1
|
Pathak T, Bose A. 1,5-disubstituted 1,2,3-triazolylated carbohydrates and nucleosides. Carbohydr Res 2024; 541:109126. [PMID: 38823061 DOI: 10.1016/j.carres.2024.109126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 04/18/2024] [Accepted: 04/24/2024] [Indexed: 06/03/2024]
Abstract
In general, 1,5-disubstituted 1,2,3-triazolyl moiety is much less common in the synthesis and applications in comparison to its regioisomeric counterpart. Moreover, the synthesis of 1,5-disubstituted 1,2,3-triazoles are not so straightforward as is the case for copper catalyzed strategy of 1,4-disubstituted 1,2,3-triazoles. The preparation of 1,5-triazolylated carbohydrates and nucleosides are even more complex because of the difficulties in accessing the appropriate starting materials as well as the compatibility of reaction conditions with the various protecting groups. 1,5-Disubstitution regioisomeric triazoles of carbohydrates and nucleosides were traditionally obtained as minor products through straightforward heating of the mixture of azides and terminal alkynes. However, the separation of isomers was tedious or in some cases futile. On the other hand, regioselective synthesis using ruthenium catalysis triggered serious concern of residual metal content in therapeutically important ingredients. Therefore, serious efforts are being made by several groups to develop non-toxic metal based or completely metal-free synthesis of 1,5-disubstituted 1,2,3-triazoles. This article strives to summarize the pre-Click era as well as the post-2001 reports on the synthesis and potential applications of 1,5-disubstituted 1,2,3-triazoles in biological systems.
Collapse
Affiliation(s)
- Tanmaya Pathak
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India.
| | - Amitabha Bose
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721 302, West Bengal, India
| |
Collapse
|
2
|
Mehmood S, Hussain M, Bux K, Hussain Z, Raza Shah M, Ali Jakhrani M, Ali Channar P, Begum I, Saboor R, Yildiz CB, Ali K, Herwig R. Structural dynamics and anti-biofilm screening of novel imidazole derivative to explore their anti-biofilm inhibition mechanism against Pseudomonas Aeruginosa. J Biomol Struct Dyn 2024:1-15. [PMID: 38385459 DOI: 10.1080/07391102.2024.2317983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 02/07/2024] [Indexed: 02/23/2024]
Abstract
The biofilm formation is still prevalent mechanism of developing the drug resistance in the Pseudomonas aeruginosa, gram-negative bacteria, known for its major role in nosocomial, ventilator-associated pneumonia (VAP), lung infections and catheter-associated urinary tract infections. As best of our knowledge, current study first time reports the most potent inhibitors of LasR, a transcriptional activator of biofilm and virulence regulating genes in, Pseudomonas aeruginosa LasR, utilizing newly functionalized imidazoles (5a-d), synthesized via 1,3-dipolar cycloaddition using click approach. The synthesized ligands were characterized through Mass Spectrometry and 1H NMR. The binding potency and mode of biding of ligands. Quantum Mechanical(QM) methods were utilized to investigate the electronic basis, HOMO/LUMO and dipole moment of the geometry of the ligands for their binding potency. Dynamics cross correlation matrix (DCCMs) and protein surface analysis were further utilized to explore the structural dynamics of the protein. Free energy of binding of ligands and protein were further estimated using Molecular Mechanical Energies with the Poisson-Boltzmann surface area (MMPBSA) method. Molecular Docking studies revealed significant negative binding energies (5a - 10.33, 5b -10.09, 5c - 10.11, and 5d -8.33 KJ/mol). HOMO/LUMO and potential energy surface map estimation showed the ligands(5a) with lower energy gaps and larger dipole moments had relatively larger binding potency. The significant change in the structural dynamics of LasR protein due to complex formation with newlyfunctionalized imidazoles ligands. Hydrogen bond surface analysis followed by MMPBSA calculations of free energy of binding further complemented the Molecular docking revelations showing the specifically ligand (5a) having the relatively higher energy of binding(-65.22kj/mol).
Collapse
Affiliation(s)
- Shahab Mehmood
- Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology (SZABIST), Pakistan
| | - Mumtaz Hussain
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Khair Bux
- Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology (SZABIST), Pakistan
| | - Zahid Hussain
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Muhammad Raza Shah
- International Center for Chemical and Biological Sciences, H.E.J. Research Institute of Chemistry, Karachi, Pakistan
| | - Mushtaque Ali Jakhrani
- Institute of Chemistry, Shah Abdul Latif University Khairpur mirs, Khairpurmirs, Sindh, Pakistan
| | - Pervaiz Ali Channar
- Department of Basic Sciences and Humanities, Faculty of Information Sciences and Humanities, Dawood University of Engineering and Technology Karachi, Karachi, Pakistan
| | - Irshad Begum
- Department of Chemistry, University of Karachi, Karachi, Pakistan
| | - Rukhsana Saboor
- Department of Pathology, Ghulam Muhammad Mahar Medical College, Sukkur, Pakistan
| | - Cem B Yildiz
- Department of Medicinal and Aromatic Plants, University of Aksaray, Aksaray, Turkey
| | - Kashif Ali
- Shaheed Zulfiqar Ali Bhutto Institute of Science and Technology (SZABIST), Pakistan
| | - Ralf Herwig
- Laboratories PD Dr. R. Herwig, 80337 Munich, Germany and Heimerer-College, Pristina, Kosovo
| |
Collapse
|
3
|
Jaiswal MK, Gupta A, Ansari FJ, Pandey VK, Tiwari VK. Recent Progress on Synthesis of Functionalized 1,5-Disubstituted Triazoles. Curr Org Synth 2024; 21:513-558. [PMID: 38804327 DOI: 10.2174/1570179420666230418123350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 12/13/2022] [Accepted: 01/12/2023] [Indexed: 05/29/2024]
Abstract
Immediately after the invention of 'Click Chemistry' in 2002, the regioselective 1,2,3- triazole scaffolds resulted from respective organic azides and terminal alkynes under Cu(I) catalysis have been well recognized as the functional heterocyclic core at the centre of modern organic chemistry, medicinal chemistry, and material sciences. This CuAAC reaction has several notable features including excellent regioselectivity, high-to-excellent yields, easy to execute, short reaction time, modular in nature, mild condition, readily available starting materials, etc. Moreover, the resulting regioselective triazoles can serve as amide bond isosteres, a privileged functional group in drug discovery and development. More than hundreds of reviews had been devoted to the 'Click Chemistry' in special reference to 1,4-disubstituted triazoles, while only little efforts were made for an opposite regioisomer i.e., 1,5-disubstituted triazole. Herein, we have presented various classical approaches for an expeditious synthesis of a wide range of biologically relevant 1,5- disubstituted 1,2,3-triazole analogues. The syntheses of such a class of diversly functionalized triazoles have emerged as a crucial investigation in the domain of chemistry and biology. This tutorial review covers the literature assessment on the development of various synthetic protocols for the functionalized 1,5-disubstituted triazoles reported during the last 12 years.
Collapse
Affiliation(s)
- Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Abhishek Gupta
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Faisal J Ansari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinay K Pandey
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| |
Collapse
|
4
|
Sharma S, Sharma BK, Jain S, Gulyani P. A Combined QSAR and Molecular Docking Approach for Identifying
Pyrimidine Derivatives as Penicillin Binding Protein Inhibitors. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220427101322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Antimicrobial resistance has been rising continuously in the past few years due
to the overuse and exploitation of existing antimicrobials. This has motivated the search for a novel scaffold
that has the capability of rapid antimicrobial action. The hybridized pyrimidines have attracted us due
to their widespread biological activities, such as anti-bacterial and antifungal activities.
Objective:
The present study incorporates a series of pyrimidine-based antimicrobial agents for the 2D
quantitative structure-activity relationship analysis (2D QSAR) and docking analysis.
Methods:
The exploration of the chemical structures in combination with the biological activity in CPMLR led to the detection of six descriptors (Constitutional descriptors, Topological descriptors, Modified Burden Eigenvalues and 2D autocorrelations) for modeling the activity. The resulted QSAR model has been validated using combinatorial protocol in multiple linear regression (CP-MLR) and partial least squares (PLS) analysis.
Methods:
The exploration of the chemical structures in combination with the biological activity in
CPMLR led to the detection of six descriptors (Constitutional descriptors, Topological descriptors, Modified
Burden Eigenvalues and 2D autocorrelations) for modeling the activity. The resulted QSAR model
has been validated using a combinatorial protocol in multiple linear regression (CP-MLR) and partial
least squares (PLS) analysis.
Results:
The best QSAR model displays the r2
t
value of 0.594, Q2
LOO value of 0.779, Q2
L5O value of
0.767. Further docking study was executed using Autodock Vina against Penicillin-binding protein
(PBP2a).
Conclusion:
From the results, Compounds 4, 11and 24 were found to possess a good binding affinity
towards PBP2a.
Collapse
Affiliation(s)
- Smriti Sharma
- Amity Institute of Pharmacy, Amity University, Sector-125, Noida-201313, India
| | - Brij K. Sharma
- Department of Chemistry, Government
College, Bundi-323 001, Rajasthan, India
| | - Surabhi Jain
- Faculty of Pharmacy, B. Pharmacy College Rampura-kakanpur, (Gujarat
Technological University), Panchmahals, Gujarat, India
| | - Puja Gulyani
- Amity Institute of Pharmacy, Amity University, Sector-125, Noida-201313, India
| |
Collapse
|
5
|
Synthesis, in vitro antimicrobial evaluation, and molecular docking studies of new isatin-1,2,3-triazole hybrids. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131855] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
6
|
Agrahari AK, Bose P, Jaiswal MK, Rajkhowa S, Singh AS, Hotha S, Mishra N, Tiwari VK. Cu(I)-Catalyzed Click Chemistry in Glycoscience and Their Diverse Applications. Chem Rev 2021; 121:7638-7956. [PMID: 34165284 DOI: 10.1021/acs.chemrev.0c00920] [Citation(s) in RCA: 182] [Impact Index Per Article: 45.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Copper(I)-catalyzed 1,3-dipolar cycloaddition between organic azides and terminal alkynes, commonly known as CuAAC or click chemistry, has been identified as one of the most successful, versatile, reliable, and modular strategies for the rapid and regioselective construction of 1,4-disubstituted 1,2,3-triazoles as diversely functionalized molecules. Carbohydrates, an integral part of living cells, have several fascinating features, including their structural diversity, biocompatibility, bioavailability, hydrophilicity, and superior ADME properties with minimal toxicity, which support increased demand to explore them as versatile scaffolds for easy access to diverse glycohybrids and well-defined glycoconjugates for complete chemical, biochemical, and pharmacological investigations. This review highlights the successful development of CuAAC or click chemistry in emerging areas of glycoscience, including the synthesis of triazole appended carbohydrate-containing molecular architectures (mainly glycohybrids, glycoconjugates, glycopolymers, glycopeptides, glycoproteins, glycolipids, glycoclusters, and glycodendrimers through regioselective triazole forming modular and bio-orthogonal coupling protocols). It discusses the widespread applications of these glycoproducts as enzyme inhibitors in drug discovery and development, sensing, gelation, chelation, glycosylation, and catalysis. This review also covers the impact of click chemistry and provides future perspectives on its role in various emerging disciplines of science and technology.
Collapse
Affiliation(s)
- Anand K Agrahari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Priyanka Bose
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Manoj K Jaiswal
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sanchayita Rajkhowa
- Department of Chemistry, Jorhat Institute of Science and Technology (JIST), Jorhat, Assam 785010, India
| | - Anoop S Singh
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Srinivas Hotha
- Department of Chemistry, Indian Institute of Science and Engineering Research (IISER), Pune, Maharashtra 411021, India
| | - Nidhi Mishra
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Vinod K Tiwari
- Department of Chemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| |
Collapse
|
7
|
Microwave versus conventional synthesis, anticancer, DNA binding and docking studies of some 1,2,3-triazoles carrying benzothiazole. ARAB J CHEM 2021. [DOI: 10.1016/j.arabjc.2021.102997] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
|
8
|
Cherif M, Horchani M, Al-Ghamdi YO, Almalki SG, Alqurashi YE, Ben Jannet H, Romdhane A. New pyrano-1,2,3-triazolopyrimidinone derivatives as anticholinesterase and antibacterial agents: Design, microwave-assisted synthesis and molecular docking study. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
9
|
1,2,3-Triazole-containing hybrids with potential antibacterial activity against methicillin-resistant Staphylococcus aureus (MRSA). Eur J Med Chem 2020; 206:112686. [PMID: 32795773 DOI: 10.1016/j.ejmech.2020.112686] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 01/10/2023]
Abstract
Methicillin-resistant Staphylococcus aureus (MRSA), as a classic reason for genuine skin and flimsy tissues diseases, is a worldwide general wellbeing risk and has already tormented humanity for a long history, creating a critical need for the development of new classes of antibacterials. 1,2,3-Triazole moiety, readily interact with diverse enzymes and receptors in organisms through weak bond interaction, is among the most common frameworks present in the bioactive molecules. 1,2,3-Triazole derivatives, especially 1,2,3-triazole-containing hybrids, possess broad-spectrum activity against a panel of clinically important bacteria including drug-resistant pathogens, so rational design of 1,2,3-triazole derivatives may open a door for the opportunities on the development of novel anti-MRSA agents. This review is an endeavour to highlight the current scenario of 1,2,3-triazole-containing hybrids with potential anti-MRSA activity, covering articles published between 2010 and 2020.
Collapse
|
10
|
Synthesis of glycoconjugate mimics by ‘click chemistry’. Carbohydr Res 2019; 484:107775. [DOI: 10.1016/j.carres.2019.107775] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/09/2019] [Accepted: 08/08/2019] [Indexed: 12/16/2022]
|
11
|
Konaklieva MI. Addressing Antimicrobial Resistance through New Medicinal and Synthetic Chemistry Strategies. SLAS DISCOVERY 2018; 24:419-439. [PMID: 30523713 DOI: 10.1177/2472555218812657] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Over the past century, a multitude of derivatives of structural scaffolds with established antimicrobial potential have been prepared and tested, and a variety of new scaffolds have emerged. The effectiveness of antibiotics, however, is in sharp decline because of the emergence of drug-resistant microorganisms. The prevalence of drug resistance, both in clinical and community settings, is a consequence of bacterial ingenuity in altering pathways and/or cell morphology, making it a persistent threat to human health. The fundamental ability of pathogens to survive in a multitude of habitats can be triggered by recognition of chemical signals that warn organisms of exposure to a potentially harmful environment. Host immune defenses, including reactive oxygen intermediates and antibacterial substances, are among the multitude of chemical signals that can subsequently trigger expression of phenotypes better adapted for survival in that hostile environment. Thus, resistance development appears to be unavoidable, which leads to the conclusion that developing an alternative perspective for treatment options is vital. This review will discuss emerging medicinal chemistry approaches for addressing the global multidrug resistance in the 21st century.
Collapse
|
12
|
Al-blewi FF, Almehmadi MA, Aouad MR, Bardaweel SK, Sahu PK, Messali M, Rezki N, El Ashry ESH. Design, synthesis, ADME prediction and pharmacological evaluation of novel benzimidazole-1,2,3-triazole-sulfonamide hybrids as antimicrobial and antiproliferative agents. Chem Cent J 2018; 12:110. [PMID: 30387018 PMCID: PMC6768023 DOI: 10.1186/s13065-018-0479-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2018] [Accepted: 10/23/2018] [Indexed: 11/14/2022] Open
Abstract
BACKGROUND Nitrogen heterocyclic rings and sulfonamides have attracted attention of several researchers. RESULTS A series of regioselective imidazole-based mono- and bis-1,4-disubstituted-1,2,3-triazole-sulfonamide conjugates 4a-f and 6a-f were designed and synthesized. The first step in the synthesis was a regioselective propargylation in the presence of the appropriate basic catalyst (Et3N and/or K2CO3) to afford the corresponding mono-2 and bis-propargylated imidazoles 5. Second, the ligation of the terminal C≡C bond of mono-2 and/or bis alkynes 5 to the azide building blocks of sulfa drugs 3a-f using optimized conditions for a Huisgen copper (I)-catalysed 1,3-dipolar cycloaddition reaction yielded targeted 1,2,3-triazole hybrids 4a-f and 6a-f. The newly synthesized compounds were screened for their in vitro antimicrobial and antiproliferative activities. Among the synthesized compounds, compound 6a emerged as the most potent antimicrobial agent with MIC values ranging between 32 and 64 µg/mL. All synthesized molecules were evaluated against three aggressive human cancer cell lines, PC-3, HepG2, and HEK293, and revealed sufficient antiproliferative activities with IC50 values in the micromolar range (55-106 μM). Furthermore, we conducted a receptor-based electrostatic analysis of their electronic, steric and hydrophobic properties, and the results were in good agreement with the experimental results. In silico ADMET prediction studies also supported the experimental biological results and indicated that all compounds are nonmutagenic and noncarcinogenic. CONCLUSION In summary, we have successfully synthesized novel targeted benzimidazole-1,2,3-triazole-sulfonamide hybrids through 1,3-dipolar cycloaddition reactions between the mono- or bis-alkynes based on imidazole and the appropriate sulfonamide azide under the optimized Cu(I) click conditions. The structures of newly synthesized sulfonamide hybrids were confirmed by means of spectroscopic analysis. All newly synthesized compounds were evaluated for their antimicrobial and antiproliferative activities. Our results showed that the benzimidazole-1,2,3-triazole-sulfonamide hybrids inhibited microbial and fungal strains within MIC values from 32 to 64 μg/mL. The antiproliferative evaluation of the synthesized compounds showed sufficient antiproliferative activities with IC50 values in the micromolar range (55-106 μM). In conclusion, compound 6a has remarkable antimicrobial activity. Pharmacophore elucidation of the compounds was performed based on in silico ADMET evaluation of the tested compounds. Screening results of drug-likeness rules showed that all compounds follow the accepted rules, meet the criteria of drug-likeness and follow Lipinski's rule of five. In addition, the toxicity results showed that all compounds are nonmutagenic and noncarcinogenic.
Collapse
Affiliation(s)
- Fawzia Faleh Al-blewi
- Department of Chemistry, Faculty of Science, Taibah University, Medina, 30002 Saudi Arabia
| | - Meshal A. Almehmadi
- Department of Chemistry, Faculty of Science, Taibah University, Medina, 30002 Saudi Arabia
| | - Mohamed Reda Aouad
- Department of Chemistry, Faculty of Science, Taibah University, Medina, 30002 Saudi Arabia
- Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie Et Electrochimie des Complexes Metalliques (LCECM) USTO‑MB, P.O. Box 1505, 31000 El M‘nouar, Oran Algeria
| | - Sanaa K. Bardaweel
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, University of Jordan, Amman, 11942 Jordan
| | - Pramod K. Sahu
- School of Study in Chemistry, Jiwaji University, Gwalior, Madhya Pradesh 474011 India
| | - Mouslim Messali
- Department of Chemistry, Faculty of Science, Taibah University, Medina, 30002 Saudi Arabia
| | - Nadjet Rezki
- Department of Chemistry, Faculty of Science, Taibah University, Medina, 30002 Saudi Arabia
- Department of Chemistry, Faculty of Sciences, University of Sciences and Technology Mohamed Boudiaf, Laboratoire de Chimie Et Electrochimie des Complexes Metalliques (LCECM) USTO‑MB, P.O. Box 1505, 31000 El M‘nouar, Oran Algeria
| | - El Sayed H. El Ashry
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria, 21500 Egypt
| |
Collapse
|
13
|
Voronin VV, Ledovskaya MS, Bogachenkov AS, Rodygin KS, Ananikov VP. Acetylene in Organic Synthesis: Recent Progress and New Uses. Molecules 2018; 23:E2442. [PMID: 30250005 PMCID: PMC6222752 DOI: 10.3390/molecules23102442] [Citation(s) in RCA: 72] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2018] [Revised: 09/14/2018] [Accepted: 09/17/2018] [Indexed: 11/16/2022] Open
Abstract
Recent progress in the leading synthetic applications of acetylene is discussed from the prospect of rapid development and novel opportunities. A diversity of reactions involving the acetylene molecule to carry out vinylation processes, cross-coupling reactions, synthesis of substituted alkynes, preparation of heterocycles and the construction of a number of functionalized molecules with different levels of molecular complexity were recently studied. Of particular importance is the utilization of acetylene in the synthesis of pharmaceutical substances and drugs. The increasing interest in acetylene and its involvement in organic transformations highlights a fascinating renaissance of this simplest alkyne molecule.
Collapse
Affiliation(s)
- Vladimir V Voronin
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
| | - Maria S Ledovskaya
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
| | - Alexander S Bogachenkov
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
| | - Konstantin S Rodygin
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
| | - Valentine P Ananikov
- Institute of Chemistry, Saint Petersburg State University, Universitetsky prospect 26, Peterhof 198504, Russia.
- N. D. Zelinsky Institute of Organic Chemistry Russian Academy of Sciences, Leninsky prospect 47, Moscow 119991, Russia.
| |
Collapse
|
14
|
Ahirwar J, Ahirwar D, Lanjhiyana S, Jha AK, Dewangan D, Badwaik H. Synthesis, Characterization, Molecular Modeling, and Biological Evaluation of 1,2,4-Triazole-pyridine Hybrids as Potential Antimicrobial Agents. J Heterocycl Chem 2018. [DOI: 10.1002/jhet.3319] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- J. Ahirwar
- School of Pharmacy; Chouksey Engineering College; Bilaspur Chhattisgarh India
| | - D. Ahirwar
- School of Pharmacy; Chouksey Engineering College; Bilaspur Chhattisgarh India
| | - S. Lanjhiyana
- School of Pharmacy; Chouksey Engineering College; Bilaspur Chhattisgarh India
| | - A. K. Jha
- Shri Shankaracharya Institute of Pharmaceutical Science; Bhilai Chhattisgarh India
| | - D. Dewangan
- Rungta College of Pharmaceutical Sciences and Research; Bhilai Chhattisgarh India
| | - H. Badwaik
- Rungta College of Pharmaceutical Sciences and Research; Bhilai Chhattisgarh India
| |
Collapse
|
15
|
Ashok D, Gundu S, Aamate VK, Devulapally MG, Bathini R, Manga V. Dimers of coumarin-1,2,3-triazole hybrids bearing alkyl spacer: Design, microwave-assisted synthesis, molecular docking and evaluation as antimycobacterial and antimicrobial agents. J Mol Struct 2018. [DOI: 10.1016/j.molstruc.2017.12.080] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Santos JA, Santos CS, Almeida CL, Silva TD, Freitas Filho JR, Militão GC, da Silva TG, da Cruz CH, Freitas JC, Menezes PH. Structure-based design, synthesis and antitumoral evaluation of enulosides. Eur J Med Chem 2017; 128:192-201. [DOI: 10.1016/j.ejmech.2017.01.036] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/13/2017] [Accepted: 01/21/2017] [Indexed: 10/20/2022]
|
17
|
Johansson JR, Beke-Somfai T, Said Stålsmeden A, Kann N. Ruthenium-Catalyzed Azide Alkyne Cycloaddition Reaction: Scope, Mechanism, and Applications. Chem Rev 2016; 116:14726-14768. [DOI: 10.1021/acs.chemrev.6b00466] [Citation(s) in RCA: 223] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Johan R. Johansson
- Cardiovascular
and Metabolic Diseases, Innovative Medicines and Early Development
Biotech Unit, AstraZeneca, Pepparedsleden 1, SE-43183 Mölndal, Sweden
| | - Tamás Beke-Somfai
- Research
Centre for Natural Sciences, Hungarian Academy of Sciences, Magyar tudósok
krt. 2, H-1117 Budapest, Hungary
| | - Anna Said Stålsmeden
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| | - Nina Kann
- Chemistry
and Biochemistry, Department of Chemistry and Chemical Engineering, Chalmers University of Technology, SE-41296 Göteborg, Sweden
| |
Collapse
|
18
|
An efficient method for the synthesis of pyranoid glycals. Carbohydr Res 2016; 431:42-6. [DOI: 10.1016/j.carres.2016.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 05/27/2016] [Accepted: 05/29/2016] [Indexed: 01/17/2023]
|
19
|
Tiwari VK, Mishra BB, Mishra KB, Mishra N, Singh AS, Chen X. Cu-Catalyzed Click Reaction in Carbohydrate Chemistry. Chem Rev 2016; 116:3086-240. [PMID: 26796328 DOI: 10.1021/acs.chemrev.5b00408] [Citation(s) in RCA: 556] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Cu(I)-catalyzed azide-alkyne 1,3-dipolar cycloaddition (CuAAC), popularly known as the "click reaction", serves as the most potent and highly dependable tool for facile construction of simple to complex architectures at the molecular level. Click-knitted threads of two exclusively different molecular entities have created some really interesting structures for more than 15 years with a broad spectrum of applicability, including in the fascinating fields of synthetic chemistry, medicinal science, biochemistry, pharmacology, material science, and catalysis. The unique properties of the carbohydrate moiety and the advantages of highly chemo- and regioselective click chemistry, such as mild reaction conditions, efficient performance with a wide range of solvents, and compatibility with different functionalities, together produce miraculous neoglycoconjugates and neoglycopolymers with various synthetic, biological, and pharmaceutical applications. In this review we highlight the successful advancement of Cu(I)-catalyzed click chemistry in glycoscience and its applications as well as future scope in different streams of applied sciences.
Collapse
Affiliation(s)
- Vinod K Tiwari
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Bhuwan B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Kunj B Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Nidhi Mishra
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Anoop S Singh
- Department of Chemistry, Centre of Advanced Study, Institute of Science, Banaras Hindu University , Varanasi, Uttar Pradesh-221005, India
| | - Xi Chen
- Department of Chemistry, One Shields Avenue, University of California-Davis , Davis, California 95616, United States
| |
Collapse
|
20
|
Synthesis of monomeric methylene-linked 1,2,3-triazole glycoconjugates from allo- and glucofuranoses. Chem Heterocycl Compd (N Y) 2015. [DOI: 10.1007/s10593-015-1791-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
21
|
|
22
|
Petrova KT, Potewar TM, Correia-da-Silva P, Barros MT, Calhelha RC, Ćiric A, Soković M, Ferreira ICFR. Antimicrobial and cytotoxic activities of 1,2,3-triazole-sucrose derivatives. Carbohydr Res 2015; 417:66-71. [PMID: 26432609 DOI: 10.1016/j.carres.2015.09.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/03/2015] [Accepted: 09/04/2015] [Indexed: 12/20/2022]
Abstract
A library of 1-(1',2,3,3',4,4',6-hepta-O-acetyl-6'-deoxy-sucros-6'-yl)-1,2,3-triazoles have been investigated for their antibacterial, antifungal and cytotoxic activities. Most of the target compounds showed good inhibitory activity against a variety of clinically and food contaminant important microbial pathogens. In particular, 1-(1',2,3,3',4,4',6-hepta-O-acetyl-6'-deoxy-sucros-6'-yl)-4-(4-pentylphenyl)-1,2,3-triazole (5) was highly active against all the tested bacteria with minimal inhibitory concentrations (MICs) ranging between 1.1 and 4.4 µM and bactericidal concentrations (MBCs) from 2.2 and 8.4 µM. The compound 1-(1',2,3,3',4,4',6-hepta-O-acetyl-6'-deoxy-sucros-6'-yl)-4-(4-bromophenyl)-1,2,3-triazole (3) showed antifungal activity with MICs from 0.6 to 4.8 µM and minimal fungicidal concentrations (MFCs) ranging between 1.2 and 8.9 µM. Furthermore, some of the compounds possessed moderate cytotoxicity against human breast, lung, cervical and hepatocellular carcinoma cell lines, without showing toxicity for non-tumor liver cells. The above mentioned derivatives represent promising leads for the development of new generation of sugar-triazole antifungal agents.
Collapse
Affiliation(s)
- Krasimira T Petrova
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal.
| | - Taterao M Potewar
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | | | - M Teresa Barros
- LAQV, REQUIMTE, Departamento de Química, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| | - Ricardo C Calhelha
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal
| | - Ana Ćiric
- Department of Plant Physiology, Institute for Biological Research, "Siniša Stanković", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Marina Soković
- Department of Plant Physiology, Institute for Biological Research, "Siniša Stanković", University of Belgrade, Bulevar Despota Stefana 142, 11000 Belgrade, Serbia
| | - Isabel C F R Ferreira
- Mountain Research Centre (CIMO), ESA, Polytechnic Institute of Bragança, Campus de Santa Apolónia, 1172, 5301-855 Bragança, Portugal
| |
Collapse
|