1
|
Darmanto AG, Yen TL, Jan JS, Linh TTD, Taliyan R, Yang CH, Sheu JR. Beyond metabolic messengers: Bile acids and TGR5 as pharmacotherapeutic intervention for psychiatric disorders. Pharmacol Res 2025; 211:107564. [PMID: 39733841 DOI: 10.1016/j.phrs.2024.107564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 12/05/2024] [Accepted: 12/23/2024] [Indexed: 12/31/2024]
Abstract
Psychiatric disorders pose a significant global health challenge, exacerbated by the COVID-19 pandemic and insufficiently addressed by the current treatments. This review explores the emerging role of bile acids and the TGR5 receptor in the pathophysiology of psychiatric conditions, emphasizing their signaling within the gut-brain axis. We detail the synthesis and systemic functions of bile acids, their transformation by gut microbiota, and their impact across various neuropsychiatric disorders, including major depressive disorder, general anxiety disorder, schizophrenia, autism spectrum disorder, and bipolar disorder. The review highlights how dysbiosis and altered bile acid metabolism contribute to the development and exacerbation of these neuropsychiatric disorders through mechanisms involving inflammation, oxidative stress, and neurotransmitter dysregulation. Importantly, we detail both pharmacological and non-pharmacological interventions that modulate TGR5 signaling, offering potential breakthroughs in treatment strategies. These include dietary adjustments to enhance beneficial bile acids production and the use of specific TGR5 agonists that have shown promise in preclinical and clinical settings for their regulatory effects on critical pathways such as cAMP-PKA, NRF2-mediated antioxidant responses, and neuroinflammation. By integrating findings from the dynamics of gut microbiota, bile acids metabolism, and TGR5 receptor related signaling events, this review underscores cutting-edge therapeutic approaches poised to revolutionize the management and treatment of psychiatric disorders.
Collapse
Affiliation(s)
- Arief Gunawan Darmanto
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan, ROC; School of Medicine, Universitas Ciputra, Surabaya 60219, Indonesia
| | - Ting-Lin Yen
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan, ROC; Department of Medical Research, Cathay General Hospital, Taipei 22174, Taiwan, ROC
| | - Jing-Shiun Jan
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan, ROC
| | - Tran Thanh Duy Linh
- Family Medicine Training Center, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City 700000, Viet Nam
| | - Rajeev Taliyan
- Neuropsychopharmacology Division, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Pilani Campus, Pilani, Rajasthan, India
| | - Chih-Hao Yang
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan, ROC; Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan, ROC.
| | - Joen-Rong Sheu
- Department of Pharmacology, School of Medicine, College of Medicine, Taipei Medical University, No. 250, Wu Hsing St., Taipei 110, Taiwan, ROC; Research Center for Neuroscience, Taipei Medical University, Taipei, Taiwan, ROC; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC.
| |
Collapse
|
2
|
Bhimanwar RS, Mittal A, Chaudhari S, Sharma V. Recent advancements in the structural exploration of TGR5 agonists for diabetes treatment. RSC Med Chem 2024; 15:3026-3037. [PMID: 39309359 PMCID: PMC11411620 DOI: 10.1039/d4md00473f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 07/16/2024] [Indexed: 09/25/2024] Open
Abstract
TGR5, a receptor that interacts with bile acids on cell surfaces, has become a promising therapeutic target for type II diabetes due to its ability to regulate energy expenditure and blood sugar levels. While several TGR5 agonists have been identified, only a few are currently in clinical trials. This article reviews the promising TGR5 agonists discovered in recent years, highlighting the chemical structure and pharmacological profile of the most effective compounds. With the limited number of effective drugs available for treating type II diabetes, the search for a potent TGR5 agonist with high efficacy and fewer side effects continues. The goal of this article is to provide an overview of the latest advancements in TGR5 agonists and offer insights for the future development of novel, potent TGR5 agonists for diabetes treatment. A noteworthy aspect addressed in the discussion is the common side effect associated with TGR5 agonist treatment - gallbladder filling. The review also explores potential strategies to mitigate this side effect, with the goal of improving the overall safety and tolerability of TGR5-targeted therapies.
Collapse
Affiliation(s)
- Rachana S Bhimanwar
- Department of Pharmaceutical Chemistry, Dr. D. Y. Patil Institute of Pharmaceutical Sciences and Research Pimpri Pune Maharashtra-411018 India
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab-144411 India
| | - Amit Mittal
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab-144411 India
| | - Snehal Chaudhari
- Department of Biochemistry, University of Wisconsin-Madison Madison WI-53706 USA
| | - Vikas Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University Jalandhar-Delhi G.T. Road (NH-1) Phagwara Punjab-144411 India
| |
Collapse
|
3
|
Jin W, Zheng M, Chen Y, Xiong H. Update on the development of TGR5 agonists for human diseases. Eur J Med Chem 2024; 271:116462. [PMID: 38691888 DOI: 10.1016/j.ejmech.2024.116462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/20/2024] [Accepted: 04/27/2024] [Indexed: 05/03/2024]
Abstract
The G protein-coupled bile acid receptor 1 (GPBAR1) or TGR5 is widely distributed across organs, including the small intestine, stomach, liver, spleen, and gallbladder. Many studies have established strong correlations between TGR5 and glucose homeostasis, energy metabolism, immune-inflammatory responses, and gastrointestinal functions. These results indicate that TGR5 has a significant impact on the progression of tumor development and metabolic disorders such as diabetes mellitus and obesity. Targeting TGR5 represents an encouraging therapeutic approach for treating associated human ailments. Notably, the GLP-1 receptor has shown exceptional efficacy in clinical settings for diabetes management and weight loss promotion. Currently, numerous TGR5 agonists have been identified through natural product-based approaches and virtual screening methods, with some successfully progressing to clinical trials. This review summarizes the intricate relationships between TGR5 and various diseases emphasizing recent advancements in research on TGR5 agonists, including their structural characteristics, design tactics, and biological activities. We anticipate that this meticulous review could facilitate the expedited discovery and optimization of novel TGR5 agonists.
Collapse
Affiliation(s)
- Wangrui Jin
- Institute for Advanced Study, and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China; Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Mingyue Zheng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yihua Chen
- School of Pharmaceutical Sciences and Yunnan Key Laboratory of Pharmacology for Natural Products, Kunming Medical University, Kunming, Yunnan, 650500, China; Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Hai Xiong
- Institute for Advanced Study, and College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, 518060, China.
| |
Collapse
|
4
|
Fleishman JS, Kumar S. Bile acid metabolism and signaling in health and disease: molecular mechanisms and therapeutic targets. Signal Transduct Target Ther 2024; 9:97. [PMID: 38664391 PMCID: PMC11045871 DOI: 10.1038/s41392-024-01811-6] [Citation(s) in RCA: 71] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/28/2024] Open
Abstract
Bile acids, once considered mere dietary surfactants, now emerge as critical modulators of macronutrient (lipid, carbohydrate, protein) metabolism and the systemic pro-inflammatory/anti-inflammatory balance. Bile acid metabolism and signaling pathways play a crucial role in protecting against, or if aberrant, inducing cardiometabolic, inflammatory, and neoplastic conditions, strongly influencing health and disease. No curative treatment exists for any bile acid influenced disease, while the most promising and well-developed bile acid therapeutic was recently rejected by the FDA. Here, we provide a bottom-up approach on bile acids, mechanistically explaining their biochemistry, physiology, and pharmacology at canonical and non-canonical receptors. Using this mechanistic model of bile acids, we explain how abnormal bile acid physiology drives disease pathogenesis, emphasizing how ceramide synthesis may serve as a unifying pathogenic feature for cardiometabolic diseases. We provide an in-depth summary on pre-existing bile acid receptor modulators, explain their shortcomings, and propose solutions for how they may be remedied. Lastly, we rationalize novel targets for further translational drug discovery and provide future perspectives. Rather than dismissing bile acid therapeutics due to recent setbacks, we believe that there is immense clinical potential and a high likelihood for the future success of bile acid therapeutics.
Collapse
Affiliation(s)
- Joshua S Fleishman
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA
| | - Sunil Kumar
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, USA.
| |
Collapse
|
5
|
Zhuo N, Yun Y, Zhang C, Guo S, Yin J, Zhao T, Ge X, Gu M, Xie X, Nan F. Discovery of betulinic acid derivatives as gut-restricted TGR5 agonists: Balancing the potency and physicochemical properties. Bioorg Chem 2024; 144:107132. [PMID: 38241768 DOI: 10.1016/j.bioorg.2024.107132] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/21/2024]
Abstract
The pleiotropic effects of TGR5 make it an appealing target for intervention of metabolic and inflammatory disorders, but systemic activation of TGR5 faces challenges of on-target side effects, especially gallbladder filling. Gut-restricted agonists were proved to be sufficient to circumvent these side effects, but extremely low systemic exposure may not be effective in activating TGR5 since it is located on the basolateral membrane. Herein, to balance potency and physicochemical properties, a series of gut-restricted TGR5 agonists with diversified kinetophores had been designed and synthesized. Compound 22-Na exhibited significant antidiabetic effect, and showed favorable gallbladder safety after 7 days of oral administration in humanized TGR5H88Y mice, confirming that gut-restricted agonism of TGR5 is a viable strategy to alleviate systemic target-related effects.
Collapse
Affiliation(s)
- Ning Zhuo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying Yun
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Chenlu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shimeng Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianpeng Yin
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China
| | - Tingting Zhao
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xiu Ge
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China; School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China.
| | - Fajun Nan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China; Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery, Yantai, Shandong 264117, China.
| |
Collapse
|
6
|
Zhang F, Xiao X, Li Y, Wu H, Deng X, Jiang Y, Zhang W, Wang J, Ma X, Zhao Y. Therapeutic Opportunities of GPBAR1 in Cholestatic Diseases. Front Pharmacol 2022; 12:805269. [PMID: 35095513 PMCID: PMC8793736 DOI: 10.3389/fphar.2021.805269] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 12/23/2021] [Indexed: 12/12/2022] Open
Abstract
GPBAR1, a transmembrane G protein-coupled receptor for bile acids, is widely expressed in multiple tissues in humans and rodents. In recent years, GPBAR1 has been thought to play an important role in bile homeostasis, metabolism and inflammation. This review specifically focuses on the function of GPBAR1 in cholestatic liver disease and summarizes the various pathways through which GPBAR1 acts in cholestatic models. GPBAR1 mainly regulates cholestasis in a holistic system of liver-gallbladder-gut formation. In the state of cholestasis, the activation of GPBAR1 could regulate liver inflammation, induce cholangiocyte regeneration to maintain the integrity of the biliary tree, control the hydrophobicity of the bile acid pool and promote the secretion of bile HCO3−. All these functions of GPBAR1 might be clear ways to protect against cholestatic diseases and liver injury. However, the characteristic of GPBAR1-mediated proliferation increases the risk of proliferation of cholangiocarcinoma in malignant transformed cholangiocytes. This dichotomous function of GPBAR1 limits its use in cholestasis. During disease treatment, simultaneous activation of GPBAR1 and FXR receptors often results in improved outcomes, and this strategy may become a crucial direction in the development of bile acid-activated receptors in the future.
Collapse
Affiliation(s)
- Fangling Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaolin Xiao
- Hospital of Chengdu University of Traditional Chinese Medicine, School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yong Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hefei Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xinyu Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yinxiao Jiang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wenwen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jian Wang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yanling Zhao
- Department of Pharmacy, The Fifth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
7
|
Zhao S, Wang L, Wang J, Wang C, Zheng S, Fu Y, Li Y, Chen WD, Hou R, Yang D, Wang YD. Design, synthesis and evaluation of 3-phenoxypyrazine-2-carboxamide derivatives as potent TGR5 agonists. RSC Adv 2022; 12:3618-3629. [PMID: 35425398 PMCID: PMC8979340 DOI: 10.1039/d1ra08867j] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Accepted: 01/15/2022] [Indexed: 11/21/2022] Open
Abstract
TGR5 is emerging as an important and promising target for the treatment of non-alcoholic steatohepatitis, type 2 diabetes mellitus (T2DM), and obesity. A series of novel 3-phenoxypyrazine-2-carboxamide derivatives were designed, synthesized and evaluated in vitro and in vivo. The most potent compounds 18g and 18k exhibited excellent hTGR5 agonist activity, which was superior to those of the reference drug INT-777. In addition, compound 18k could significantly reduce blood glucose levels in C57 BL/6 mice and stimulate GLP-1 secretion in NCI-H716 cells and C57 BL/6 mice. The most potent compound 18k exhibited excellent hTGR5 agonist activity, which was superior to those of the reference drugs INT-777. In addition, compound 18k could significantly reduce blood glucose levels and stimulate GLP-1 secretion in C57 BL/6 mice.![]()
Collapse
Affiliation(s)
- Shizhen Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Hebei Key Laboratory of Liver Disease, People's Hospital of Hebei, School of Medicine, Henan University Kaifeng China
| | - Le Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Hebei Key Laboratory of Liver Disease, People's Hospital of Hebei, School of Medicine, Henan University Kaifeng China
| | - Jie Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Hebei Key Laboratory of Liver Disease, People's Hospital of Hebei, School of Medicine, Henan University Kaifeng China
| | - Chenwei Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Hebei Key Laboratory of Liver Disease, People's Hospital of Hebei, School of Medicine, Henan University Kaifeng China
| | - Shaowei Zheng
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Hebei Key Laboratory of Liver Disease, People's Hospital of Hebei, School of Medicine, Henan University Kaifeng China
| | - Yajie Fu
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Hebei Key Laboratory of Liver Disease, People's Hospital of Hebei, School of Medicine, Henan University Kaifeng China
| | - Yunfu Li
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Hebei Key Laboratory of Liver Disease, People's Hospital of Hebei, School of Medicine, Henan University Kaifeng China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Hebei Key Laboratory of Liver Disease, People's Hospital of Hebei, School of Medicine, Henan University Kaifeng China .,Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University Hohhot China
| | - Ruifang Hou
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Hebei Key Laboratory of Liver Disease, People's Hospital of Hebei, School of Medicine, Henan University Kaifeng China
| | - Dongbin Yang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, Hebei Key Laboratory of Liver Disease, People's Hospital of Hebei, School of Medicine, Henan University Kaifeng China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology Beijing China
| |
Collapse
|
8
|
Fiorucci S, Distrutti E. Linking liver metabolic and vascular disease via bile acid signaling. Trends Mol Med 2021; 28:51-66. [PMID: 34815180 DOI: 10.1016/j.molmed.2021.10.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 12/12/2022]
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disorder affecting over one quarter of the global population. Liver fat accumulation in NAFLD is promoted by increased de novo lipogenesis leading to the development of a proatherosclerotic lipid profile and atherosclerotic cardiovascular disease (CVD). The CVD component of NAFLD is the main determinant of patient outcome. The farnesoid X receptor (FXR) and the G protein bile acid-activated receptor 1 (GPBAR1) are bile acid-activated receptors that modulate inflammation and lipid and glucose metabolism in the liver and CV system, and are thus potential therapeutic targets. We review bile acid signaling in liver, metabolic tissues, and the CV system, and we propose the development of dual FXR/GPBAR1 ligands, intestine-restricted FXR ligands, or statin combinations to limit side effects and effectively manage the liver and CV components of NAFLD.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Eleonora Distrutti
- Struttura Complessa di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| |
Collapse
|
9
|
Yun Y, Zhang C, Guo S, Liang X, Lan Y, Wang M, Zhuo N, Yin J, Liu H, Gu M, Li J, Xie X, Nan F. Identification of Betulinic Acid Derivatives as Potent TGR5 Agonists with Antidiabetic Effects via Humanized TGR5 H88Y Mutant Mice. J Med Chem 2021; 64:12181-12199. [PMID: 34406006 DOI: 10.1021/acs.jmedchem.1c00851] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Takeda G protein-coupled receptor 5 (TGR5) is a promising target for treating metabolic syndrome and inflammatory diseases. Herein, we identified a new series of betulinic acid derivatives as potent TGR5 agonists, which show remarkable activity on human (h) and canine (c) TGR5 but exhibit unpromising activity on murine (m) TGR5. Species difference was also observed with many other reported TGR5 agonists. Therefore, we screened 29 amino acids which were conserved in hTGR5 and cTGR5 but different in mTGR5 and found a key amino acid, H88 in mTGR5 (Y89 in hTGR5), which contributed to the species difference. With the CRISPR/Cas9 system, the mTGR5H88Y mutation was introduced into mice, and the optimized compound 11d-Na displayed a significant glucose-lowering effect and stimulated GLP-1 and insulin secretion in TGR5H88Y mice but not in wild-type animals. Taken together, our study provides a useful tool to bridge the gap of species difference and discovers a potent TGR5 agonist for further investigation.
Collapse
Affiliation(s)
- Ying Yun
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
| | - Chenlu Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Shimeng Guo
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Xiaoying Liang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Yuan Lan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
| | - Min Wang
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Ning Zhuo
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianpeng Yin
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| | - Huanan Liu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Min Gu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Jing Li
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Xin Xie
- CAS Key Laboratory of Receptor Research, the National Center for Drug Screening, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing 210046, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
| | - Fajun Nan
- University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing 100049, P. R. China
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 310024, China
- Yantai Key Laboratory of Nanomedicine & Advanced Preparations, Yantai Institute of Materia Medica, Shandong 264000, China
| |
Collapse
|
10
|
Zhao S, Li X, Peng W, Wang L, Ye W, Zhao Y, Yin W, Chen WD, Li W, Wang YD. Ligand-based pharmacophore modeling, virtual screening and biological evaluation to identify novel TGR5 agonists. RSC Adv 2021; 11:9403-9409. [PMID: 35423434 PMCID: PMC8695346 DOI: 10.1039/d0ra10168k] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 02/19/2021] [Indexed: 12/28/2022] Open
Abstract
Takeda G-protein-coupled receptor 5 (TGR5) is emerging as an important and promising target for the development of anti-diabetic drugs. To understand the structural characteristics of TGR5 agonists, the common feature pharmacophore models were generated and molecular docking was performed. The ligand-based virtual screening combined with pharmacophore mapping and molecular docking was performed to identify novel nonsteroidal TGR5 agonists. Finally, 20 compounds were screened for in vitro TGR5 agonistic activity assay, and results showed most compounds exhibiting TGR5 agonistic activity at 40 μM. Among these compounds, V12 and V14 displayed obvious TGR5 agonist activity, with the EC50 values of 19.5 μM and 7.7 μM, respectively. Compounds V12 and V14 could be considered potential TGR5 agonist candidates and also may be used as initial hits for developing novel TGR5 agonists.
Collapse
Affiliation(s)
- Shizhen Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University Henan China
| | - Xinping Li
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University Henan China
| | - Wenjing Peng
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University Henan China
| | - Le Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University Henan China
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University Henan China
| | - Yang Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University Henan China
| | - Wenbo Yin
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University 103 Wenhua Road, Shenhe District Shenyang 110016 PR China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University Henan China
- Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University Hohhot China
| | - Weiguo Li
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University Henan China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology Beijing China
| |
Collapse
|
11
|
Fiorucci S, Distrutti E, Carino A, Zampella A, Biagioli M. Bile acids and their receptors in metabolic disorders. Prog Lipid Res 2021; 82:101094. [PMID: 33636214 DOI: 10.1016/j.plipres.2021.101094] [Citation(s) in RCA: 154] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 02/03/2021] [Accepted: 02/12/2021] [Indexed: 02/08/2023]
Abstract
Bile acids are a large family of atypical steroids which exert their functions by binding to a family of ubiquitous cell membrane and nuclear receptors. There are two main bile acid activated receptors, FXR and GPBAR1, that are exclusively activated by bile acids, while other receptors CAR, LXRs, PXR, RORγT, S1PR2and VDR are activated by bile acids in addition to other more selective endogenous ligands. In the intestine, activation of FXR and GPBAR1 promotes the release of FGF15/19 and GLP1 which integrate their signaling with direct effects exerted by theother receptors in target tissues. This network is tuned in a time ordered manner by circadian rhythm and is critical for the regulation of metabolic process including autophagy, fast-to-feed transition, lipid and glucose metabolism, energy balance and immune responses. In the last decade FXR ligands have entered clinical trials but development of systemic FXR agonists has been proven challenging because their side effects including increased levels of cholesterol and Low Density Lipoproteins cholesterol (LDL-c) and reduced High-Density Lipoprotein cholesterol (HDL-c). In addition, pruritus has emerged as a common, dose related, side effect of FXR ligands. Intestinal-restricted FXR and GPBAR1 agonists and dual FXR/GPBAR1 agonists have been developed. Here we review the last decade in bile acids physiology and pharmacology.
Collapse
Affiliation(s)
- Stefano Fiorucci
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy.
| | - Eleonora Distrutti
- SC di Gastroenterologia ed Epatologia, Azienda Ospedaliera di Perugia, Perugia, Italy
| | - Adriana Carino
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| | - Angela Zampella
- Department of Pharmacy, University of Napoli, Federico II, Napoli, Italy
| | - Michele Biagioli
- Dipartimento di Medicina e Chirurgia, Università di Perugia, Perugia, Italy
| |
Collapse
|
12
|
Zhao S, Li X, Wang L, Peng W, Ye W, Li W, Wang YD, Chen WD. Design, synthesis and evaluation of 1-benzyl-1H-imidazole-5-carboxamide derivatives as potent TGR5 agonists. Bioorg Med Chem 2020; 32:115972. [PMID: 33440321 DOI: 10.1016/j.bmc.2020.115972] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 12/20/2020] [Accepted: 12/21/2020] [Indexed: 01/06/2023]
Abstract
TGR5 is emerging as an important and promising target for the treatment of diabetes, obesity and other metabolic syndromes. A series of novel 1-benzyl-1H-imidazole-5-carboxamide derivatives was designed, synthesized and evaluated in vitro and in vivo. The most potent compounds 19d and 19e exhibited excellent agonistic activities against hTGR5, which was superior to those of the reference drugs INT-777 and LCA. In addition, compounds 19d and 19e exhibited good selectivity against FXR and presented significant glucose-lowering effects in vivo. Compound 19d could stimulate GLP-1 secretion by activating of TGR5.
Collapse
Affiliation(s)
- Shizhen Zhao
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University, Henan, China
| | - Xinping Li
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University, Henan, China
| | - Le Wang
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University, Henan, China
| | - Wenjing Peng
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University, Henan, China
| | - Wenling Ye
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University, Henan, China
| | - Weiguo Li
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University, Henan, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, People's Hospital of Hebi, School of Medicine, Henan University, Henan, China; Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical University, Hohhot, China.
| |
Collapse
|
13
|
Han F, Ning M, Cao H, Ye Y, Feng Y, Leng Y, Shen J. Design of G-protein-coupled bile acid receptor 1 (GPBAR1, TGR5) soft drugs with reduced gallbladder-filling effects. Eur J Med Chem 2020; 203:112619. [PMID: 32682201 DOI: 10.1016/j.ejmech.2020.112619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 06/03/2020] [Accepted: 06/22/2020] [Indexed: 12/17/2022]
Abstract
The G-protein-coupled bile acid receptor TGR5 agonists were widely developed in type 2 diabetes and gastrointestinal disorders, but were also full of challenges, due to the systemic on-targeted side effects, especially the gallbladder-filling effects. Here, to circumvent these risks, several TGR5 agonists with soft-drug designation had been designed and synthesized with the properties of rapid metabolized after drug effect. Among them, compound 19 showed negligible systemic exposure and favorable gallbladder safety on a 3-day continuous administration, providing a novel strategy for developing TGR5 agonists.
Collapse
Affiliation(s)
- Fanghui Han
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China
| | - Mengmeng Ning
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Hua Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yangliang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Ying Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, No. 555 Zu Chong Zhi Road, Shanghai, 201203, China; School of Pharmacy, University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
14
|
Huang S, Ma S, Ning M, Yang W, Ye Y, Zhang L, Shen J, Leng Y. TGR5 agonist ameliorates insulin resistance in the skeletal muscles and improves glucose homeostasis in diabetic mice. Metabolism 2019; 99:45-56. [PMID: 31295453 DOI: 10.1016/j.metabol.2019.07.003] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND PURPOSE TGR5 plays an important role in many physiological processes. However, the functions of TGR5 in the regulation of the glucose metabolism and insulin sensitivity in the skeletal muscles have not been fully elucidated. We synthesized MN6 as a potent and selective TGR5 agonist. Here, the effect of MN6 on insulin resistance in skeletal muscles was evaluated in diet-induced obese (DIO) mice and C2C12 myotubes, and the underlying mechanisms were explored. METHODS The activation of MN6 on human and mouse TGR5 was evaluated by a cAMP assay in HEK293 cell lines stable expressing hTGR5/CRE or mTGR5/CRE cells. GLP-1 secretion was measured in NCI-H716 cells and CD1 mice. The acute and chronic effects of MN6 on regulating metabolic abnormalities were observed in ob/ob and DIO mice. 2-deoxyglucose uptake was examined in isolated skeletal muscles. Akt phosphorylation, glucose uptake and glycogen synthesis were examined to assess the effects of MN6 on palmitate-induced insulin resistance in C2C12 myotubes. RESULTS MN6 potently activated human and mouse TGR5 with EC50 values of 15.9 and 17.9 nmol/L, respectively, and stimulated GLP-1 secretion in NCI-H716 cells and CD1 mice. A single oral dose of MN6 significantly decreased the blood glucose levels in ob/ob mice. Treatment with MN6 for 15 days reduced the fasting blood glucose and HbA1c levels in ob/ob mice. MN6 improved glucose and insulin tolerance and enhanced the insulin-stimulated glucose uptake of skeletal muscles in DIO mice. The palmitate-induced impairment of insulin-stimulated Akt phosphorylation, glucose uptake and glycogen synthesis in C2C12 myotubes could be prevented by MN6. The effect of MN6 on palmitate-impaired insulin-stimulated Akt phosphorylation was abolished by siRNA-mediated knockdown of TGR5 or by the inhibition of adenylate cyclase or protein kinase A, suggesting that this effect is dependent on the activation of TGR5 and the cAMP/PKA pathway. CONCLUSIONS Our study identified that a TGR5 agonist could ameliorate insulin resistance by the cAMP/PKA pathway in skeletal muscles; this uncovered a new effect of the TGR5 agonist on regulating the glucose metabolism and insulin sensitivity in skeletal muscles and further strengthened its potential value for the treatment of type 2 diabetes.
Collapse
MESH Headings
- Animals
- Cyclopropanes/therapeutic use
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diet, High-Fat
- Glucagon-Like Peptide 1/metabolism
- Glucose/metabolism
- HEK293 Cells
- Homeostasis
- Humans
- Hypoglycemic Agents/pharmacology
- Insulin Resistance
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Obese
- Muscle Fibers, Skeletal/drug effects
- Muscle Fibers, Skeletal/metabolism
- Muscle, Skeletal/drug effects
- Muscle, Skeletal/metabolism
- Pyridines/therapeutic use
- Quinoxalines/therapeutic use
- Receptors, G-Protein-Coupled/agonists
Collapse
Affiliation(s)
- Suling Huang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Shanyao Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Mengmeng Ning
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Wenji Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Yangliang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Lina Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai, 201203, China.
| |
Collapse
|
15
|
Gether IM, Nexøe-Larsen C, Knop FK. New Avenues in the Regulation of Gallbladder Motility-Implications for the Use of Glucagon-Like Peptide-Derived Drugs. J Clin Endocrinol Metab 2019; 104:2463-2472. [PMID: 30137354 DOI: 10.1210/jc.2018-01008] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 08/15/2018] [Indexed: 12/31/2022]
Abstract
CONTEXT Several cases of cholelithiasis and cholecystitis have been reported in patients treated with glucagon-like peptide 1 (GLP-1) receptor agonists (GLP-1RAs) and GLP-2 receptor agonists (GLP-2RAs), respectively. Thus, the effects of GLP-1 and GLP-2 on gallbladder motility have been investigated. We have provided an overview of the mechanisms regulating gallbladder motility and highlight novel findings on the effects of bile acids and glucagon-like peptides on gallbladder motility. EVIDENCE ACQUISITION The articles included in the present review were identified using electronic literature searches. The search results were narrowed to data reporting the effects of bile acids and GLPs on gallbladder motility. EVIDENCE SYNTHESIS Bile acids negate the effect of postprandial cholecystokinin-mediated gallbladder contraction. Two bile acid receptors seem to be involved in this feedback mechanism, the transmembrane Takeda G protein-coupled receptor 5 (TGR5) and the nuclear farnesoid X receptor. Furthermore, activation of TGR5 in enteroendocrine L cells leads to release of GLP-1 and, possibly, GLP-2. Recent findings have pointed to the existence of a bile acid-TGR5-L cell-GLP-2 axis that serves to terminate meal-induced gallbladder contraction and thereby initiate gallbladder refilling. GLP-2 might play a dominant role in this axis by directly relaxing the gallbladder. Moreover, recent findings have suggested GLP-1RA treatment prolongs the refilling phase of the gallbladder. CONCLUSIONS GLP-2 receptor activation in rodents acutely increases the volume of the gallbladder, which might explain the risk of gallbladder diseases associated with GLP-2RA treatment observed in humans. GLP-1RA-induced prolongation of human gallbladder refilling may explain the gallbladder events observed in GLP-1RA clinical trials.
Collapse
Affiliation(s)
- Ida M Gether
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Christina Nexøe-Larsen
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
| | - Filip K Knop
- Clinical Metabolic Physiology, Steno Diabetes Center Copenhagen, Gentofte Hospital, Hellerup, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Novo Nordisk Center for Basic Metabolic Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
16
|
Synthesis and in vitro evaluation of new translocator protein ligands designed for positron emission tomography. Future Med Chem 2019; 11:539-550. [PMID: 30888874 DOI: 10.4155/fmc-2018-0444] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AIM Dysregulated levels of the translocator protein TSPO 18 KDa have been reported in several disorders, particularly neurodegenerative diseases. This makes TSPO an interesting target for the development of diagnostic biomarkers. Even though several radioligands have already been developed for in vivo TSPO imaging, the ideal TSPO radiotracer has still not been found. RESULTS Here, we report the chemical synthesis of a set of new TSPO ligands designed for future application in positron emission tomography, together with the determination of their biological activity and applied 11C-labeling strategy. CONCLUSION The lead compound of our series, (R)-[11C]Me@NEBIQUINIDE, showed very promising results and is therefore proposed to be further evaluated under in vivo settings.
Collapse
|
17
|
Zhang X, Wall M, Sui Z, Kauffman J, Hou C, Chen C, Du F, Kirchner T, Liang Y, Johnson DL, Murray WV, Demarest K. Discovery of Orally Efficacious Tetrahydrobenzimidazoles as TGR5 Agonists for Type 2 Diabetes. ACS Med Chem Lett 2017; 8:560-565. [PMID: 28523111 DOI: 10.1021/acsmedchemlett.7b00116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2017] [Accepted: 04/21/2017] [Indexed: 01/20/2023] Open
Abstract
We have discovered a novel series of tetrahydrobenzimidazoles 3 as TGR5 agonists. Initial structure-activity relationship studies with an assay that measured cAMP levels in murine enteroendocrine cells (STC-1 cells) led to the discovery of potent agonists with submicromolar EC50 values for mTGR5. Subsequent optimization through methylation of the 7-position of the core tetrahydrobenzimidazole ring resulted in the identification of potent agonists for both mTGR5 and hTGR5 (human enteroendocrine NCI-H716 cells). While the lead compounds displayed low to moderate exposure after oral dosing, they significantly reduced blood glucose levels in C57 BL/6 mice at 30 mg/kg and induced a 13-22% reduction in the area under the blood glucose curve (AUC)0-120 min in oral glucose tolerance tests (OGTT).
Collapse
Affiliation(s)
- Xuqing Zhang
- Cardiovascular
and Metabolic
Research, Janssen Research and Development, LLC, Welsh and McKean
Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Mark Wall
- Cardiovascular
and Metabolic
Research, Janssen Research and Development, LLC, Welsh and McKean
Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Zhihua Sui
- Cardiovascular
and Metabolic
Research, Janssen Research and Development, LLC, Welsh and McKean
Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Jack Kauffman
- Cardiovascular
and Metabolic
Research, Janssen Research and Development, LLC, Welsh and McKean
Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Cuifen Hou
- Cardiovascular
and Metabolic
Research, Janssen Research and Development, LLC, Welsh and McKean
Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Cailin Chen
- Cardiovascular
and Metabolic
Research, Janssen Research and Development, LLC, Welsh and McKean
Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Fuyong Du
- Cardiovascular
and Metabolic
Research, Janssen Research and Development, LLC, Welsh and McKean
Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Thomas Kirchner
- Cardiovascular
and Metabolic
Research, Janssen Research and Development, LLC, Welsh and McKean
Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Yin Liang
- Cardiovascular
and Metabolic
Research, Janssen Research and Development, LLC, Welsh and McKean
Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Dana L. Johnson
- Cardiovascular
and Metabolic
Research, Janssen Research and Development, LLC, Welsh and McKean
Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - William V. Murray
- Cardiovascular
and Metabolic
Research, Janssen Research and Development, LLC, Welsh and McKean
Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| | - Keith Demarest
- Cardiovascular
and Metabolic
Research, Janssen Research and Development, LLC, Welsh and McKean
Roads, P.O. Box 776, Spring House, Pennsylvania 19477, United States
| |
Collapse
|
18
|
Sindhu T, Srinivasan P. Pharmacophore modeling, comprehensive 3D-QSAR, and binding mode analysis of TGR5 agonists. J Recept Signal Transduct Res 2017; 37:109-123. [DOI: 10.1080/10799893.2016.1189564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Thangaraj Sindhu
- Molecular Biology Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamilnadu, India
| | - Pappu Srinivasan
- Molecular Biology Lab, Department of Bioinformatics, Alagappa University, Karaikudi, Tamilnadu, India
| |
Collapse
|
19
|
Zhang X, Sui Z, Kauffman J, Hou C, Chen C, Du F, Kirchner T, Liang Y, Johnson D, Murray WV, Demarest K. Evaluation of anti-diabetic effect and gall bladder function with 2-thio-5-thiomethyl substituted imidazoles as TGR5 receptor agonists. Bioorg Med Chem Lett 2017; 27:1760-1764. [PMID: 28285911 DOI: 10.1016/j.bmcl.2017.02.069] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Revised: 02/23/2017] [Accepted: 02/26/2017] [Indexed: 11/29/2022]
Abstract
A novel series of 2-thio-5-thiomethyl substituted imidazoles was discovered to be potent TGR5 agonists that possessed glucose-lowering effects while inhibiting gall bladder emptying in mice.
Collapse
Affiliation(s)
- Xuqing Zhang
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States.
| | - Zhihua Sui
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - Jack Kauffman
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - Cuifen Hou
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - Cailin Chen
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - Fuyong Du
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - Thomas Kirchner
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - Yin Liang
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - Dana Johnson
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - William V Murray
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| | - Keith Demarest
- Cardiovascular and Metabolic Research, Janssen Research & Development, LLC, Welsh & McKean Roads, Box 776, Spring House, PA 19477, United States
| |
Collapse
|
20
|
Xia C, Wang K, Xu J, Shen C, Sun D, Li H, Wang G, Zhang P. Selective remote esterification of 8-aminoquinoline amides via copper(ii)-catalyzed C(sp2)–O cross-coupling reaction. Org Biomol Chem 2017; 15:531-535. [DOI: 10.1039/c6ob02375d] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The remote C–O coupling of quinoline amides at the C5 position has been established using cheap and readily available copper catalyst under mild conditions.
Collapse
Affiliation(s)
- Chengcai Xia
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Kai Wang
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Jun Xu
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| | - Chao Shen
- College of Biology and Environmental Engineering
- Zhejiang Shuren University
- Hangzhou 310015
- China
| | - Di Sun
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Hongshuang Li
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Guodong Wang
- Pharmacy College
- Taishan Medical University
- Tai'an 271016
- China
| | - Pengfei Zhang
- College of Material
- Chemistry and Chemical Engineering
- Hangzhou Normal University
- Hangzhou 310036
- China
| |
Collapse
|
21
|
Vinayak B, NavyaSree P, Chandrasekharam M. Iron(iii)-catalyzed chelation assisted remote C–H bond oxygenation of 8-amidoquinolines. Org Biomol Chem 2017; 15:9200-9208. [DOI: 10.1039/c7ob02159c] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We have developed a simple, efficient oxygenation of C–H bonds that are geometrically inaccessible in 8-amidoquinolines with inexpensive and nontoxic iron(iii) catalyst. The chelation assisted remote benzoxylation protocol tolerates a wide substrate scope and is operationally simple.
Collapse
Affiliation(s)
- Botla Vinayak
- I&PC Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | - Pilli NavyaSree
- I&PC Division
- CSIR-Indian Institute of Chemical Technology
- Hyderabad-500007
- India
| | | |
Collapse
|
22
|
Guo C, Chen WD, Wang YD. TGR5, Not Only a Metabolic Regulator. Front Physiol 2016; 7:646. [PMID: 28082913 PMCID: PMC5183627 DOI: 10.3389/fphys.2016.00646] [Citation(s) in RCA: 163] [Impact Index Per Article: 18.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2016] [Accepted: 12/09/2016] [Indexed: 12/29/2022] Open
Abstract
G-protein-coupled bile acid receptor, Gpbar1 (TGR5), is a member of G-protein-coupled receptor (GPCR) superfamily. High levels of TGR5 mRNA were detected in several tissues such as small intestine, stomach, liver, lung, especially in placenta and spleen. TGR5 is not only the receptor for bile acids, but also the receptor for multiple selective synthetic agonists such as 6α-ethyl-23(S)-methyl-cholic acid (6-EMCA, INT-777) and a series of 4-benzofuranyloxynicotinamde derivatives to regulate different signaling pathways such as nuclear factor κB (NF-κB), AKT, and extracellular signal-regulated kinases (ERK). TGR5, as a metabolic regulator, is involved in energy homeostasis, bile acid homeostasis, as well as glucose metabolism. More recently, our group and others have extended the functions of TGR5 to more than metabolic regulation, which include inflammatory response, cancer and liver regeneration. These findings highlight TGR5 as a potential drug target for different diseases. This review summarizes the basic information of TGR5 and its new functions.
Collapse
Affiliation(s)
- Cong Guo
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology Beijing, China
| | - Wei-Dong Chen
- Key Laboratory of Receptors-Mediated Gene Regulation and Drug Discovery, School of Medicine, Henan UniversityKaifeng, China; Key Laboratory of Molecular Pathology, School of Basic Medical Science, Inner Mongolia Medical UniversityHohhot, China
| | - Yan-Dong Wang
- State Key Laboratory of Chemical Resource Engineering, College of Life Science and Technology, Beijing University of Chemical Technology Beijing, China
| |
Collapse
|
23
|
Ma SY, Ning MM, Zou QA, Feng Y, Ye YL, Shen JH, Leng Y. OL3, a novel low-absorbed TGR5 agonist with reduced side effects, lowered blood glucose via dual actions on TGR5 activation and DPP-4 inhibition. Acta Pharmacol Sin 2016; 37:1359-1369. [PMID: 27264313 DOI: 10.1038/aps.2016.27] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/05/2016] [Indexed: 12/15/2022]
Abstract
AIM TGR5 agonists stimulate intestinal glucagon-like peptide-1 (GLP-1) release, but systemic exposure causes unwanted side effects, such as gallbladder filling. In the present study, linagliptin, a DPP-4 inhibitor with a large molecular weight and polarity, and MN6, a previously described TGR5 agonist, were linked to produce OL3, a novel low-absorbed TGR5 agonist with reduced side-effects and dual function in lowering blood glucose by activation of TGR5 and inhibition of DPP-4. METHODS TGR5 activation was assayed in HEK293 cells stably expressing human or mouse TGR5 and a CRE-driven luciferase gene. DPP-4 inhibition was assessed based on the rate of hydrolysis of a surrogate substrate. GLP-1 secretion was measured in human enteroendocrine NCI-H716 cells. OL3 permeability was tested in Caco-2 cells. Acute glucose-lowering effects of OL3 were evaluated in ICR and diabetic ob/ob mice. RESULTS OL3 activated human and mouse TGR5 with an EC50 of 86.24 and 17.36 nmol/L, respectively, and stimulated GLP-1 secretion in human enteroendocrine NCI-H716 cells (3-30 μmol/L). OL3 inhibited human and mouse DPP-4 with IC50 values of 18.44 and 69.98 μmol/L, respectively. Low permeability of OL3 was observed in Caco-2 cells. In ICR mice treated orally with OL3 (150 mg/kg), the serum OL3 concentration was 101.10 ng/mL at 1 h, and decreased to 13.38 ng/mL at 5.5 h post dose, confirming the low absorption of OL3 in vivo. In ICR mice and ob/ob mice, oral administration of OL3 significantly lowered the blood glucose levels, which was a synergic effect of activating TGR5 that stimulated GLP-1 secretion in the intestine and inhibiting DPP-4 that cleaved GLP-1 in the plasma. In ICR mice, oral administration of OL3 did not cause gallbladder filling. CONCLUSION OL3 is a low-absorbed TGR5 agonist that lowers blood glucose without inducing gallbladder filling. This study presents a new strategy in the development of potent TGR5 agonists in treating type 2 diabetes, which target to the intestine to avoid systemic side effects.
Collapse
|
24
|
Xu Y. Recent Progress on Bile Acid Receptor Modulators for Treatment of Metabolic Diseases. J Med Chem 2016; 59:6553-79. [DOI: 10.1021/acs.jmedchem.5b00342] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Yanping Xu
- Lilly Research
Laboratories, Eli Lilly and Company, Lilly Corporate Center, DC 1910, Indianapolis, Indiana 46285, United States
| |
Collapse
|
25
|
Chen Z, Ning M, Zou Q, Cao H, Ye Y, Leng Y, Shen J. Discovery and Structure–Activity Relationship Study of 4-Phenoxythiazol-5-carboxamides as Highly Potent TGR5 Agonists. Chem Pharm Bull (Tokyo) 2016; 64:326-39. [DOI: 10.1248/cpb.c15-00905] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Zhixiang Chen
- College of Pharmacy, Nanchang University
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences
| | - Mengmeng Ning
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences
| | - Qingan Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences
| | - Hua Cao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences
| | - Yangliang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences
| |
Collapse
|
26
|
TGR5 and Immunometabolism: Insights from Physiology and Pharmacology. Trends Pharmacol Sci 2015; 36:847-857. [PMID: 26541439 DOI: 10.1016/j.tips.2015.08.002] [Citation(s) in RCA: 112] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 08/02/2015] [Accepted: 08/04/2015] [Indexed: 12/15/2022]
Abstract
In the past decade substantial progress has been made in understanding how the insurgence of chronic low-grade inflammation influences the physiology of several metabolic diseases. Tissue-resident immune cells have been identified as central players in these processes, linking inflammation to metabolism. The bile acid-responsive G-protein-coupled receptor TGR5 is expressed in monocytes and macrophages, and its activation mediates potent anti-inflammatory effects. Herein, we summarize recent advances in TGR5 research, focusing on the downstream effector pathways that are modulated by TGR5 activators, and on its therapeutic potential in inflammatory and metabolic diseases.
Collapse
|
27
|
Briere DA, Ruan X, Cheng CC, Siesky AM, Fitch TE, Dominguez C, Sanfeliciano SG, Montero C, Suen CS, Xu Y, Coskun T, Michael MD. Novel Small Molecule Agonist of TGR5 Possesses Anti-Diabetic Effects but Causes Gallbladder Filling in Mice. PLoS One 2015; 10:e0136873. [PMID: 26312995 PMCID: PMC4551797 DOI: 10.1371/journal.pone.0136873] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2015] [Accepted: 08/09/2015] [Indexed: 12/25/2022] Open
Abstract
Activation of TGR5 via bile acids or bile acid analogs leads to the release of glucagon-like peptide-1 (GLP-1) from intestine, increases energy expenditure in brown adipose tissue, and increases gallbladder filling with bile. Here, we present compound 18, a non-bile acid agonist of TGR5 that demonstrates robust GLP-1 secretion in a mouse enteroendocrine cell line yet weak GLP-1 secretion in a human enteroendocrine cell line. Acute administration of compound 18 to mice increased GLP-1 and peptide YY (PYY) secretion, leading to a lowering of the glucose excursion in an oral glucose tolerance test (OGTT), while chronic administration led to weight loss. In addition, compound 18 showed a dose-dependent increase in gallbladder filling. Lastly, compound 18 failed to show similar pharmacological effects on GLP-1, PYY, and gallbladder filling in Tgr5 knockout mice. Together, these results demonstrate that compound 18 is a mouse-selective TGR5 agonist that induces GLP-1 and PYY secretion, and lowers the glucose excursion in an OGTT, but only at doses that simultaneously induce gallbladder filling. Overall, these data highlight the benefits and potential risks of using TGR5 agonists to treat diabetes and metabolic diseases.
Collapse
Affiliation(s)
- Daniel A. Briere
- Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, United States of America
| | - Xiaoping Ruan
- Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, United States of America
| | - Christine C. Cheng
- Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, United States of America
| | - Angela M. Siesky
- Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, United States of America
| | - Thomas E. Fitch
- Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, United States of America
| | - Carmen Dominguez
- Centro de Investigación, Eli Lilly and Company, Alcobendas, Spain
| | | | - Carlos Montero
- Centro de Investigación, Eli Lilly and Company, Alcobendas, Spain
| | - Chen S. Suen
- Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, United States of America
| | - Yanping Xu
- Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, United States of America
| | - Tamer Coskun
- Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, United States of America
| | - M. Dodson Michael
- Lilly Research Laboratories, Eli Lilly and Co., Indianapolis, Indiana, United States of America
- * E-mail:
| |
Collapse
|
28
|
Duan H, Ning M, Zou Q, Ye Y, Feng Y, Zhang L, Leng Y, Shen J. Discovery of Intestinal Targeted TGR5 Agonists for the Treatment of Type 2 Diabetes. J Med Chem 2015; 58:3315-28. [PMID: 25710631 DOI: 10.1021/jm500829b] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Activation of TGR5 stimulates intestinal glucagon-like peptide-1 (GLP-1) release, but activation of the receptors in gallbladder and heart has been shown to cause severe on-target side effects. A series of low-absorbed TGR5 agonists was prepared by modifying compound 2 with polar functional groups to limit systemic exposure and specifically activate TGR5 in the intestine. Compound 15c, with a molecular weight of 1401, a PSA value of 223 Å(2), and low permeability on Caco-2 cells, exhibited satisfactory potency both in vitro and in vivo. Low levels of 15c were detected in blood, bile, and gallbladder tissue, and gallbladder-related side effects were substantially decreased compared to the absorbed small-molecule TGR5 agonist 2.
Collapse
Affiliation(s)
- Hongliang Duan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Mengmeng Ning
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Qingan Zou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Yangliang Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying Feng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Lina Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Ying Leng
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| | - Jianhua Shen
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica (SIMM), Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
29
|
Högenauer K, Arista L, Schmiedeberg N, Werner G, Jaksche H, Bouhelal R, Nguyen DG, Bhat BG, Raad L, Rauld C, Carballido JM. G-protein-coupled bile acid receptor 1 (GPBAR1, TGR5) agonists reduce the production of proinflammatory cytokines and stabilize the alternative macrophage phenotype. J Med Chem 2014; 57:10343-54. [PMID: 25411721 DOI: 10.1021/jm501052c] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
GPBAR1 (also known as TGR5) is a G-protein-coupled receptor (GPCR) that triggers intracellular signals upon ligation by various bile acids. The receptor has been studied mainly for its function in energy expenditure and glucose homeostasis, and there is little information on the role of GPBAR1 in the context of inflammation. After a high-throughput screening campaign, we identified isonicotinamides exemplified by compound 3 as nonsteroidal GPBAR1 agonists. We optimized this series to potent derivatives that are active on both human and murine GPBAR1. These agonists inhibited the secretion of the proinflammatory cytokines TNF-α and IL-12 but not the antiinflammatory IL-10 in primary human monocytes. These effects translate in vivo, as compound 15 inhibits LPS induced TNF-α and IL-12 release in mice. The response was GPBAR1 dependent, as demonstrated using knockout mice. Furthermore, agonism of GPBAR1 stabilized the phenotype of the alternative, noninflammatory, M2-like type cells during differentiation of monocytes into macrophages. Overall, our results illustrate an important regulatory role for GPBAR1 agonists as controllers of inflammation.
Collapse
Affiliation(s)
- Klemens Högenauer
- Global Discovery Chemistry, ‡Autoimmunity, Transplantation and Inflammation, and §Center for Proteomic Chemistry, Novartis Institutes for BioMedical Research , Novartis Campus, CH-4056 Basel, Switzerland
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|