1
|
Salin AV, Shabanov AA, Khayarov KR, Islamov DR, Voloshina AD, Amerhanova SK, Lyubina AP. Phosphine-Catalyzed Synthesis and Cytotoxic Evaluation of Michael Adducts of the Sesquiterpene Lactone Arglabin. ChemMedChem 2024; 19:e202400045. [PMID: 38516805 DOI: 10.1002/cmdc.202400045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 02/15/2024] [Accepted: 03/21/2024] [Indexed: 03/23/2024]
Abstract
A general method for chemo- and diastereoselective modification of anticancer natural product arglabin with nitrogen- and carbon-centered pronucleophiles under the influence of nucleophilic phosphine catalysts was developed. The locked s-cis-geometry of α-methylene-γ-butyrolactone moiety of arglabin favors for the additional stabilization of the zwitterionic intermediate by electrostatic interaction between phosphonium and enolate oxygen centers, leading to the unprecedentedly high efficiency of the phosphine-catalyzed Michael additions to this sesquiterpene lactone. Using n-Bu3P as the catalyst, pyrazole, phthalimide, 2-oxazolidinone, 4-quinazolinone, uracil, thymine, cytosine, and adenine adducts of arglabin were obtained. The n-Bu3P-catalyzed reaction of arglabin with active methylene compounds resulted in the predominant formation of bisadducts bearing a new quaternary carbon center. All synthesized Michael adducts and previously obtained phosphorylated arglabin derivatives were evaluated in vitro against eleven cancer and two normal cell lines, and the results were compared to those of natural arglabin and its dimethylamino hydrochloride salt currently used as anticancer drugs. 2-Oxazolidinone, uracil, diethyl malonate, dibenzyl phosphonate, and diethyl cyanomethylphosphonate derivatives of arglabin exhibited more potent antiproliferative activity towards several cancer cell lines and lower cytotoxicity towards normal cell lines in comparison to the reference compounds, indicating the feasibility of the developed methodology for the design of novel anticancer drugs with better therapeutic potential.
Collapse
Affiliation(s)
- Alexey V Salin
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya Street, 18, Kazan, 420008, Russian Federation
| | - Andrey A Shabanov
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya Street, 18, Kazan, 420008, Russian Federation
| | - Khasan R Khayarov
- A.M. Butlerov Institute of Chemistry, Kazan Federal University, Kremlevskaya Street, 18, Kazan, 420008, Russian Federation
| | - Daut R Islamov
- Laboratory for structural analysis of biomacromolecules, Kazan Scientific Center of Russian Academy of Science, Kremlevskaya Street, 31, Kazan, 420008, Russian Federation
| | - Alexandra D Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Syumbelya K Amerhanova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| | - Anna P Lyubina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of Russian Academy of Sciences, Arbuzov Street, 8, Kazan, 420088, Russian Federation
| |
Collapse
|
2
|
Ampomah-Wireko M, Chen S, Li R, Gao C, Wang M, Qu Y, Kong H, Nininahazwe L, Zhang E. Recent advances in the exploration of oxazolidinone scaffolds from compound development to antibacterial agents and other bioactivities. Eur J Med Chem 2024; 269:116326. [PMID: 38513340 DOI: 10.1016/j.ejmech.2024.116326] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 02/26/2024] [Accepted: 03/10/2024] [Indexed: 03/23/2024]
Abstract
Bacterial infections cause a variety of life-threatening diseases, and the continuous evolution of drug-resistant bacteria poses an increasing threat to current antimicrobial regimens. Gram-positive bacteria (GPB) have a wide range of genetic capabilities that allow them to adapt to and develop resistance to practically all existing antibiotics. Oxazolidinones, a class of potent bacterial protein synthesis inhibitors with a unique mechanism of action involving inhibition of bacterial ribosomal translation, has emerged as the antibiotics of choice for the treatment of drug-resistant GPB infections. In this review, we discussed the oxazolidinone antibiotics that are currently on the market and in clinical development, as well as an updated synopsis of current advances on their analogues, with an emphasis on innovative strategies for structural optimization of linezolid, structure-activity relationship (SAR), and safety properties. We also discussed recent efforts aimed at extending the activity of oxazolidinones to gram-negative bacteria (GNB), antitumor, and coagulation factor Xa. Oxazolidinone antibiotics can accumulate in GNB by a conjugation to siderophore-mediated β-lactamase-triggered release, making them effective against GNB.
Collapse
Affiliation(s)
- Maxwell Ampomah-Wireko
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Shengcong Chen
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ruirui Li
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Chen Gao
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Meng Wang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Ye Qu
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Hongtao Kong
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - Lauraine Nininahazwe
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China
| | - En Zhang
- School of Pharmaceutical Sciences, Key Laboratory of Advanced Pharmaceutical Technology, Ministry of Education of China, Zhengzhou University, Zhengzhou 450001, PR China; Pingyuan Laboratory (Zhengzhou University), PR China.
| |
Collapse
|
3
|
Jendoubi A, Arfaoui Y, Palaudoux J, Al-Mogren MM, Hochlaf M. DFT mechanistic study of the chemical fixation of CO 2 by aziridine derivatives. J Comput Chem 2024; 45:563-573. [PMID: 38031324 DOI: 10.1002/jcc.27270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/26/2023] [Accepted: 11/10/2023] [Indexed: 12/01/2023]
Abstract
Using density functional theory (DFT), we treat the reaction of coupling of CO2 with aziridine in gas phase, in the presence of water and of a green catalyst (NaBr). Computations show that, in gas phase, this ring-opening conversions to oxazolidinones initiates by coordinating a CO2 molecule to the nitrogen atom of the aziridine. Then, a nucleophilic interaction between one oxygen atom of the coordinated CO2 and the carbon atom of the aziridine occurs. For methyl substituted aziridine, two pathways are proposed leading either to 4-oxazolidinone or to 5-oxazolidinone. Besides, we show that the activation energy of this reaction reduces in aqueous solution, in the presence of a water molecule explicitly or NaBr catalyst. In addition, the corresponding reaction mechanisms and regioselectivity associated with this ring-opening conversions to oxazolidinones, in the presence of carbon dioxide are found to be influenced by solvent and catalyst. The present findings should allow better designing regioisomer oxazolidinones relevant for organic chemistry, medicinal and pharmacological applications.
Collapse
Affiliation(s)
- Abir Jendoubi
- Laboratoire Applications, Caractérisations et Modélisation de Matériaux (LR18ES08), Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
- Université Gustave Eiffel, COSYS/IMSE, Champs Sur Marne, France
| | - Youssef Arfaoui
- Laboratoire Applications, Caractérisations et Modélisation de Matériaux (LR18ES08), Faculté des Sciences de Tunis, Université de Tunis El Manar, Tunis, Tunisia
| | | | | | - Majdi Hochlaf
- Université Gustave Eiffel, COSYS/IMSE, Champs Sur Marne, France
| |
Collapse
|
4
|
Wu Y, Huang L, Ma X, Zhou X, Li Q, Li F. Design, synthesis, and antiproliferative evaluation of novel dehydroabietic acid-1,2,3-triazole-oxazolidinone hybrids. RSC Med Chem 2024; 15:561-571. [PMID: 38389893 PMCID: PMC10880940 DOI: 10.1039/d3md00550j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 11/28/2023] [Indexed: 02/24/2024] Open
Abstract
A series of novel dehydroabietic acid derivatives containing both 1,2,3-triazole and oxazolidinone 4a-4t have been synthesized and their antiproliferative activity in vitro against HeLa, HepG2, MGC-803 and T-24 cell lines evaluated. Most of them displayed cell proliferation inhibition on four tested human malignant tumour cell lines to some degree. Among them, compound 4p exhibited promising cytotoxicity with IC50 values ranging from 3.18 to 25.31 μM and weak cytotoxicity toward normal cells. The mechanism of action of 4p was then studied using flow cytometry, Hoechst 33258 staining, ROS generation assay, and JC-1 mitochondrial membrane potential staining, which illustrated that compound 4p induced apoptosis, arrested mitotic process at the G1 phase of the cell cycle, reduced the mitochondrial membrane potential, and increased intracellular ROS levels. In summary, the introduction of an oxazolidinone group via a "1,2,3-triazole" linker significantly improved the antitumor activity of dehydroabietic acid, and deserves to be further investigated.
Collapse
Affiliation(s)
- Yaju Wu
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Lin Huang
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Xianli Ma
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Xiaoqun Zhou
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Qian Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| | - Fangyao Li
- Guangxi Key Laboratory of Drug Discovery and Optimization, Guangxi Engineering Research Center for Pharmaceutical Molecular Screening and Druggability Evaluation, School of Pharmacy, Guilin Medical University Guilin 541199 PR China +86 773 229 5179
| |
Collapse
|
5
|
Cheng ZY, Tang Z, Ma ZJ, Wang JH. Two new p-methoxyphenyl-type derivatives from a saline-lake derived Streptomyces sp. XZB32. Nat Prod Res 2024; 38:402-407. [PMID: 36125395 DOI: 10.1080/14786419.2022.2124986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 09/07/2022] [Indexed: 10/14/2022]
Abstract
Two new p-methoxyphenyl-type derivatives cytchloramol (1) and cytoxazinanone (2), along with six known compounds (3-8) were identified from the chemical investigations of a saline lake actinomycete, Streptomyces sp. XZB32. The structures of the new compounds were elucidated by extensive NMR spectroscopic analysis, HRESIMS data, GIAO (gauge-including atomic orbitals) NMR, specific optical rotation (SOR) and electronic circular dichroism (ECD) calculations. Cytotoxicity evaluation of the two new compounds showed that compound 1 exhibited significant activity against HCT-116 and MDA-MB-231 human cancer cell line with IC50 values of 2.7 ± 0.07 µM and 1.54 ± 0.14 µM, respectively.
Collapse
Affiliation(s)
- Zi-Yang Cheng
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, People's Republic of China
| | - Zhen Tang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, People's Republic of China
| | - Zhong-Jun Ma
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, People's Republic of China
| | - Jin-Hui Wang
- Institute of Marine Biology and Pharmacology, Ocean College, Zhejiang University, Zhoushan, People's Republic of China
| |
Collapse
|
6
|
Fernandes GFS, Scarim CB, Kim SH, Wu J, Castagnolo D. Oxazolidinones as versatile scaffolds in medicinal chemistry. RSC Med Chem 2023; 14:823-847. [PMID: 37252095 PMCID: PMC10211318 DOI: 10.1039/d2md00415a] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 02/06/2023] [Indexed: 11/19/2023] Open
Abstract
Oxazolidinone is a five-member heterocyclic ring with several biological applications in medicinal chemistry. Among the three possible isomers, 2-oxazolidinone is the most investigated in drug discovery. Linezolid was pioneered as the first approved drug containing an oxazolidinone ring as the pharmacophore group. Numerous analogues have been developed since its arrival on the market in 2000. Some have succeeded in reaching the advanced stages of clinical studies. However, most oxazolidinone derivatives reported in recent decades have not reached the initial stages of drug development, despite their promising pharmacological applications in a variety of therapeutic areas, including antibacterial, antituberculosis, anticancer, anti-inflammatory, neurologic, and metabolic diseases, among other areas. Therefore, this review article aims to compile the efforts of medicinal chemists who have explored this scaffold over the past decades and highlight the potential of the class for medicinal chemistry.
Collapse
Affiliation(s)
| | - Cauê Benito Scarim
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, São Paulo State University Araraquara 14800903 Brazil
| | - Seong-Heun Kim
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
- School of Cancer and Pharmaceutical Sciences, King's College London 150 Stamford Street SE1 9NH London UK
| | - Jingyue Wu
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| | - Daniele Castagnolo
- Department of Chemistry, University College London 20 Gordon Street WC1H 0AJ London UK
| |
Collapse
|
7
|
Wang X, Jin B, Han Y, Wang T, Sheng Z, Tao Y, Yang H. Optimization and Antibacterial Evaluation of Novel 3-(5-Fluoropyridine-3-yl)-2-oxazolidinone Derivatives Containing a Pyrimidine Substituted Piperazine. Molecules 2023; 28:molecules28114267. [PMID: 37298744 DOI: 10.3390/molecules28114267] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/09/2023] [Accepted: 05/16/2023] [Indexed: 06/12/2023] Open
Abstract
In this study, a series of novel 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives were designed and synthesized based on compounds previously reported, and their antibacterial activity was investigated. Then their antibacterial activity was investigated for the first time. Preliminary screening results showed that all these compounds exhibited antibacterial activity against gram-positive bacteria, including 7 drug-sensitive strains and 4 drug-resistant strains, among which compound 7j exhibited an 8-fold stronger inhibitory effect than linezolid, with a minimum inhibitory concentration (MIC) value of 0.25 µg/mL. Further molecular docking studies predicted the possible binding mode between active compound 7j and the target. Interestingly, these compounds could not only hamper the formation of biofilms, but also have better safety, as confirmed by cytotoxicity experiments. All these results indicate that these 3-(5-fluoropyridine-3-yl)-2-oxazolidinone derivatives have the potential to be developed into novel candidates for the treatment of gram-positive bacterial infections.
Collapse
Affiliation(s)
- Xin Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Bo Jin
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Yutong Han
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Tong Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
| | - Zunlai Sheng
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Ye Tao
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| | - Hongliang Yang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin 150030, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin 150030, China
| |
Collapse
|
8
|
Fujii S. Antimicrobial Stewardship Initiatives and Studies by the Hospital Pharmacist: Study of Linezolid-associated Thrombocytopenia. YAKUGAKU ZASSHI 2022; 142:1307-1312. [DOI: 10.1248/yakushi.22-00117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Affiliation(s)
- Satoshi Fujii
- Department of Hospital Pharmacy, Sapporo Medical University Hospital
| |
Collapse
|
9
|
Jin B, Wang T, Chen JY, Liu XQ, Zhang YX, Zhang XY, Sheng ZL, Yang HL. Synthesis and Biological Evaluation of 3-(Pyridine-3-yl)-2-Oxazolidinone Derivatives as Antibacterial Agents. Front Chem 2022; 10:949813. [PMID: 35923260 PMCID: PMC9339906 DOI: 10.3389/fchem.2022.949813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Accepted: 06/13/2022] [Indexed: 11/16/2022] Open
Abstract
In this research, a series of 3-(pyridine-3-yl)-2-oxazolidinone derivatives was designed, synthesized, and evaluated for in vitro antibacterial activity, which included bacteriostatic, morphological, kinetic studies, and molecular docking. The results demonstrated that compounds 21b, 21d, 21e and 21f exhibited strong antibacterial activity similar to that of linezolid toward five Gram-positive bacteria. After observing the effect of the drug on the morphology and growth dynamics of the bacteria, the possible modes of action were predicted by molecular docking. Furthermore, the antibiofilm activity and the potential drug resistance assay was proceeded. These compounds exhibited universal antibiofilm activity and compound 21d showed significant concentration-dependent inhibition of biofilm formation. Compound 21d also showed a stable effect on S. pneumoniae (ATCC 49619) with less drug resistance growth for 15 days, which is much longer than that of linezolid. Overall, these results can be used to guide further exploration of novel antimicrobial agents.
Collapse
Affiliation(s)
- Bo Jin
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Tong Wang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Jia-yi Chen
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiao-qing Liu
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Yi-xin Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Xiu-ying Zhang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
| | - Zun-lai Sheng
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
| | - Hong-Liang Yang
- Department of Veterinary Medicine, Northeast Agricultural University, Harbin, China
- Heilongjiang Key Laboratory for Animal Disease Control and Pharmaceutical Development, Harbin, China
- *Correspondence: Hong-Liang Yang,
| |
Collapse
|
10
|
Zhou X, Wan N, Li Y, Ma R, Cui B, Han W, Chen Y. Stereoselective Synthesis of Enantiopure Oxazolidinones via Biocatalytic Asymmetric Aminohydroxylation of Alkenes. Adv Synth Catal 2021. [DOI: 10.1002/adsc.202100468] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Xiao‐Ying Zhou
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Nan‐Wei Wan
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Ying‐Na Li
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Ran Ma
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Bao‐Dong Cui
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Wen‐Yong Han
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| | - Yong‐Zheng Chen
- Key Laboratory of Biocatalysis & Chiral Drug Synthesis of Guizhou Province Generic Drug Research Center of Guizhou Province Green Pharmaceuticals Engineering Research Center of Guizhou Province School of Pharmacy Zunyi Medical University 563000 Zunyi People's Republic of China
- Key Laboratory of Basic Pharmacology of Ministry of Education and Joint International Research Laboratory of Ethnomedicine of Ministry of Education Zunyi Medical University 563000 Zunyi People's Republic of China
| |
Collapse
|
11
|
Miranda IL, Dos Santos PHC, Kohlhoff M, Purgato GA, Diaz MAN, Diaz-Muñoz G. Stereoselective synthesis of (-)-cytoxazone and its unnatural congener (+)-5-epi-cytoxazone. Chirality 2021; 33:479-489. [PMID: 34213029 DOI: 10.1002/chir.23334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 05/11/2021] [Accepted: 05/28/2021] [Indexed: 11/09/2022]
Abstract
An interesting protocol for stereoselective synthesis of (-)-cytoxazone and its unnatural stereoisomer (+)-5-epi-cytoxazone from d-4-hydroxyphenylglycine in overall yields of 10% and 16%, respectively, is described. The stereoselective addition of cyanide to an N-Boc protected aminoaldehyde (tert-butyl ((R)-1-(4-methoxyphenyl)-2-oxoethyl)carbamate) (5) constitutes the key step in this approach, producing a mixture of cyanohydrins 6a and b (1,2-anti and 1,2-syn tert-butyl (2-cyano-2-hydroxy-1-(4-methoxyphenyl)ethyl)carbamate) in 89% yield, with reasonable stereoselectivity (1.0:1.8) in favor of the anti-Felkin product (1,2-syn). A one-pot sequence of three successive steps from this mixture produced the oxazolidinone isomers 9a and b ((4R,5R)- and (4R,5S)-4-(4-methoxyphenyl)-2-oxooxazolidine-5-carboxylate). Chromatographic column separation and reduction of the ester function of both precursors led to (-)-cytoxazone and (+)-5-epi-cytoxazone.
Collapse
Affiliation(s)
- Izabel Luzia Miranda
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | | | - Markus Kohlhoff
- Chemistry of Bioactive Natural Products, René Rachou Institute, Oswaldo Cruz Foundation (Fiocruz), Belo Horizonte, Minas Gerais, Brazil
| | - Gislaine Aparecida Purgato
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Marisa Alves Nogueira Diaz
- Department of Biochemistry and Molecular Biology, Federal University of Viçosa, Viçosa, Minas Gerais, Brazil
| | - Gaspar Diaz-Muñoz
- Department of Chemistry, Federal University of Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| |
Collapse
|
12
|
Santos RVC, Cunha EGC, de Mello GSV, Rizzo JÂ, de Oliveira JF, do Carmo Alves de Lima M, da Rocha Pitta I, da Rocha Pitta MG, de Melo Rêgo MJB. New Oxazolidines Inhibit the Secretion of IFN-γ and IL-17 by PBMCS from Moderate to Severe Asthmatic Patients. Med Chem 2021; 17:289-297. [PMID: 32914717 DOI: 10.2174/1573406416666200910151950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 07/01/2020] [Accepted: 07/20/2020] [Indexed: 11/22/2022]
Abstract
BACKGROUND Moderate to severe asthma could be induced by diverse proinflammatory cytokines, as IL-17 and IFN-γ, which are also related to treatment resistance and airway hyperresponsiveness. Oxazolidines emerged as a novel approach for asthma treatment, since some chemical peculiarities were suggested by previous studies. OBJECTIVE The present study aimed to evaluate the IL-17A and IFN-γ modulatory effect of two new oxazolidine derivatives (LPSF/NB-12 and -13) on mononucleated cells of patients with moderate and severe asthma. METHODS The study first looked at potential targets for oxazolidine derivatives using SWISS-ADME. After the synthesis of the compounds, cytotoxicity and cytokine levels were analyzed. RESULTS We demonstrated that LPSF/NB-12 and -13 reduced IFN-γ and IL-17 production in peripheral blood mononucleated cells from asthmatic patients in a concentrated manner. Our in silico analysis showed the neurokinin-1 receptor as a common target for both compounds, which is responsible for diverse proinflammatory effects of moderate and severe asthma. CONCLUSION The work demonstrated a novel approach against asthma, which deserves further studies of its mechanisms of action.
Collapse
Affiliation(s)
- Renata Virgínia Cavalcanti Santos
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Eudes Gustavo Constantino Cunha
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Gabriela Souto Vieira de Mello
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - José Ângelo Rizzo
- Servico de Pneumologia, Hospital das Clinicas, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Jamerson Ferreira de Oliveira
- Laboratorio de Quimica e Inovacao Terapeutica (LQIT), Departamento de Antibioticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maria do Carmo Alves de Lima
- Laboratorio de Quimica e Inovacao Terapeutica (LQIT), Departamento de Antibioticos, Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Ivan da Rocha Pitta
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Maira Galdino da Rocha Pitta
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| | - Moacyr Jesus Barreto de Melo Rêgo
- Laboratorio de Imunomodulacao e Novas Abordagens Terapeuticas (LINAT), Nucleo de Pesquisa em Inovacao Terapeutica Suely Galdino (NUPIT-SG), Universidade Federal de Pernambuco, Recife, PE, Brazil
| |
Collapse
|
13
|
Pilania RK, Arora A, Agarwal A, Jindal AK, Aggarwal K, Krishnan G, Suri D, Gupta A, Singh S, Gupta V. LINEZOLID-INDUCED MITOCHONDRIAL TOXICITY PRESENTING AS RETINAL NERVE FIBER LAYER MICROCYSTS AND OPTIC AND PERIPHERAL NEUROPATHY IN A PATIENT WITH CHRONIC GRANULOMATOUS DISEASE. Retin Cases Brief Rep 2021; 15:224-229. [PMID: 30048406 DOI: 10.1097/icb.0000000000000777] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
PURPOSE To report a case with unique changes in the retinal nerve fiber layer observed on optical coherence tomography in a 22-year-old patient on chronic linezolid therapy for recurrent pyogenic liver abscesses with underlying chronic granulomatous disease. METHODS History and clinical examination, laboratory evaluation, fluorescein angiography, and optical coherence tomography. RESULTS The patient presented with best-corrected visual acuity of 20/200 in the right eye and 20/125 in the left eye. He had moderate optic disk edema and superotemporal field defects bilaterally. Swept-source optical coherence tomography revealed the presence of retinal nerve fiber layer microcystic spaces. Laboratory tests showed no positive findings except for an elevated lactic acid level. Linezolid-induced optic neuropathy was suspected, and the drug was discontinued. Six weeks after termination of oral linezolid therapy, the optic disk edema and the microcystic spaces in the retinal nerve fiber layer resolved, and the best-corrected visual acuity improved to 20/50 in the right and 20/40 in the left eye, respectively. CONCLUSION Linezolid is a widely used antibiotic with broad-spectrum action. However, chronic use can lead to mitochondrial toxicity that may have protean manifestations. Ocular examination, particularly of the optic nerve and nerve fiber layer using multimodal imaging, is critical in diagnosing such toxicity.
Collapse
Affiliation(s)
- Rakesh K Pilania
- Department of Pediatrics, Division of Allergy and Immunology, Post Graduate Institute of Medical Education and Research, Chandigarh, India; and
| | - Atul Arora
- Department of Ophthalmology, Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Aniruddha Agarwal
- Department of Ophthalmology, Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ankur K Jindal
- Department of Ophthalmology, Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Kanika Aggarwal
- Department of Ophthalmology, Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Gopala Krishnan
- Department of Pediatrics, Division of Allergy and Immunology, Post Graduate Institute of Medical Education and Research, Chandigarh, India; and
| | - Deepti Suri
- Department of Pediatrics, Division of Allergy and Immunology, Post Graduate Institute of Medical Education and Research, Chandigarh, India; and
| | - Anju Gupta
- Department of Pediatrics, Division of Allergy and Immunology, Post Graduate Institute of Medical Education and Research, Chandigarh, India; and
| | - Surjit Singh
- Department of Pediatrics, Division of Allergy and Immunology, Post Graduate Institute of Medical Education and Research, Chandigarh, India; and
| | - Vishali Gupta
- Department of Ophthalmology, Advanced Eye Centre, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
14
|
Choi H, Jang H, Choi J, Lee K. Stereoselective Synthesis of Oxazolidin-2-Ones via an Asymmetric Aldol/Curtius Reaction: Concise Total Synthesis of (-)-Cytoxazone. Molecules 2021; 26:molecules26030597. [PMID: 33498713 PMCID: PMC7865922 DOI: 10.3390/molecules26030597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 01/20/2021] [Accepted: 01/21/2021] [Indexed: 11/23/2022] Open
Abstract
Herein, we are reporting an efficient approach toward the synthesis of 4,5-disubstituted oxazolidin-2-one scaffolds. The developed approach is based on a combination of an asymmetric aldol and a modified Curtius protocol, which uses an effective intramolecular ring closure to rapidly access a range of oxazolidin-2-one building blocks. This strategy also permits a straightforward and concise asymmetric total synthesis of (−)-cytoxazone. Consisting of three steps, this is one of the shortest syntheses reported to date. Ultimately, this convenient platform would provide a promising method for the early phases of drug discovery.
Collapse
Affiliation(s)
| | | | | | - Kiyoun Lee
- Correspondence: ; Tel.: +82-2-2164-5528; Fax: +82-2-2164-4764
| |
Collapse
|
15
|
Investigation of a new oxazolidine derivative in human resistance acute leukemia cells: deciphering its mechanism of action by label-free proteomic. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:1153-1166. [PMID: 33475759 DOI: 10.1007/s00210-020-02024-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2019] [Accepted: 11/10/2020] [Indexed: 10/22/2022]
Abstract
The present study aimed to evaluate the mechanism of action of the antineoplastic activity of an oxazolidine derivative, LPSF/NB-3 (5-(4-cloro-benzilideno)-3-etil-2-tioxo-oxazolidin-4-ona). Cytotoxicity assays were performed in peripheral blood mononuclear cells (PBMCs) and resistant acute leukemia cell line (HL-60/MX1) by the MTT method. LPSF/NB-3 exhibited cytotoxicity in HL-60/MX1, but it was not toxic to healthy cells in the highest dose tested (100 μM). The protein extract of HL-60/MX1 cells treated with LPSF/NB-3 was subjected to proteomic analysis using two-dimensional chromatography coupled to mass spectrometry. We could identify a total of 2652 proteins, in which 633 were statistically modulated. Within the group of protein considered for the quantitative analysis with the established criteria, 262 were differentially expressed, 146 with increased expression and 116 with decreased expression in the sample treated with LPSF/NB-3 compared to the control. The following differentially expressed pathways were found: involving regulation of the cytoskeleton, DNA damage, and transduce cellular signals. Networks that were highlighted are related to the immune system. The ELISA technique was used to assess the immunomodulatory potential of LPSF/NB-3 in PBMCs. We observed significant decrease of IFNγ (p < 0.01) and dose-response pattern of the cytokines IL-6, IL-17A, IL-22, and IL-10. Therefore, results suggest that LPSF/NB-3 appears to modulate important pathways, including cell cycle and immune system regulatory pathways.
Collapse
|
16
|
Borgohain H, Talukdar K, Sarma B, Das SK. Regioselectivity of the trifluoroethanol-promoted intramolecular N-Boc-epoxide cyclization towards 1,3-oxazolidin-2-ones and 1,3-oxazinan-2-ones. Org Biomol Chem 2020; 18:7401-7413. [PMID: 32935716 DOI: 10.1039/d0ob01698e] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The intramolecular N-Boc-epoxide cyclization leading to the formation of 1,3-oxazolidin-2-one and 1,3-oxazinan-2-one derivatives has scarcely been reported in the literature. More specifically, the intramolecular cyclization of N-Boc aniline-tethered 2,3-disubstitued epoxides has never been disclosed. Herein, we demonstrate that this reaction could proceed in a diastereoselective fashion in refluxing trifluoroethanol, in the absence of any external promoter or catalyst. Substrates bearing an alkyl group at the C-3 position furnished 1,3-oxazolidin-2-ones in a completely regioselective fashion via 5-exo epoxide ring-opening cyclization, thereby paving the way to synthesize alkyl side chain-bearing analogs of the antidepressant drug toloxatone. On the other hand, replacing the alkyl group with an aryl group resulted in easily separable mixtures of 1,3-oxazolidin-2-ones and 1,3-oxazinan-2-ones, the former being obtained as the major products. Remarkably, a tetralin-bearing substrate underwent fully regioselective 6-endo ring closure to form the corresponding 1,3-oxazinan-2-one. Our present study on the intramolecular ring opening-cyclization of epoxides with a tethered N-Boc group is the most comprehensive to date and features broad substrate scope, mild transition metal-free conditions, excellent functional group tolerance, and scalability.
Collapse
Affiliation(s)
- Hemi Borgohain
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
| | - Kangkan Talukdar
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
| | - Bipul Sarma
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
| | - Sajal Kumar Das
- Department of Chemical Sciences, Tezpur University, Napaam, Tezpur, Assam 784028, India.
| |
Collapse
|
17
|
You J, Dong R, Ying M, He Q, Cao J, Yang B. Cellular Senescence and Anti-Cancer Therapy. Curr Drug Targets 2020; 20:705-715. [PMID: 30556499 DOI: 10.2174/1389450120666181217100833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 11/27/2018] [Accepted: 12/05/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND Cellular senescence is generally understood as a permanent cell cycle arrest stemming from different causes. The mechanism of cellular senescence-induced cell cycle arrest is complex, involving interactions between telomere shortening, inflammations and cellular stresses. In recent years, a growing number of studies have revealed that cellular senescence could mediate the cancer progression of neighboring cells, but this idea is controversial and contradictory evidence argues that cellular senescence also contributes to tumor suppression. OBJECTIVE Given that the complicated role of senescence in various physiological and pathological scenarios, we try to clarify the precise contribution role of cellular senescence to tumor progression. METHODS Search for the information in a large array of relevant articles to support our opinion. RESULTS We discuss the relatively widespread occurrence of cellular senescence in cancer treatment and identify the positive and negative side of senescence contributed to tumor progression. CONCLUSION We argue that the availability of pro-senescence therapy could represent as a promising regimen for managing cancer disease, particularly with regard to the poor clinical outcome obtained with other anticancer therapies.
Collapse
Affiliation(s)
- Jieqiong You
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Rong Dong
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Meidan Ying
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Qiaojun He
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Ji Cao
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| | - Bo Yang
- Zhejiang Province Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, 310058, China
| |
Collapse
|
18
|
Armentano B, Curcio R, Brindisi M, Mancuso R, Rago V, Ziccarelli I, Frattaruolo L, Fiorillo M, Dolce V, Gabriele B, Cappello AR. 5-(Carbamoylmethylene)-oxazolidin-2-ones as a Promising Class of Heterocycles Inducing Apoptosis Triggered by Increased ROS Levels and Mitochondrial Dysfunction in Breast and Cervical Cancer. Biomedicines 2020; 8:biomedicines8020035. [PMID: 32085547 PMCID: PMC7168333 DOI: 10.3390/biomedicines8020035] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 02/14/2020] [Accepted: 02/16/2020] [Indexed: 12/15/2022] Open
Abstract
Oxazolidinones are antibiotics that inhibit protein synthesis by binding the 50S ribosomal subunit. Recently, numerous worldwide researches focused on their properties and possible involvement in cancer therapy have been conducted. Here, we evaluated in vitro the antiproliferative activity of some 5-(carbamoylmethylene)-oxazolidin-2-ones on MCF-7 and HeLa cells. The tested compounds displayed a wide range of cytotoxicity on these cancer cell lines, measured by MTT assay, exhibiting no cytotoxicity on non-tumorigenic MCF-10A cells. Among the nine tested derivatives, four displayed a good anticancer potential. Remarkably, OI compound showed IC50 values of 17.66 and 31.10 µM for MCF-7 and HeLa cancer cells, respectively. Furthermore, we assessed OI effect on the cell cycle by FACS analysis, highlighting a G1 phase arrest after 72 h, supported by a low expression level of Cyclin D1 protein. Moreover, mitochondrial membrane potential was reduced after OI treatment driven by high levels of ROS. These findings demonstrate that OI treatment can inhibit MCF-7 and HeLa cell proliferation and induce apoptosis by caspase-9 activation and cytochrome c release in the cytosol. Hence, 5-(carbamoylmethylene)-oxazolidin-2-ones have a promising anticancer activity, in particular, OI derivative could represent a good candidate for in vivo further studies and potential clinical use.
Collapse
Affiliation(s)
- Biagio Armentano
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
| | - Rosita Curcio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
| | - Matteo Brindisi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
| | - Raffaella Mancuso
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy; (R.M.); (I.Z.); (B.G.)
| | - Vittoria Rago
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
| | - Ida Ziccarelli
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy; (R.M.); (I.Z.); (B.G.)
| | - Luca Frattaruolo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
- Correspondence: (L.F.); (M.F.); (A.R.C.)
| | - Marco Fiorillo
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
- Translational Medicine, School of Environment and Life Sciences, Biomedical Research Centre (BRC), University of Salford, Greater Manchester M5 4WT, UK
- Correspondence: (L.F.); (M.F.); (A.R.C.)
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
| | - Bartolo Gabriele
- Laboratory of Industrial and Synthetic Organic Chemistry (LISOC), Department of Chemistry and Chemical Technologies, University of Calabria, Via Pietro Bucci 12/C, 87036 Arcavacata di Rende (CS), Italy; (R.M.); (I.Z.); (B.G.)
| | - Anna Rita Cappello
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, Via P. Bucci, 87036 Rende (CS), Italy; (B.A.); (R.C.); (M.B.); (V.R.); (V.D.)
- Correspondence: (L.F.); (M.F.); (A.R.C.)
| |
Collapse
|
19
|
Chiacchio MA, Lanza G, Chiacchio U, Giofrè SV, Romeo R, Iannazzo D, Legnani L. Oxazole-Based Compounds As Anticancer Agents. Curr Med Chem 2020; 26:7337-7371. [PMID: 30501590 DOI: 10.2174/0929867326666181203130402] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Revised: 10/22/2018] [Accepted: 11/15/2018] [Indexed: 11/22/2022]
Abstract
Heterocyclic compounds represent a significant target for anti-cancer research and drug discovery, due to their structural and chemical diversity. Oxazoles, with oxygen and nitrogen atoms present in the core structure, enable various types of interactions with different enzymes and receptors, favoring the discovery of new drugs. Aim of this review is to describe the most recent reports on the use of oxazole-based compounds in anticancer research, with reference to the newly discovered iso/oxazole-based drugs, to their synthesis and to the evaluation of the most biologically active derivatives. The corresponding dehydrogenated derivatives, i.e. iso/oxazolines and iso/oxazolidines, are also reported.
Collapse
Affiliation(s)
- Maria A Chiacchio
- Dipartimento di Scienze del Farmaco, University of Catania, V.le Doria 6, 95125 Catania, Italy
| | - Giuseppe Lanza
- Dipartimento di Scienze del Farmaco, University of Catania, V.le Doria 6, 95125 Catania, Italy
| | - Ugo Chiacchio
- Dipartimento di Scienze del Farmaco, University of Catania, V.le Doria 6, 95125 Catania, Italy
| | - Salvatore V Giofrè
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, University of Messina, Via S.S. Annunziata, 98168 Messina, Italy
| | - Roberto Romeo
- Dipartimento di Scienze Chimiche, Biologiche, Farmaceutiche e Ambientali, University of Messina, Via S.S. Annunziata, 98168 Messina, Italy
| | - Daniela Iannazzo
- Dipartimento di Ingegneria, University of Messina, Contrada Di Dio, 98166 Messina, Italy
| | - Laura Legnani
- Dipartimento di Scienze del Farmaco, University of Catania, V.le Doria 6, 95125 Catania, Italy.,Dipartimento di Chimica, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy
| |
Collapse
|
20
|
Jednačak T, Majerić Elenkov M, Hrenar T, Sović K, Parlov Vuković J, Novak P. Solution and solid state studies of hydrogen bonding in substituted oxazolidinones by spectroscopic and quantum chemical methods. NEW J CHEM 2020. [DOI: 10.1039/c9nj06349h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Bioactive oxazolidinones formed dimers in chloroform and solid state; in more polar solvents, hydrogen bonds with solvent molecules were observed.
Collapse
Affiliation(s)
- Tomislav Jednačak
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- Croatia
| | | | - Tomica Hrenar
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- Croatia
| | - Karlo Sović
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- Croatia
| | | | - Predrag Novak
- Department of Chemistry
- Faculty of Science
- University of Zagreb
- Croatia
| |
Collapse
|
21
|
Nishtala VB, Gandamalla D, Yellu NR, Basavoju S. Synthesis of spirooxindoles promoted by the deep eutectic solvent, ZnCl 2+urea via the pseudo four-component reaction: anticancer, antioxidant, and molecular docking studies. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1639193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | - Durgaiah Gandamalla
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences, Kakatiya University, Warangal, India
| | - Narsimha Reddy Yellu
- Department of Pharmacology and Toxicology, Pharmaceutical Sciences, Kakatiya University, Warangal, India
| | - Srinivas Basavoju
- Department of Chemistry, National Institute of Technology Warangal, Warangal, India
| |
Collapse
|
22
|
Ziane S, Mazari MM, Safer AM, Sad El Hachemi Amar A, Ruchaud S, Baratte B, Bach S. Comparison between Conventional and Nonconventional Methods for the Synthesis of Some 2-Oxazolidinone Derivatives and Preliminary Investigation of Their Inhibitory Activity Against Certain Protein Kinases. RUSSIAN JOURNAL OF ORGANIC CHEMISTRY 2019. [DOI: 10.1134/s1070428019070248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
23
|
Arshad F, Khan MF, Akhtar W, Alam MM, Nainwal LM, Kaushik SK, Akhter M, Parvez S, Hasan SM, Shaquiquzzaman M. Revealing quinquennial anticancer journey of morpholine: A SAR based review. Eur J Med Chem 2019; 167:324-356. [PMID: 30776694 DOI: 10.1016/j.ejmech.2019.02.015] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 01/24/2019] [Accepted: 02/04/2019] [Indexed: 02/07/2023]
Abstract
Morpholine, a six-membered heterocycle containing one nitrogen and one oxygen atom, is a moiety of great significance. It forms an important intermediate in many industrial and organic syntheses. Morpholine containing drugs are of high therapeutic value. Its wide array of pharmacological activity includes anti-diabetic, anti-emetic, growth stimulant, anti-depressant, bronchodilator and anticancer. Multi-drug resistance in cancer cases have emerged in the last few years and have led to the failure of many chemotherapeutic drugs. Newer treatment methods and drugs are being developed to overcome this problem. Target based drug discovery is an effective method to develop novel anticancer drugs. To develop newer drugs, previously reported work needs to be studied. Keeping this in mind, last five year's literature on morpholine used as anticancer agents has been reviewed and summarized in the paper herein.
Collapse
Affiliation(s)
- Fatima Arshad
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohemmed Faraz Khan
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Wasim Akhtar
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mohammad Mumtaz Alam
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Lalit Mohan Nainwal
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Sumit Kumar Kaushik
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Mymoona Akhter
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India
| | - Suhel Parvez
- Department of Toxicology, School of Chemical and Life Sciences, Jamia Hamdard, New Delhi, 110062, India
| | | | - Mohammad Shaquiquzzaman
- Drug Design & Medicinal Chemistry Lab, Department of Pharmaceutical Chemistry, School of Pharmaceutical Education and Research, Jamia Hamdard, New Delhi, 110062, India.
| |
Collapse
|
24
|
Navigating around Patented Routes by Preserving Specific Motifs along Computer-Planned Retrosynthetic Pathways. Chem 2019. [DOI: 10.1016/j.chempr.2018.12.004] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
25
|
Wang X, Pang FH, Huang L, Yang XP, Ma XL, Jiang CN, Li FY, Lei FH. Synthesis and Biological Evaluation of Novel Dehydroabietic Acid-Oxazolidinone Hybrids for Antitumor Properties. Int J Mol Sci 2018; 19:ijms19103116. [PMID: 30314336 PMCID: PMC6213879 DOI: 10.3390/ijms19103116] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 09/13/2018] [Accepted: 10/03/2018] [Indexed: 12/18/2022] Open
Abstract
Novel representatives of the important group of biologically-active, dehydroabietic acid-bearing oxazolidinone moiety were synthesized to explore more efficacious and less toxic antitumor agents. Structures of all the newly target molecules were confirmed by IR, 1H-NMR, 13C-NMR, and HR-MS. The inhibitory activities of these compounds against different human cancer cell lines (MGC-803, CNE-2, SK-OV-3, NCI-H460) and human normal liver cell line LO2 were evaluated and compared with the commercial anticancer drug cisplatin, using standard MTT (methyl thiazolytetrazolium) assay in vitro. The pharmacological screening results revealed that most of the hybrids showed significantly improved antiproliferative activities over dehydroabietic acid and that some displayed better inhibitory activities compared to cisplatin. In particular, compound 4j exhibited promising cytotoxicity with IC50 values ranging from 3.82 to 17.76 µM against all the test cell lines and displayed very weak cytotoxicity (IC50 > 100 µM) on normal cells, showing good selectivity between normal and malignant cells. Furthermore, the action mechanism of the representative compound 4j was preliminarily investigated by Annexin-V/PI dual staining, Hoechst 33258 staining, which indicated that the compound can induce cell apoptosis in MGC-803 cells in a dose-dependent manner and arrest the cell cycle in G1 phase. Therefore, 4j may be further exploited as a novel pharmacophore model for the development of anticancer agents.
Collapse
Affiliation(s)
- Xiu Wang
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Fu-Hua Pang
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Lin Huang
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Xin-Ping Yang
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Xian-Li Ma
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Cai-Na Jiang
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Fang-Yao Li
- College of Pharmacy, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin 541004, China.
| | - Fu-Hou Lei
- Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Nanning 530006, China.
| |
Collapse
|
26
|
Thermodynamic Characterization of Mixed Monolayers of a Novel Oxazolidine Derivative and Phospholipids. J Membr Biol 2018; 251:723-733. [PMID: 30283978 DOI: 10.1007/s00232-018-0049-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Accepted: 09/27/2018] [Indexed: 10/28/2022]
Abstract
Oxazolidine derivatives (OxD) are five ring-membered compounds that contain at least one oxygen and nitrogen in their molecular structure. OxD are known due to several therapeutic activities such as anticancer and antibiotic properties. In this paper, we performed a thermodynamic analysis of the mixed films composed by dipalmitoylphosphatidylglycerol (DPPG), dipalmitoylphosphoethanolamine (DPPE), dipalmitoyl phosphatidylcholine (DPPC) or L-α phosphatidylcholine (PC) with a novel oxazolidine derivate (OxD). Relevant thermodynamic parameters such as excess areas (ΔAE), excess free energies (ΔG), and Gibbs free energy of mixing (AGmix) were derived from the surface pressure data. The topographical analysis was performed using atomic force microscopy. Based on the calculated values of the thermodynamic parameters, we observed that the miscibility of the mixed films was directly dependent on their composition. DPPG/OxD and DPPE/OxD systems present the best-mixed character at low pressures at OxD molar fraction equivalent to 0.25.
Collapse
|
27
|
Lebel H, Mamani Laparra L, Khalifa M, Trudel C, Audubert C, Szponarski M, Dicaire Leduc C, Azek E, Ernzerhof M. Synthesis of oxazolidinones: rhodium-catalyzed C-H amination of N-mesyloxycarbamates. Org Biomol Chem 2018; 15:4144-4158. [PMID: 28422263 DOI: 10.1039/c7ob00378a] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
N-Mesyloxycarbamates undergo intramolecular C-H amination reactions to afford oxazolidinones in good to excellent yields in the presence of rhodium(ii) carboxylate catalysts. The reaction is performed under green conditions and potassium carbonate is used, forming biodegradable potassium mesylate as a reaction by-product. This method enables the production of electron-rich, electron-deficient, aromatic and heteroaromatic oxazolidinones in good to excellent yields. Conformationally restricted cyclic secondary N-mesyloxycarbamates furnish cis-oxazolidinones in high yields and selectivity; DFT calculations are provided to account for the observed selectivity. trans-Oxazolidinones were prepared from acyclic secondary N-mesyloxycarbamates using Rh2(oct)4. The selectivity was reverted with a cytoxazone N-mesyloxycarbamate precursor using large chiral rhodium(ii) carboxylate complexes, affording the corresponding cis-oxazolidinone. This orthogonal selectivity was used to achieve the formal synthesis of (-)-cytoxazone.
Collapse
Affiliation(s)
- Hélène Lebel
- Department of Chemistry and Centre in Green Chemistry and Catalysis (CGCC), Université de Montréal, Montréal, QC H3C 3J7, Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Fujii S, Muraoka S, Miyamoto A, Sakurai K. [Linezolid-induced Apoptosis through Mitochondrial Damage and Role of Superoxide Dismutase-1 in Human Monocytic Cell Line U937]. YAKUGAKU ZASSHI 2018; 138:73-81. [PMID: 29311467 DOI: 10.1248/yakushi.17-00133] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Cytopenia is a major adverse event associated with linezolid therapy. The objective of this study was to examine whether the cytotoxicity of linezolid to eukaryotic cells was associated with mitochondrial dysfunction and apoptosis-like cell death in human leukemic monocyte lymphoma cell line U937. Apoptosis-like cell death was clearly observed when cells were incubated with linezolid, depending on the duration and linezolid concentration. Mitochondrial membrane potential of cells treated with linezolid collapsed in a short period of time, but the number of mitochondria did not decrease. Cytotoxicity of linezolid was relieved by the knockdown of superoxide dismutase-1 in U937 cells. On the other hand, no autophagy was observed in cells treated with linezolid. These results suggest that mitochondrial damages would be linked to the induction of apoptosis in U937 cells treated with linezolid and that its mechanism does not involve autophagy.
Collapse
Affiliation(s)
- Satoshi Fujii
- Department of Hospital Pharmacy, Sapporo Medical University Hospital.,Department of Life Science, Hokkaido Pharmaceutical University School of Pharmacy
| | - Sanae Muraoka
- Department of Life Science, Hokkaido Pharmaceutical University School of Pharmacy
| | - Atsushi Miyamoto
- Department of Hospital Pharmacy, Sapporo Medical University Hospital
| | - Koichi Sakurai
- Department of Life Science, Hokkaido Pharmaceutical University School of Pharmacy
| |
Collapse
|
29
|
Synthesis and in vitro anticancer activity of new 2-thioxo-oxazolidin-4-one derivatives. Pharmacol Rep 2017; 69:633-641. [PMID: 28511054 DOI: 10.1016/j.pharep.2017.03.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2016] [Revised: 02/20/2017] [Accepted: 03/09/2017] [Indexed: 02/07/2023]
Abstract
BACKGROUND Oxazolidinones derivatives exhibit different biological properties, including anticancer activity. This work aimed to investigate the anticancer potential of five novel 2-Thioxo-oxazolidin-4-one derivatives. METHODS Cytotoxicity assays were performed in human peripheral blood mononuclear cells (PBMCs) from healthy individuals and seven tumor cell lines. Apoptosis detection and cell cycle were evaluated by flow cytometry and the expression of genes involved in cell death processes by Real-Time PCR. RESULTS All oxazolinedione derivatives were not cytotoxic in PBMCs. NB-5 showed the best results in cancer cells, inhibiting the growth of all tumor cell lines tested. NB-4 exhibited the highest cytotoxicity in Jurkat cells (IC50=15.19μM) and NB-3 showed better anticancer effects in HL-60 (17.84μM). Only NB-4 significantly induced apoptosis in acute leukemia cells (p=0.001). All compounds caused a significant increase in expression of pro-apoptotic gene BID (p<0.05) and BECN1 (p<0.05). NB-3 significantly modulated the expression of RIPK3 (p=0.02) and DDIT3 (p=0.014), while NB-2 induced an increase of CDKN1A (p=0.03) and NB-4 induced PPARγ gene (p=0.0006). CONCLUSION NB-5 showed antitumor effects in solid and hematopoietic cancer cells, while other derivatives produced higher activity against hematopoietic cells. In acute leukemia cells, oxazolidinone derivatives modulated the expression of genes involved in apoptosis, ER stress, necroptosis and inflammation.
Collapse
|
30
|
Gadekar PK, Roychowdhury A, Kharkar PS, Khedkar VM, Arkile M, Manek H, Sarkar D, Sharma R, Vijayakumar V, Sarveswari S. Design, synthesis and biological evaluation of novel azaspiro analogs of linezolid as antibacterial and antitubercular agents. Eur J Med Chem 2016; 122:475-487. [PMID: 27423637 DOI: 10.1016/j.ejmech.2016.07.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 05/16/2016] [Accepted: 07/02/2016] [Indexed: 02/05/2023]
Abstract
The design, synthesis and antimicrobial evaluation of a novel series of azaspiro analogues of linezolid (1) have been described. Linezolid comprises of a morpholine ring which is known for its metabolism-related liabilities. Therefore, the key modification made in the linezolid structure was the replacement of morpholine moiety with its bioisostere, 2-oxa-6-azaspiro[3.3]heptane. Furthermore, the replacement of N-acetyl terminal of 1 with various aromatic or aliphatic functionalities was carried out. The title compounds were evaluated against a panel of Gram-positive and Gram-negative bacteria and Mycobacterium tuberculosis. Subsequent structure-activity relationship (SAR) studies identified several compounds with mixed antibacterial and antitubercular profiles. Compound 22 (IC50 0.72, 0.51, 0.88, 0.49 μg/mL for Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Bacillus subtilis, respectively) exhibited similar antibacterial profile as 1. The N-acetyl derivative 18 was similar to 1 in antitubercular profile. Thus, the present study successfully demonstrated the use of azaspiro substructure in the medicinal chemistry of antibacterial and antitubercular agents.
Collapse
Affiliation(s)
- Pradip K Gadekar
- Department of Medicinal Chemistry, Piramal Enterprises Ltd., 1, Nirlon Complex, Goregaon (East), Mumbai, 400063, India
| | - Abhijit Roychowdhury
- Department of Medicinal Chemistry, Piramal Enterprises Ltd., 1, Nirlon Complex, Goregaon (East), Mumbai, 400063, India
| | - Prashant S Kharkar
- Department of Pharmaceutical Chemistry, SPP School of Pharmacy and Technology Management, SVKM's NMIMS, V. L. Mehta Road, Vile Parle (West), Mumbai, 400 056, India
| | - Vijay M Khedkar
- Combi Chem-Bio Resource Centre, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India; School of Health Sciences, University of KwaZulu Natal, Westville Campus, Durban 4000, South Africa
| | - Manisha Arkile
- Combi Chem-Bio Resource Centre, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Hardik Manek
- Combi Chem-Bio Resource Centre, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Dhiman Sarkar
- Combi Chem-Bio Resource Centre, Division of Organic Chemistry, CSIR-National Chemical Laboratory, Dr. Homi Bhabha Road, Pune, 411 008, India
| | - Rajiv Sharma
- Department of Medicinal Chemistry, Piramal Enterprises Ltd., 1, Nirlon Complex, Goregaon (East), Mumbai, 400063, India
| | - V Vijayakumar
- Center for Organic and Medicinal Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, Tamil Nadu, India
| | - S Sarveswari
- Center for Organic and Medicinal Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
31
|
Synthesis Approaches to (-)-Cytoxazone, a Novel Cytokine Modulator, and Related Structures. Molecules 2016; 21:molecules21091176. [PMID: 27608004 PMCID: PMC6274428 DOI: 10.3390/molecules21091176] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Revised: 08/22/2016] [Accepted: 08/30/2016] [Indexed: 11/16/2022] Open
Abstract
(−)-Cytoxazone, originally isolated from cultures of a Streptomyces species has an oxazolidin-2-one 4,5-disubstituted ring. It is known that this natural product presents a cytokine modulator effect through the signaling pathway of Th2 cells (type 2 cytokines), which are involved in the process of growth and differentiation of cells. From this, the interest in the development of research aimed at the total synthesis of this molecule and its analogs has remained high, which can be confirmed by the large number of publications on the topic, more than 30 to date. This review focuses on the various creative methods for the synthesis of (−)-cytoxazone and its congeners. The assessment of the preparation of this oxazolidinone and related structures serves as a treatise on the efforts made in the synthesis of this important class of compound from its first total synthesis in 1999.
Collapse
|
32
|
Synthesis of some novel oxazolidinone-thiazole hybrids as potential antimicrobial, antioxidant and UV mediated DNA damage protecting agents. Med Chem Res 2016. [DOI: 10.1007/s00044-016-1663-2] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Hedaya OM, Mathew PM, Mohamed FH, Phillips OA, Luqmani YA. Antiproliferative activity of a series of 5‑(1H‑1,2,3‑triazolyl) methyl‑ and 5‑acetamidomethyl‑oxazolidinone derivatives. Mol Med Rep 2016; 13:3311-8. [PMID: 26936341 DOI: 10.3892/mmr.2016.4938] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2015] [Accepted: 02/02/2016] [Indexed: 11/05/2022] Open
Abstract
In the face of increasing resistance to the existing antibiotics, oxazolidinones (exemplified by linezolid) have been developed as promising antibacterial agents, but may have other useful actions. In the present study, a series of 5‑(1H‑1,2,3‑triazoly) l‑methyl‑, 5‑acetamidomethyl‑morpholino and N‑substituted‑piperazino oxazolidinone derivatives were investigated to determine whether they are active against eukaryotic cells. An MTT assay, validated by cell counting, was used to assess the effect of nine oxazolidinone derivatives (concentrations 100 nM‑10 µM) on the proliferation of MCF7 human breast cancer cells. The three most active compounds were then tested on MDA231 breast cancer cells. Cytotoxicity of the selected derivatives was determined by assessing the extent of apoptosis by flow cytometry. The antimetastatic potential of these compounds was assessed on MDA231 cells using wound healing and agarose invasion assays. The 5‑triazolylmethyl piperazino‑oxazolidinone derivatives containing 4‑N‑(2‑chlorocinnamoyl), 4‑N‑(4‑nitrobenzoyl) and 4‑N‑methylsulfonyl moieties exhibited the most potent cytostatic activity against cancer, inhibiting proliferation by up to 70%, in the same order as their reported antibacterial activity against Staphylococcus aureus, but at higher concentrations. Unexpectedly, several derivatives stimulated proliferation at 100 nM, well below their antibacterial minimum inhibitory concentrations. Certain compounds also retarded the motility and invasion of MDA231 cells. Three of the tested derivatives had no effect on the eukaryotic cell lines, demonstrating their preferential activity against bacteria. Two compounds actually stimulated eukaryotic cell proliferation. The remaining three exhibited potent cytostatic activity against and cancer cells, displaying differences in response at low and high concentrations, which may suggest multiple targets on eukaryotic cells. These latter compounds may be useful as anticancer agents.
Collapse
Affiliation(s)
- Omar M Hedaya
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Princy M Mathew
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Fatima H Mohamed
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Oludotun A Phillips
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| | - Yunus A Luqmani
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kuwait University, Safat 13110, Kuwait
| |
Collapse
|