebsiella pneumonieae and Pseudomonas aeruginosa. In comparison to the reference drug ciprofloxacin, the lead analogs 5c and 6c showed potent activity, with MIC values of 64 µg/mL against E. coli and B. subtilis. Compound 5c showed a moderate effect with a MIC value of 128 µg/mL against B. subtilis, P. aeruginosa and K. pneumonieae, while compound 6c was against E. coli and P. aeruginosa. Furthermore, the compounds 5c and 6c displayed groove binding mode towards CT-DNA by absorption, emission, competitive fluorescence studies using EtBr, CD and time-resolved fluorescence studies. Thermodynamic parameters of analogs 5c and 6c with CT-DNA were also calculated at 298, 303 and 308K temperatures by UV-visible spectroscopy. The molecular docking studies give the docking score for all compounds with PDB codes: 1BNA and 2XCT. The MD simulation study of analogs 5c and 6c was also carried out. The pharmacokinetic and ADME properties were calculated for all of the synthesized analogs (5a-5e) and (6a-6h).Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Razia Sultana
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Asghar Ali
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Charmy Twala
- Department of Life and Consumer Science, University of South Africa, Florida, South Africa
| | - Rabiya Mehandi
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Manish Rana
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| | - Daraksha Yameen
- Department of Biotechnology, Jamia Millia Islamia, New Delhi, India
| | - Mohammad Abid
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Rahisuddin
- Molecular and Biophysical Research Laboratory, Department of Chemistry, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
5
|
Nadar S, Khan T. Pyrimidine: An elite heterocyclic leitmotif in drug discovery-synthesis and biological activity. Chem Biol Drug Des 2022; 100:818-842. [PMID: 34914188 DOI: 10.1111/cbdd.14001] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/07/2021] [Accepted: 12/01/2021] [Indexed: 01/25/2023]
Abstract
Heterocyclic compounds bearing the pyrimidine core are of tremendous interest as they constitute an important class of natural and synthetic compounds exhibiting diverse useful biological activities that hold attractive potential for clinical translation as therapeutic agents in alleviation of a myriad of diseases. Heterocycles possessing a pyrimidine scaffold have piqued tremendous interest of organic and medicinal chemists owing to their privileged bioactivities. Drugs having the pyrimidine motif have manifested to exhibit gratifying biological activity like anticancer, antiviral, anti-inflammatory, antibacterial, and antihypertensive activities. This heterocycle, being a significant endogenous component of the body, the pyrimidine derivatives can easily interact with enzymes, genetic materials, and bio components within the cell. The landscape of FDA approved drugs, presently marketed incorporating the pyrimidine scaffold continues to evolve in number and diversity. There is a tremendous surge in discovery of new targets across many diseases especially those involving emerging resistance to clinically used battery of drugs. Pyrimidine scaffolds will continue to be explored expanding their chemical space portfolio in an effort to find novel drugs impacting these targets. This review aims to provide an elaborate recapitulation of the recent trends adopted to synthesize propitious pyrimidine incorporated hits and also focuses on the clinical significance reported for functionalized pyrimidine analogues that would quintessentially aid medicinal chemists for new research explorations in this arena.
Collapse
Affiliation(s)
- Sahaya Nadar
- Department of Pharmaceutical Chemistry, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| | - Tabassum Khan
- Department of Pharmaceutical Chemistry and Quality Assurance, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, Mumbai, India
| |
Collapse
|
6
|
Chen J, Wang Y, Luo X, Chen Y. Recent research progress and outlook in agricultural chemical discovery based on quinazoline scaffold. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2022; 184:105122. [PMID: 35715060 DOI: 10.1016/j.pestbp.2022.105122] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 05/27/2023]
Abstract
The discovery of new scaffolds and targets for pesticides is still a huge challenge facing the sustainable development of modern agriculture. In recent years, quinazoline derivatives have achieved great progress in drug discovery and have attracted great attention. Quinazoline is a unique bicyclic scaffold with a variety of biological activities, which increases the possibilities and flexibility of structural modification, showing enormous appeal in the discovery of new pesticides. Therefore, the agricultural biological activities, structure-activity relationships (SAR), and mechanism of action of quinazoline derivatives in the past decade were reviewed systematically, with emphasis on SAR and mechanism. Then, we prospected the application of the quinazoline scaffold as a special structure in agricultural chemical discovery, hoping to provide new ideas for the rational design and mechanism of novel quinazoline agricultural chemicals in the future.
Collapse
Affiliation(s)
- Jixiang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China.
| | - Yu Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Xin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| | - Yifang Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Guizhou University, Huaxi District, Guiyang 550025, China
| |
Collapse
|
7
|
Synthesis of 2, 3-dihydroquinazolin-4(1H)-ones promoted by an efficient, inexpensive and reusable heterogeneous Lewis acid catalyst. JOURNAL OF POLYMER RESEARCH 2022. [DOI: 10.1007/s10965-022-03108-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
8
|
Synthesis of Emodin Acylhydrazone Derivatives and Determination of Vibrio harveyi Inhibitory Activity. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03645-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
9
|
Bano K, Kisan DA, Panda TK. Facile Synthesis of Benzimidazole and Benzothiazole Compounds Mediated by Zinc Precatalyst Supported by Iminopyrrole‐Morpholine Ligand. Eur J Inorg Chem 2022. [DOI: 10.1002/ejic.202200023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Kulsum Bano
- IITH: Indian Institute of Technology Hyderabad Chemistry KandiSangareddy 502285 INDIA
| | - Devadkar Ajitrao Kisan
- IITH: Indian Institute of Technology Hyderabad Chemistry KandiSangareddy 502285 Hyderabad INDIA
| | - Tarun K. Panda
- IITH: Indian Institute of Technology Hyderabad Chemistry KandiSangareddy 502285 Hyderabad INDIA
| |
Collapse
|
10
|
Wang X, Wang X, Zhou B, Long J, Li P. Design, synthesis, and evaluation of new 4(
3
H
)‐quinazolinone derivatives containing a pyrazole carboxamide moiety. J Heterocycl Chem 2021. [DOI: 10.1002/jhet.4334] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Xiang Wang
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine Kaili University Kaili China
| | - Xiaoyu Wang
- School of Chinese Materia Medica Shenyang Pharmaceutical University Shenyang China
| | - Banghua Zhou
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine Kaili University Kaili China
| | - Jiefeng Long
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine Kaili University Kaili China
| | - Pei Li
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine Kaili University Kaili China
| |
Collapse
|
11
|
Synthesis and Biological Evaluation of Quinazolonethiazoles as New Potential Conquerors towards
Pseudomonas Aeruginosa. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202000627] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
12
|
Wróbel A, Drozdowska D. Recent Design and Structure-Activity Relationship Studies on the Modifications of DHFR Inhibitors as Anticancer Agents. Curr Med Chem 2021; 28:910-939. [PMID: 31622199 DOI: 10.2174/0929867326666191016151018] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/25/2019] [Accepted: 09/27/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Dihydrofolate reductase (DHFR) has been known for decades as a molecular target for antibacterial, antifungal and anti-malarial treatments. This enzyme is becoming increasingly important in the design of new anticancer drugs, which is confirmed by numerous studies including modelling, synthesis and in vitro biological research. This review aims to present and discuss some remarkable recent advances in the research of new DHFR inhibitors with potential anticancer activity. METHODS The scientific literature of the last decade on the different types of DHFR inhibitors has been searched. The studies on design, synthesis and investigation structure-activity relationships were summarized and divided into several subsections depending on the leading molecule and its structural modification. Various methods of synthesis, potential anticancer activity and possible practical applications as DHFR inhibitors of new chemical compounds were described and discussed. RESULTS This review presents the current state of knowledge on the modification of known DHFR inhibitors and the structures and searches for about eighty new molecules, designed as potential anticancer drugs. In addition, DHFR inhibitors acting on thymidylate synthase (TS), carbon anhydrase (CA) and even DNA-binding are presented in this paper. CONCLUSION Thorough physicochemical characterization and biological investigations highlight the structure-activity relationship of DHFR inhibitors. This will enable even better design and synthesis of active compounds, which would have the expected mechanism of action and the desired activity.
Collapse
Affiliation(s)
- Agnieszka Wróbel
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| | - Danuta Drozdowska
- Department of Organic Chemistry, Faculty of Pharmacy, Medical University, Białystok, Poland
| |
Collapse
|
13
|
Jilloju PC, Shyam P, Sanjeev A, Vedula RR. Four-component, one–pot synthesis of (E)-N-benzylidene-3-(benzylthio)-5-(3,5-dimethyl-1H-pyrazol-1-yl)-4H-1,2,4-triazol-4-amines and their DNA binding and molecular docking studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
14
|
Synthesis, identification and computational studies of novel Schiff bases N-(2,6-dibenzylidenecyclohexylidene)-N′-(2,4-dinitrophenyl)hydrazine derivatives. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-03745-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
|
15
|
Wang X, Shang S, Tian Q, Wang Y, Wu H, Li Z, Zhou S, Liu H, Dai Z, Luo W, Li D, Xiao X, Wang S, Yuan J. Imidazolium chloride as an additive for synthesis of 4(3H)-quinazolinones using anthranilamides and DMF derivatives. Tetrahedron 2020. [DOI: 10.1016/j.tet.2020.131480] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
16
|
Chen M, Wang Y, Su S, Chen Y, Peng F, Zhou Q, Liu T, Luo H, Wang H, Xue W. Synthesis and biological evaluation of 1,4-pentadien-3-one derivatives containing 1,2,4-triazole. JOURNAL OF SAUDI CHEMICAL SOCIETY 2020. [DOI: 10.1016/j.jscs.2020.08.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
17
|
Salem MS, Al‐Mabrook SAM, El‐Hashash MAEM. Synthesis and antiproliferative evaluation of some novel quinazolin‐4(
3
H
)‐one derivatives. J Heterocycl Chem 2020. [DOI: 10.1002/jhet.4096] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Marwa Sayed Salem
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
| | - Selima Ali Mohamed Al‐Mabrook
- Chemistry Department, Faculty of Science Ain Shams University Cairo Egypt
- Chemistry Department Faculty of Science, El‐Margeb University Al Khums Libya
| | | |
Collapse
|
18
|
Dos Santos TM, Martins CC, Bueno DT, Nunes IJ, Busatto FF, Cargnelutti R, Luchese C, de Lazaro Casagrande O, Saffi J, Wilhelm EA, Pinheiro AC. Synthesis, molecular structure and antioxidant activity of bis [L(μ 2-chloro)copper(II)] supported by phenoxy/naphthoxy-imine ligands. J Inorg Biochem 2020; 210:111130. [PMID: 32563104 DOI: 10.1016/j.jinorgbio.2020.111130] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 05/31/2020] [Accepted: 06/06/2020] [Indexed: 02/07/2023]
Abstract
A new series of Cu(II) complexes [bis[{(μ2-chloro)-2-MeO-Ph-CH2-(N=CH)-2,4-tert-butyl-2-OC6H2)}Cu(II)] (Cu1); bis[{(μ2-chloro)-2-MeS-Ph-CH2-(N=CH)-2,4-tert-butyl-2-(OC6H2)}Cu(II)] (Cu2); bis[{(μ2-chloro)-2-MeO-Ph-CH2-(N=CH)-2-(OC10H6)} Cu(II)] (Cu3); bis[{(μ2-chloro)-2-MeS-Ph-CH2-(N=CH)-2-(OC10H6)}Cu(II)] complex (Cu4); bis[{2-MeS-Ph-CH2-(N=CH)-2,4-tert-butyl-2-(OC6H2)}Cu(II)] (Cu5)] have been synthesized and characterized by elemental analysis, IR, UV-Visible and by X-ray crystallography for Cu1, Cu4 and Cu5. In the solid state, Cu1 features of a chloro-bridged dimer complex with κ2 coordination of the monoanionic phenoxy-imine ligand onto the copper center. On the other hand, the molecular structure of Cu4 reveals the naphthoxy-imine ligand with pendant S-group coordinated to the copper atom in tridentate meridional fashion. Treatment of [Cu(OAc)2·H2O] with two equiv. of [2-MeS-Ph-CH2-(N=CH)-2,4-tert-butyl-2-(HOC6H2)] led to a monomeric complex Cu5, with the ONS-donor Schiff base acting as a bidentate ligand. The redox behavior was explored by cyclic voltammetry. The reduction/oxidation potential of Cu(II) complexes depends on the structure and conformation of the central atom in the coordination compounds. Antioxidant activities of the complexes, Cu1 - Cu5, were determined by in vitro assays such as 1,1-diphenyl-2-picryl-hydrazyl free radicals (DPPH) and 2,2'-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid) radicals (ABTS+). The dinuclear compounds Cu1-Cu4, from the concentration of 5 μM, presented a good activity in scavenging DPPH radical. In addition, most of the Cu(II) complexes showed ABTS.+ radical-scavenging activity. The monomeric complex Cu5 at all concentrations tested showed antioxidant inability. The cytotoxicity of the Cu1 and Cu3 was determined in V79 cell line by reduction of 3(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-tetrazolium bromide (MTT) assay.
Collapse
Affiliation(s)
- Tamara Machado Dos Santos
- Programa de Pós-Graduação em Química, Grupo de Catálise e Estudos Teóricos, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96160-000 Pelotas, RS, Brazil
| | - Carolina Cristovão Martins
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Danielle Tapia Bueno
- Programa de Pós-Graduação em Química, Grupo de Catálise e Estudos Teóricos, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96160-000 Pelotas, RS, Brazil
| | - Ianka Jacondino Nunes
- Programa de Pós-Graduação em Química, Grupo de Catálise e Estudos Teóricos, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96160-000 Pelotas, RS, Brazil
| | - Franciele Faccio Busatto
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Roberta Cargnelutti
- Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, 1000, Santa Maria, RS 97105-900, Brazil
| | - Cristiane Luchese
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Osvaldo de Lazaro Casagrande
- Laboratório de Catálise Molecular, Instituto de Química, Universidade Federal do Rio Grande do Sul, Av. Bento Gonçalves, 9500, Porto Alegre, RS 90501-970, Brazil
| | - Jenifer Saffi
- Laboratório de Genética Toxicológica, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Porto Alegre, RS, Brazil
| | - Ethel Antunes Wilhelm
- Programa de Pós-Graduação em Bioquímica e Bioprospecção, Laboratório de Pesquisa em Farmacologia Bioquímica, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96010-900 Pelotas, RS, Brazil
| | - Adriana Castro Pinheiro
- Programa de Pós-Graduação em Química, Grupo de Catálise e Estudos Teóricos, CCQFA - Universidade Federal de Pelotas, UFPel - CEP, 96160-000 Pelotas, RS, Brazil.
| |
Collapse
|
19
|
Fesatidou M, Petrou A, Athina G. Heterocycle Compounds with Antimicrobial Activity. Curr Pharm Des 2020; 26:867-904. [DOI: 10.2174/1381612826666200206093815] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 11/19/2019] [Indexed: 12/19/2022]
Abstract
Background:Bacterial infections are a growing problem worldwide causing morbidity and mortality mainly in developing countries. Moreover, the increased number of microorganisms, developing multiple resistances to known drugs, due to abuse of antibiotics, is another serious problem. This problem becomes more serious for immunocompromised patients and those who are often disposed to opportunistic fungal infections.Objective:The objective of this manuscript is to give an overview of new findings in the field of antimicrobial agents among five-membered heterocyclic compounds. These heterocyclic compounds especially five-membered attracted the interest of the scientific community not only for their occurrence in nature but also due to their wide range of biological activities.Method:To reach our goal, a literature survey that covers the last decade was performed.Results:As a result, recent data on the biological activity of thiazole, thiazolidinone, benzothiazole and thiadiazole derivatives are mentioned.Conclusion:It should be mentioned that despite the progress in the development of new antimicrobial agents, there is still room for new findings. Thus, research still continues.
Collapse
Affiliation(s)
- Maria Fesatidou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Anthi Petrou
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| | - Geronikaki Athina
- School of Health, Department of Pharmacy, Aristotle University of Thessaloniki, Thessaloniki 54124, Greece
| |
Collapse
|
20
|
Shi J, Luo N, Ding M, Bao X. Synthesis, in vitro antibacterial and antifungal evaluation of novel 1,3,4-oxadiazole thioether derivatives bearing the 6-fluoroquinazolinylpiperidinyl moiety. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.06.037] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
21
|
Du H, Ding M, Luo N, Shi J, Huang J, Bao X. Design, synthesis, crystal structure and in vitro antimicrobial activity of novel 1,2,4-triazolo[1,5-a]pyrimidine-containing quinazolinone derivatives. Mol Divers 2020; 25:711-722. [PMID: 32006295 DOI: 10.1007/s11030-020-10043-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Accepted: 01/22/2020] [Indexed: 11/30/2022]
Abstract
A series of novel 1,2,4-triazolo[1,5-a]pyrimidine-containing quinazolin-4(3H)-one derivatives (8a-8o) were designed, synthesized and assessed for their in vitro antibacterial and antifungal activities in agriculture. All the title compounds were completely characterized via 1H NMR, 13C NMR, HRMS and IR spectroscopic data. In particular, the molecular structure of compound 8f was further corroborated through a single-crystal X-ray diffraction measurement. The turbidimetric method revealed that some of the compounds displayed noticeable bactericidal potencies against the tested plant pathogenic bacteria. For example, compounds 8m, 8n and 8o possessed higher antibacterial efficacies in vitro against Xanthomonas oryzae pv. oryzae with EC50 values of 69.0, 53.3 and 58.9 μg/mL, respectively, as compared with commercialized agrobactericide bismerthiazol (EC50 = 91.4 μg/mL). Additionally, compound 8m displayed an EC50 value of 71.5 μg/mL toward Xanthomonas axonopodis pv. citri, comparable to control bismerthiazol (EC50 = 60.5 μg/mL). A preliminary structure-activity relationship (SAR) analysis was also conducted, based on the antibacterial results. Finally, some compounds were also found to have a certain antifungal efficacy in vitro at the concentration of 50 μg/mL.
Collapse
Affiliation(s)
- Huan Du
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Muhan Ding
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Na Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Jun Shi
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Jian Huang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xiaoping Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
22
|
Tahmasebi V, Grivani G, Eigner V, Dusek M, Khalaji AD. New Mn(II) and Cu(II) Complexes of Naphtaldimine Schiff Base Ligands: Synthesis, Characterization and Crystal Structures. J STRUCT CHEM+ 2020. [DOI: 10.1134/s0022476620010060] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
23
|
Wang X, Hu H, Zhao X, Chen M, Zhang T, Geng C, Mei Y, Lu A, Yang C. Novel quinazolin-4(3H)-one derivatives containing a 1,3,4-oxadiazole thioether moiety as potential bactericides and fungicides: Design, synthesis, characterization and 3D-QSAR analysis. JOURNAL OF SAUDI CHEMICAL SOCIETY 2019. [DOI: 10.1016/j.jscs.2019.07.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
24
|
Chen S, Jiang M, Chen B, Salaenoi J, Niaz SI, He J, Liu L. Penicamide A, A Unique N, N'-Ketal Quinazolinone Alkaloid from Ascidian-Derived Fungus Penicillium sp. 4829. Mar Drugs 2019; 17:md17090522. [PMID: 31492051 PMCID: PMC6780914 DOI: 10.3390/md17090522] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/02/2019] [Accepted: 09/02/2019] [Indexed: 12/22/2022] Open
Abstract
Previously unreported N,N′-ketal quinazolinone enantiomers [(−)-1 and (+)-1] and a new biogenetically related compound (2), along with six known compounds, 2-pyrovoylaminobenzamide (3), N-(2-hydroxypropanoyl)-2 amino benzoic acid amide (4), pseurotin A (5), niacinamide (6), citreohybridonol (7), citreohybridone C (8) were isolated from the ascidian-derived fungus Penicillium sp. 4829 in wheat solid-substrate medium culture. Their structures were elucidated by a combination of spectroscopic analyses (1D and 2D NMR and Electron Circular Dichroism data) and X-ray crystallography. The enantiomeric pair of 1 is the first example of naturally occurring N,N′-ketal quinazolinone possessing a unique tetracyclic system having 4-quinazolinone fused with tetrahydroisoquinoline moiety. The enantiomeric mixtures of 1 displayed an inhibitory effect on NO production in lipopolysaccharide-activated RAW264.7 cells, while the optically pure (–)-1 showed better inhibitory effect than (+)-1.
Collapse
Affiliation(s)
- Senhua Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China.
| | - Minghua Jiang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Bin Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Jintana Salaenoi
- Department of Marine Science, Faculty of Fisheries, Kasetsart University, Bangkok 10900, Thailand.
| | - Shah-Iram Niaz
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- Institute of chemical sciences, Gomal University, Dera Ismail Khan 27100, Pakistan.
| | - Jianguo He
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
| | - Lan Liu
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510006, China.
- Southern Laboratory of Ocean Science and Engineering (Guangdong, Zhuhai), Zhuhai 519000, China.
| |
Collapse
|
25
|
Zhang M, Xu W, Wei K, Liu H, Yang Q, Liu Q, Yang L, Luo Y, Xue W. Synthesis and Evaluation of 1,3,4‐Thiadiazole Derivatives Containing Cyclopentylpropionamide as Potential Antibacterial Agent. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3576] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Min Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 People's Republic of China
| | - Weiming Xu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 People's Republic of China
| | - Kun Wei
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 People's Republic of China
| | - Hongwu Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 People's Republic of China
| | - Qin Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 People's Republic of China
| | - Qin Liu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 People's Republic of China
| | - Liyun Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 People's Republic of China
| | - Yuqin Luo
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 People's Republic of China
| | - Wei Xue
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine ChemicalsGuizhou University Guiyang 550025 People's Republic of China
| |
Collapse
|
26
|
Cai ZQ, Zhao CK, Li MY, Shuai XM, Ding HG, Wang QL, Fu J, Jin ZS, Li S, Zhao LJ. Synthesis, crystal structure and biological activity of 6-(3-chloropropoxy)-4-(2-fluorophenylamino)-7-methoxyquinazoline. JOURNAL OF CHEMICAL RESEARCH 2019. [DOI: 10.1177/1747519819841831] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The title compound, 6-(3-chloropropoxy)-4-(2-fluorophenylamino)-7-methoxyquinazoline, was synthesized by selective nucleophilic attack at C-1 of 1-bromo-3-chloropropane by the potassium salt of 4-(2-fluorophenylamino)-7-methoxyquinazolin-6-ol, which was prepared from 7-methoxy-4-oxo-3,4-dihydroquinazolin-6-yl acetate in three steps. The compound crystallized as an ethyl acetate complex (C20H21ClFN3O3, Mr = 405.85), and X-ray crystallography showed that the crystal belongs to the orthorhombic system, space group Pbca with a = 12.7407(4) Å, b = 14.0058(5) Å, c = 21.7726(7) Å, α = 90°, β = 90° and γ = 90°. The whole molecule is stacked into a three-dimensional structure via weak N–H…N hydrogen bonding between molecules. The compound acts as an effective inhibitor on the proliferation of a lung cancer cell line.
Collapse
Affiliation(s)
- Zhi-Qiang Cai
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, P.R. China
| | - Chen-kang Zhao
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, P.R. China
| | - Meng-Yao Li
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, P.R. China
| | - Xiao-Min Shuai
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, P.R. China
| | - Hai-Guan Ding
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, P.R. China
| | - Qing-Lin Wang
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, P.R. China
| | - Jia Fu
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, P.R. China
| | - Zheng-Sheng Jin
- School of Petrochemical Engineering, Shenyang University of Technology, Liaoyang, P.R. China
| | - Shuai Li
- Key Laboratory for Chemical Drug Research of Shandong Province, Institute of Pharmaceutical Sciences of Shandong Province, Jinan, P.R. China
| | - Le-Jing Zhao
- Jinzhou Jiutai Pharmaceutical Co., Ltd, Jinzhou, P.R. China
| |
Collapse
|
27
|
Gatadi S, Lakshmi TV, Nanduri S. 4(3H)-Quinazolinone derivatives: Promising antibacterial drug leads. Eur J Med Chem 2019; 170:157-172. [PMID: 30884322 DOI: 10.1016/j.ejmech.2019.03.018] [Citation(s) in RCA: 112] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2019] [Revised: 02/15/2019] [Accepted: 03/06/2019] [Indexed: 12/25/2022]
Abstract
Emergence of drug resistance has created unmet medical need for the development of new classes of antibiotics. Discovery of new antibacterial agents with new mode of action remains a high priority universally. 4(3H)-quinazolinone, a fused nitrogen heterocyclic compound has emerged as a biologically privileged structure, possessing a wide range of biological properties viz. anticancer, antibacterial, antitubercular, antifungal, anti-HIV, anticonvulsant, anti-inflammatory and analgesic activities. Promising antibacterial properties of quinazolinones have enthused the medicinal chemists to explore and develop this fused heterocyclic system for new antibacterial agents. Utilization of quinazolinone core for the design and synthesis of new antibacterial agents has recently gained momentum. This review aims to provide an overview of the structures and antibacterial activity of various 4(3H)-quinazolinone derivatives covering various aspects of in vitro and in vivo pharmacological activities and structure activity relationships (SARs).
Collapse
Affiliation(s)
- Srikanth Gatadi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - T Vasanta Lakshmi
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India
| | - Srinivas Nanduri
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad 500037, India.
| |
Collapse
|
28
|
Synthesis, antioxidant activity and SAR study of novel spiro-isatin-based Schiff bases. Mol Divers 2019; 23:829-844. [DOI: 10.1007/s11030-018-09910-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2018] [Accepted: 12/13/2018] [Indexed: 01/24/2023]
|
29
|
Wang HX, Liu HY, Li W, Zhang S, Wu Z, Li X, Li CW, Liu YM, Chen BQ. Design, synthesis, antiproliferative and antibacterial evaluation of quinazolinone derivatives. Med Chem Res 2018. [DOI: 10.1007/s00044-018-2276-8] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
30
|
Pyrazolo[3,4-d]pyrimidine derivatives containing a Schiff base moiety as potential antiviral agents. Bioorg Med Chem Lett 2018; 28:2979-2984. [DOI: 10.1016/j.bmcl.2018.06.049] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Revised: 06/27/2018] [Accepted: 06/28/2018] [Indexed: 11/24/2022]
|
31
|
Zhan X, Xu Y, Qi Q, Wang Y, Shi H, Mao Z. Synthesis, Cytotoxic, and Antibacterial Evaluation of Quinazolinone Derivatives with Substituted Amino Moiety. Chem Biodivers 2018; 15:e1700513. [PMID: 29333734 DOI: 10.1002/cbdv.201700513] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/11/2018] [Indexed: 12/20/2022]
Abstract
A series of novel quinazolinone derivatives containing a substituted amino moiety were synthesized, evaluated for their cytotoxic and antibacterial activities. The results of MTT assay showed that all synthesized target compounds 5A - 5O showed potent cytotoxicity against SGC-7901 (IC50 , 0.72 - 1.41 μm). Moreover, the compounds 5D, 5I, and 5K showed better selectivity as compared with positive controls pemetrexed and MTX due to weak cytotoxicity against normal tissue cell line HUVSMC. Among synthesized compounds, the compounds 5E, 5J, 5L, and 5N showed broad-spectrum cytotoxic activities against at least four cancer cell lines at a micromolar level. The results of antibacteria evaluation revealed that all synthesized compounds showed good to moderate antibacterial activities against Gram-negative bacteria Escherichia coli. Among them, the MIC values of the compounds 5C, 5F, and 5M were 0.31 μg/mL.
Collapse
Affiliation(s)
- Xiaoping Zhan
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yun Xu
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Qi Qi
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Yaolin Wang
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Huiying Shi
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Zhenmin Mao
- School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
32
|
Li XQ, Gan YY, Meng J, Li W, Chen J, Qi YY, Tian K, Ouyang GP, Wang ZC. Synthesis and Antimicrobial Activities of Novel Quinazolinone Acylhydrazone Derivatives Containing the Indole Moiety. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3172] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Xiao-Qin Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Guiyang 550025 People's Republic of China
| | - Yi-Yuan Gan
- College of Pharmacy; Guizhou University; Guiyang 550025 People's Republic of China
| | - Jiao Meng
- College of Pharmacy; Guizhou University; Guiyang 550025 People's Republic of China
| | - Wen Li
- College of Pharmacy; Guizhou University; Guiyang 550025 People's Republic of China
| | - Jie Chen
- College of Pharmacy; Guizhou University; Guiyang 550025 People's Republic of China
| | - Ya-Yun Qi
- College of Pharmacy; Guizhou University; Guiyang 550025 People's Republic of China
| | - Kun Tian
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Guiyang 550025 People's Republic of China
| | - Gui-Ping Ouyang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Guizhou University; Guiyang 550025 People's Republic of China
- College of Pharmacy; Guizhou University; Guiyang 550025 People's Republic of China
- Drug Synthetic Engineering Laboratory of Guizhou Province; Guiyang 550025 People's Republic of China
| | - Zhen-Chao Wang
- College of Pharmacy; Guizhou University; Guiyang 550025 People's Republic of China
- Drug Synthetic Engineering Laboratory of Guizhou Province; Guiyang 550025 People's Republic of China
| |
Collapse
|
33
|
Zhang L, Chen Q, Li XQ, Wu SQ, Wan JL, Ouyang GP. Synthesis and Antibacterial Activity of 2-substitued-(3-pyridyl)-quinazolinone Derivatives. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3099] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Li Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Qin Chen
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Xiao-Qin Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Shou-Qun Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Jin-Lin Wan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| | - Gui-Ping Ouyang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals; Guizhou University; Guiyang 550025 China
| |
Collapse
|
34
|
Synthesis and antimicrobial activities of novel quinazolin-4(3 H )-one derivatives containing a 1,2,4-triazolo[3,4- b ][1,3,4]thiadiazole moiety. JOURNAL OF SAUDI CHEMICAL SOCIETY 2018. [DOI: 10.1016/j.jscs.2017.07.008] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
35
|
Nasab RR, Mansourian M, Hassanzadeh F. Synthesis, antimicrobial evaluation and docking studies of some novel quinazolinone Schiff base derivatives. Res Pharm Sci 2018; 13:213-221. [PMID: 29853931 PMCID: PMC5921402 DOI: 10.4103/1735-5362.228942] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
The quinazolin-4(3H)-one structural motif possesses a wide spectrum of biological activities. DNA gyrase play an important role in induction of bacterial death. It has been shown that many quinazolin-4(3H)-one derivatives have antibacterial effects through inhibition of DNA gyrase. Based on this information we decided to synthesize novel quinazolinone Schiff base derivatives in order to evaluate their antibacterial effects. A series of novel quinazolinone Schiff base derivatives were designed and synthesized from benzoic acid. The potential DNA gyrase inhibitory activity of these compounds was investigated using in silico molecular docking simulation. All new synthesized derivatives were screened for their antimicrobial activities against three species of Gram-negative bacteria including Escherichia coli, Pseudomonas aeruginosa, Salmonella entritidis and three species of Gram-positive bacteria comprising of Staphylococcus aurous, Bacillus subtilis, Listeria monocitogenes as well as for antifungal activities against Candida albicans using the conventional micro dilution method. Most of the compounds have shown good antibacterial activities, especially against E. coli at 128 µg/mL concentration while no remarkable antifungal activities were observed for these compounds. All the synthesized compounds exhibit dock score values between -5.96 and -8.58 kcal/mol. The highest dock score among them was -8.58 kcal/mol for compound 4c.
Collapse
Affiliation(s)
- Rezvan Rezaee Nasab
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Lorestan University of Medical Sciences, Khorramabad, I.R. Iran
| | - Mahboubeh Mansourian
- Medicinal Plants Research Center, Yasuj University of Medical Sciences, Yasuj, I.R. Iran
| | - Farshid Hassanzadeh
- Department of Medicinal Chemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran.,Isfahan Pharmaceutical Sciences Research Center, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, I.R. Iran
| |
Collapse
|
36
|
Parashuram L, Sreenivasa S, Akshatha S, Kumar VU, Kumar S. Zirconia-Supported Cu(I)-Stabilized Copper Oxide Mesoporous Catalyst for the Synthesis of Quinazolinones Under Ambient Conditions. ASIAN J ORG CHEM 2017. [DOI: 10.1002/ajoc.201700467] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- L. Parashuram
- Department of Studies and Research in Chemistry; Tumkur University; Tumkur- 572101 India
- New Horizon College of Engineering, affiliated to VTU Belagavi; Kadubeesanahalli Bangalore 560103 India
| | - Swamy Sreenivasa
- Department of Studies and Research in Chemistry; Tumkur University; Tumkur- 572101 India
| | - S. Akshatha
- Department of Studies and Research in Chemistry; Tumkur University; Tumkur- 572101 India
| | - V. Udaya Kumar
- Department of Chemistry; Siddaganga Institute of Technology, affiliated to VTU Belagavi; B.H. Road Tumkur- 572102 India
| | - Sandeep Kumar
- Raman Research Institute; C.V. Raman Avenue Bangalore- 560080 India
| |
Collapse
|
37
|
Antimicrobial activities of pyridinium-tailored pyrazoles bearing 1,3,4-oxadiazole scaffolds. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2017.04.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
38
|
Du H, Fan Z, Yang L, Bao X. Synthesis of novel quinazolin-4(3H)-one derivatives containing the 7-oxo-1,2,4-triazolo[1,5-a]pyrimidine moiety as effective agricultural bactericides against the pathogen Xanthomonas oryzae pv. oryzae. Mol Divers 2017; 22:1-10. [PMID: 28879615 DOI: 10.1007/s11030-017-9782-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Accepted: 08/20/2017] [Indexed: 12/20/2022]
Abstract
A series of novel quinazolin-4-one derivatives (7a-7n) bearing the 7-oxo-1,2,4-triazolo[1,5-a]pyrimidine moiety were designed, synthesized and evaluated for their inhibition activities against phytopathogenic bacteria and fungi in vitro. All of the target compounds were fully characterized through [Formula: see text] NMR, [Formula: see text] NMR, HRMS and IR spectra. Among these compounds, the structure of compound 7e was unambiguously confirmed via single-crystal X-ray diffraction analysis. The turbidimetric assays indicated that compounds 7b, 7d, 7g, 7k and 7n exhibited much more potent inhibition activities against the pathogen Xanthomonas oryzae pv. oryzae (Xoo), relative to control Bismerthiazol. Moreover, antibacterial activities of compounds 7j, 7k and 7n against the pathogen Xanthomonas axonopodis pv. citri (Xac) were comparable to that of control Bismerthiazol. As for the pathogen Ralstonia solanacearum (Rs), only compounds 7g and 7i demonstrated inhibition activities similar to control Thiadiazole-copper. Moreover, this class of compounds did not display inhibition activity against three fungi tested. The above findings indicated that quinazolin-4-one derivatives containing the 7-oxo-1,2,4-triazolo[1,5-a]pyrimidine moiety have a potential as promising candidates for the development of new and more efficient agricultural bactericides.
Collapse
Affiliation(s)
- Huan Du
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Zhijiang Fan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Lan Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China
| | - Xiaoping Bao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, Center for Research and Development of Fine Chemicals, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
39
|
Zhao X, Lu J, Wu L, Chen X. Efficient construction of 3-substituted-quinazolin-4(3H)-ones and theoretical investigation on the reaction pathways. PHOSPHORUS SULFUR 2017. [DOI: 10.1080/10426507.2017.1322085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Xinyun Zhao
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, P. R. China
| | - Juanfeng Lu
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, P. R. China
| | - Lamei Wu
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, P. R. China
| | - Xi Chen
- College of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, P. R. China
| |
Collapse
|
40
|
Dehkhodaei M, Khorshidifard M, Amiri Rudbari H, Sahihi M, Azimi G, Habibi N, Taheri S, Bruno G, Azadbakht R. Synthesis, characterization, crystal structure and DNA, HSA-binding studies of four Schiff base complexes derived from salicylaldehyde and isopropylamine. Inorganica Chim Acta 2017. [DOI: 10.1016/j.ica.2017.05.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
41
|
Synthesis and biological evaluation of pyridinium-functionalized carbazole derivatives as promising antibacterial agents. Bioorg Med Chem Lett 2017; 27:4294-4297. [PMID: 28843708 DOI: 10.1016/j.bmcl.2017.08.040] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 08/15/2017] [Accepted: 08/17/2017] [Indexed: 11/21/2022]
Abstract
Various pyridinium-functionalized carbazole derivatives were constructed by coupling the key fragments of carbazole skeleton and pyridinium nucleus in a single molecular architecture. Antibacterial bioassays revealed that some of the title compounds displayed impressive bioactivities against plant pathogens such as Xanthomonas oryzae pv. oryzae, Ralstonia solanacearum, and Xanthomonas axonopodis pv. citri with minimal EC50 values of up to 0.4, 0.3, and 0.3mg/L, respectively. These bioactivities were achieved by systematically tuning and optimizing bridging linker, alkyl length of the tailor, and substituents on the carbazole scaffold. Compared with the bioactivity of the lead compound (AP-10), antibacterial efficacy dramatically increased by approximately 13-, 104- and 21-fold. This finding suggested that these compounds can serve as new lead compounds in research on antibacterial chemotherapy.
Collapse
|
42
|
|
43
|
Xiang W, Cheng-hao T, Guo-lan W, Jie-feng L. Novel 4(3H)-Quinazolinone Derivatives Containing an Isoxazole Moiety: Design, Synthesis, and Bioactivity Evaluation. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2939] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Wang Xiang
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine; Kaili University; Kaili 556011 China
- College of Chemistry and Materials Engineering; Kaili University; Kaili 556011 China
| | - Tang Cheng-hao
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine; Kaili University; Kaili 556011 China
- College of Chemistry and Materials Engineering; Kaili University; Kaili 556011 China
| | - Wei Guo-lan
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine; Kaili University; Kaili 556011 China
- College of Chemistry and Materials Engineering; Kaili University; Kaili 556011 China
| | - Long Jie-feng
- Qiandongnan Engineering and Technology Research Center for Comprehensive Utilization of National Medicine; Kaili University; Kaili 556011 China
- College of Chemistry and Materials Engineering; Kaili University; Kaili 556011 China
| |
Collapse
|
44
|
Wang PY, Shao WB, Xue HT, Fang HS, Zhou J, Wu ZB, Song BA, Yang S. Synthesis of novel 1,3,4-oxadiazole derivatives containing diamides as promising antibacterial and antiviral agents. RESEARCH ON CHEMICAL INTERMEDIATES 2017. [DOI: 10.1007/s11164-017-2980-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
45
|
Shokohi-Pour Z, Chiniforoshan H, Sabzalian MR, Esmaeili SA, Momtazi-Borojeni AA. Cobalt (II) complex with novel unsymmetrical tetradentate Schiff base (ON) ligand: in vitro cytotoxicity studies of complex, interaction with DNA/protein, molecular docking studies, and antibacterial activity. J Biomol Struct Dyn 2017; 36:532-549. [PMID: 28271957 DOI: 10.1080/07391102.2017.1287006] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
[C20H17N3O2] and cobalt (II) complex [Co(L2)(MeOH)2].ClO4, (L2 = 4-((E)-1-((2-(((E)-pyridin-2-ylmethylene) amino) phenyl) imino) ethyl) benzene-1, 3-diol) novel Schiff base has been synthesiszed and chracterized by Fourier transform infrared, UV-vis, 1H-NMR spectroscopy, and elemental analysis techniques. The interaction of Co(II) complex with DNA and BSA was investigated by electronic absorption spectroscopy, fluorescence spectroscopy, circular dichroism, and thermal denaturation studies. Our experiments indicate that this complex could strongly bind to CT-DNA via minor groove mechanism. In addition, fluorescence spectrometry of BSA with the complex showed that the fluorescence quenching mechanism of BSA was of static type. The complex exhibited significant in vitro cytotoxicity against three human cancer cell lines (JURKAT, SKOV3, and U87). The molecular docking experiment effectively proved the binding of complex to DNA and BSA. Finally, antibacterial assay over gram-positive and gram-negative pathogenic bacterial strains was studied.
Collapse
Affiliation(s)
- Zahra Shokohi-Pour
- a Department of Chemistry , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | - Hossein Chiniforoshan
- a Department of Chemistry , Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | - Mohammad R Sabzalian
- b Department of Agronomy and Plant Breeding , College of Agriculture, Isfahan University of Technology , Isfahan 84156-83111 , Iran
| | - Seyed-Alireza Esmaeili
- c Student Research Committee, Department of Immunology and Allergy , Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| | - Amir Abbas Momtazi-Borojeni
- d Student Research Committee, Department of Medical Biotechnology , Nanotechnology Research Center, School of Medicine, Mashhad University of Medical Sciences , Mashhad , Iran
| |
Collapse
|
46
|
Singla P, Luxami V, Paul K. Quinazolinone-benzimidazole conjugates: Synthesis, characterization, dihydrofolate reductase inhibition, DNA and protein binding properties. JOURNAL OF PHOTOCHEMISTRY AND PHOTOBIOLOGY B-BIOLOGY 2017; 168:156-164. [DOI: 10.1016/j.jphotobiol.2017.02.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Revised: 01/18/2017] [Accepted: 02/13/2017] [Indexed: 10/20/2022]
|
47
|
Wang PY, Chen L, Zhou J, Fang HS, Wu ZB, Song BA, Yang S. Synthesis and bioactivities of 1-aryl-4-hydroxy-1H-pyrrol-2(5H)-one derivatives bearing 1,3,4-oxadiazole moiety. JOURNAL OF SAUDI CHEMICAL SOCIETY 2017. [DOI: 10.1016/j.jscs.2016.10.002] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Zhang TT, Wang PY, Zhou J, Shao WB, Fang HS, Zhou X, Wu ZB. Antibacterial and Antifungal Activities of 2-(substituted ether)-5-(1-phenyl-5-(trifluoromethyl)-1H
-pyrazol-4-yl)-1,3,4-oxadiazole Derivatives. J Heterocycl Chem 2017. [DOI: 10.1002/jhet.2820] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Teng-Teng Zhang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Center for R&D of Fine Chemicals of Guizhou University; Guiyang Huaxi District 550025 China
| | - Pei-Yi Wang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Center for R&D of Fine Chemicals of Guizhou University; Guiyang Huaxi District 550025 China
| | - Jian Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Center for R&D of Fine Chemicals of Guizhou University; Guiyang Huaxi District 550025 China
| | - Wu-Bin Shao
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Center for R&D of Fine Chemicals of Guizhou University; Guiyang Huaxi District 550025 China
| | - He-Shu Fang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Center for R&D of Fine Chemicals of Guizhou University; Guiyang Huaxi District 550025 China
| | - Xiang Zhou
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Center for R&D of Fine Chemicals of Guizhou University; Guiyang Huaxi District 550025 China
| | - Zhi-Bing Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education; Center for R&D of Fine Chemicals of Guizhou University; Guiyang Huaxi District 550025 China
| |
Collapse
|
49
|
Zheng YT, Zhang TT, Wang PY, Wu ZB, Zhou L, Ye YQ, Zhou X, He M, Yang S. Synthesis and bioactivities of novel 2-(thioether/sulfone)-5-pyrazolyl-1,3,4-oxadiazole derivatives. CHINESE CHEM LETT 2017. [DOI: 10.1016/j.cclet.2016.06.055] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
50
|
Cooperative Reinforcement of Ionic Liquid and Reactive Solvent on Enzymatic Synthesis of Caffeic Acid Phenethyl Ester as an In Vitro Inhibitor of Plant Pathogenic Bacteria. Molecules 2017; 22:molecules22010072. [PMID: 28045451 PMCID: PMC6155643 DOI: 10.3390/molecules22010072] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 12/16/2016] [Accepted: 12/28/2016] [Indexed: 11/17/2022] Open
Abstract
It is widely believed that lipases in ionic liquids (ILs) possess higher enzyme activity, stability and selectivity; however, reaction equilibrium is always limited by product inhibition, and the product is difficult to separate from non-volatile ILs using distillation. To solve this problem, using trialkylphosphine oxide (TOPO) as a complexing agent, a novel biphase of reactive solvent and IL was firstly reported for caffeic acid phenethyl ester (CAPE) production from methyl caffeate (MC) and 2-phenylethanol (PE) catalyzed by lipase via transesterification. The effects of the reaction parameters and their action mechanism were investigated, and the inhibition of CAPE against bacterial wilt pathogen Ralstonia solanacearum was firstly measured. The MC conversion of 98.83% ± 0.76% and CAPE yield of 96.29% ± 0.07% were obtained by response surface methodology in the 25 g/L TOPO-cyclohexane/[Bmim][Tf2N] (1:1, v/v); the complex stoichiometry calculation and FTIR spectrum confirmed that the reversible hydrogen-bond complexation between TOPO and caffeates significantly enhances the cooperative effect of two phases on the lipase-catalyzed reaction. The temperature was reduced by 14 °C; the MC concentration increased by 3.33-fold; the ratio of catalyst to donor decreased by 4.5-fold; and Km decreased 1.08-fold. The EC50 of CAPE against R. solanacearum was 0.17–0.75 mg/mL, suggesting that CAPE is a potential in vitro inhibitor of plant pathogenic bacteria.
Collapse
|