1
|
Kazemi Z, Moini N, Rudbari HA, Micale N. A comprehensive review on the development of chiral Cu, Ni, and Zn complexes as pharmaceutical agents over the past decades: Synthesis, molecular structure and biological activity. Med Res Rev 2025; 45:654-754. [PMID: 39297288 DOI: 10.1002/med.22083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 07/09/2024] [Accepted: 08/25/2024] [Indexed: 02/06/2025]
Abstract
Chirality is a fundamental and widespread geometric structural property in living organisms that most biomacromolecules including nucleic acids, proteins and enzymes, possess. Consequently, the development of chiral drugs capable of binding specific targets have gradually gained wide attention in recent decades due to their selective effects on a broad spectrum of biological events ranging from cell metabolism to cell fate. In this context, the synthesis of chiral compounds as promising therapeutic candidates has assumed a major role in drug discovery. Among them, chiral metal complexes have attracted considerable interest due to their unique and intriguing structural features that could enable overcoming side effects and drug-resistance phenomena of metal-based drugs currently in the market such as cisplatin. In the current scenario, an in-depth overview of non-platinum chiral complexes needs to be presented and carried forward. Therefore, in this perspective article, an update of the scientific development of bioactive chiral copper, zinc and nickel complexes have been reported since they have not been thoroughly reviewed so far. Specifically, we focused the article mainly on metal complexes containing chiral ligands (type 2 chirality) as in literature they are more numerous than those with chirality at the metal center (type 1 chirality). Herein, not only their biological activity but also their mechanism of action is summarized. Furthermore, in the final section of the article we have highlighted copper-based complexes as those with a superior biological activity profile and greater prospects for development as a drug.
Collapse
Affiliation(s)
- Zahra Kazemi
- Department of Chemistry, University of Isfahan, Isfahan, Iran
| | - Nakisa Moini
- Department of Inorganic Chemistry, Faculty of Chemistry, Alzahra University, Tehran, Iran
| | | | - Nicola Micale
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
2
|
Karim A, Ullah N, Iqbal M, Malekshah RE, Ali S, Hsu SCN. In silico drug encapsulation using 2-hydroxypropyl-β-CD, tyrosine kinase and tyrosinase inhibition of dinuclear Cu(II) carboxylate complexes. J Mol Graph Model 2025; 134:108903. [PMID: 39541649 DOI: 10.1016/j.jmgm.2024.108903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/16/2024]
Abstract
In recent years, copper carboxylate complexes have garnered significant interest for biological applications. This study focuses on 20 Cu(II) carboxylate complexes selected from our previous research. Due to the hydrophobic nature of these complexes, the 2-hydroxypropyl-β-cyclodextrin (2HPβCD) was employed as a carrier to reduce toxicity and increase solubility for controlling drug delivery. Monte Carlo calculations were performed to confirm the interaction between the optimized structures of Cu(II) complexes and 2HPβCD, forming a host-guest system. All the structures were simulated and optimized using DFT-D calculations in Material Studio 2017. The results indicated that a neutral medium is more favorable for the adsorption of these complexes into 2HPβCD. More negative binding energy values suggested strong and energetically favorable adsorption on 2HPβCD. Complexes 4, 5, and 7 exhibited the highest interaction, making them excellent candidates for drug delivery systems. DFT-D calculations were also used to investigate the release of complexes, revealing that complexes 5, 14, and 19 were difficult to release due to their lowest energy. In contrast, complexes 8, 9, and 16 were found to be most efficient to release due to weak non-covalent interactions with 2HPβCD as we can predict from binding energy obtained by DFT-D. No specific trend was observed in the interaction of the complexes with 2HPβCD. Additionally, the effects of these complexes on c-kit tyrosine kinase and Mushroom tyrosinase were studied by molecular docking. The results demonstrated that all the complexes interacted with the active site of respective receptors through hydrophobic interactions. Complexes containing 1,10-phenanthroline and 2,2-bipyrdine were identified as having a strong, spontaneous binding ability with receptors.
Collapse
Affiliation(s)
- Amir Karim
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Chemistry Bacha Khan University Charsadda 24420, KPK, Pakistan
| | - Najeeb Ullah
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Chemistry Bacha Khan University Charsadda 24420, KPK, Pakistan
| | - Muhammad Iqbal
- Department of Chemistry Bacha Khan University Charsadda 24420, KPK, Pakistan
| | - Rahime Eshaghi Malekshah
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Chemistry, Semnan University, Semnan, Iran.
| | - Saqib Ali
- Department of Chemistry Quaid-i-Azam University Islamabad 45320, Pakistan
| | - Sodio C N Hsu
- Department of Medicinal and Applied Chemistry, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; Department of Medical Research, Kaohsiung Medical University Hospital, Kaohsiung 80708, Taiwan
| |
Collapse
|
3
|
Shaikh SA, Bhat SS, Revankar VK, S. N, Kumara K, Lokanath NK, Butcher RJ, Kumbar V, Bhat K. Copper( i) complexes with quinolone appended 1,8-naphthalimide conjugates: structural characterization, DNA and protein binding and cytotoxicity studies. NEW J CHEM 2022. [DOI: 10.1039/d2nj02655d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Cytotoxicity, cellular uptake of copper(i) complexes containing 1,8-naphthalimide conjugates have been investigated.
Collapse
Affiliation(s)
- Sabiha A. Shaikh
- Department of Chemistry, Karnatak University, Dharwad-580003, Karnataka, India
| | - Satish S. Bhat
- Department of Chemistry, Karnatak University, Dharwad-580003, Karnataka, India
| | | | - Naveen S.
- Department of Physics, Faculty of Engineering & Technology, Jain (Deemed-to-be University), Bangalore 562112, India
| | - Karthik Kumara
- Department of Physics, BMS College of Engineering, Bangaluru-560017, India
| | - N. K. Lokanath
- Department of Studies in Physics, University of Mysore, Manasagangotri, Mysuru 570006, Karnataka, India
| | - Ray J. Butcher
- Department of Chemistry, Howard University, Washington, DC 20059, USA
| | - Vijay Kumbar
- Maratha Mandal's Central Research Laboratory, Marathamandal Dental College and Research Centre, Belgaum, Karnataka, India
| | - Kishore Bhat
- Maratha Mandal's Central Research Laboratory, Marathamandal Dental College and Research Centre, Belgaum, Karnataka, India
| |
Collapse
|
4
|
Guo T, Ma S. Recent Advances in the Discovery of Multitargeted Tyrosine Kinase Inhibitors as Anticancer Agents. ChemMedChem 2020; 16:600-620. [PMID: 33179854 DOI: 10.1002/cmdc.202000658] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 10/28/2020] [Indexed: 12/18/2022]
Abstract
The treatment of cancer has been one of the most significant challenges for the medical field. Further research on the signal transduction pathway of tumor cells is driving the rapid development of antitumor agents targeting tyrosine kinases. However, most of the currently approved tyrosine kinase inhibitors based on the "single target/single drug" design are becoming less and less effective in the treatment of complex, heterogeneous, and multigenic cancers; this also results in resistance to chemotherapy. In contrast, multitargeted tyrosine kinase inhibitors (MT-TKIs) can effectively block multiple pathways of intracellular signal transduction. Therefore, they have therapeutic advantages over single-targeted inhibitors and have become a hotspot in antitumor drug research in recent years. This minireview summarizes recent advances in the discovery of MT-TKIs based on their chemical structures. In particular, we describe the kinase inhibitory and antitumor activity of promising compounds, as well as their structure - activity relationships (SARs).
Collapse
Affiliation(s)
- Ting Guo
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, West Wenhua Road 44, Jinan, 250012, P. R. China
| | - Shutao Ma
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, West Wenhua Road 44, Jinan, 250012, P. R. China
| |
Collapse
|
5
|
Inhibition of histone deacetylases, topoisomerases and epidermal growth factor receptor by metal-based anticancer agents: Design & synthetic strategies and their medicinal attributes. Bioorg Chem 2020; 105:104396. [PMID: 33130345 DOI: 10.1016/j.bioorg.2020.104396] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 10/16/2020] [Accepted: 10/18/2020] [Indexed: 12/22/2022]
Abstract
Metal-based inhibitors of histone deacetylases (HDAC), DNA topoisomerases (Topos) and Epidermal Growth Factor Receptor (EGFR) have demonstrated their cytotoxic potential against various cancer types such as breast, lung, uterus, colon, etc. Additionally, these have proven their role in resolving the resistance issues, enhancing the affinity, lipophilicity, stability, and biocompatibility and therefore, emerged as potential candidates for molecularly targeted therapeutics. This review focusses on nature and role of metals and organic ligands in tuning the anticancer activity in multiple modes of inhibition considering HDACs, Topos or EGFR as one of the primary targets. The conceptual design and synthetic approaches of platinum and non-platinum metal complexes comprising of chiefly ruthenium, rhodium, palladium, copper, iron, nickel, cobalt, zinc metals coordinated with organic scaffolds, along with their biological activity profiles, structure-activity relationships (SARs), docking studies, possible modes of action, and their scope and limitations are discussed in detail.
Collapse
|
6
|
Staneva D, Manov H, Yordanova S, Vasileva‐Tonkova E, Stoyanov S, Grabchev I. Synthesis, spectral properties and antimicrobial activity of a new cationic water‐soluble pH‐dependent poly(propylene imine) dendrimer modified with 1,8‐naphthalimides. LUMINESCENCE 2020; 35:947-954. [DOI: 10.1002/bio.3809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/28/2020] [Accepted: 04/01/2020] [Indexed: 01/28/2023]
Affiliation(s)
| | - Hristo Manov
- Faculty of Chemistry and PharmacySofia University ‘St. Kliment Ohridski’ Sofia Bulgaria
| | - Stanislava Yordanova
- Faculty of Chemistry and PharmacySofia University ‘St. Kliment Ohridski’ Sofia Bulgaria
| | | | - Stanimir Stoyanov
- Faculty of Chemistry and PharmacySofia University ‘St. Kliment Ohridski’ Sofia Bulgaria
| | - Ivo Grabchev
- Faculty of MedicineSofia University ‘St. Kliment Ohridski’ Sofia Bulgaria
| |
Collapse
|
7
|
Johnson AD, Zammit R, Vella J, Valentino M, Buhagiar JA, Magri DC. Aminonaphthalimide hybrids of mitoxantrone and amonafide as anticancer and fluorescent cellular imaging agents. Bioorg Chem 2019; 93:103287. [PMID: 31561011 DOI: 10.1016/j.bioorg.2019.103287] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 08/28/2019] [Accepted: 09/15/2019] [Indexed: 01/10/2023]
Abstract
Novel water-soluble 4-aminonaphthalimides were synthesised and their cellular fluorescent imaging, cytotoxicity and ability to induced apoptosis evaluated. The lead compound 1 was designed from the cross-fertilisation of the basic hydrophilic amino pharmacophore of mitoxantrone, and an aminonaphthalimide scaffold of the drug candidate, amonafide. The compounds are also fluorescent pH probes based on photoinduced electron transfer (PET) and internal charge transfer (ICT). The compounds are sensitive to solvent polarity with large Stoke shifts (>90 nm) and provide emissive-coloured solutions (blue to yellow). Excited state pKas of 9.0-9.3 and fluorescence quantum yields of 0.47-0.58 were determined in water. The cytotoxicity and cellular fluorescent imaging properties of the compounds were tested on human cancer cell lines K562 and MCF-7 by the MTT assay, phase contrast and fluorescence microscopy. Compounds 1 and 3 with flexible aminoalkyl chains exhibited GI50 comparable to amonafide, while 2 and 4 with a rigid piperazine moiety and butyl chain are less cytotoxic. Fluorescence microscopy with 1 allowed for the visualization of the intracellular microenvironment exemplifying the potential utility of such hybrid molecules as anticancer and fluorescent cellular imaging agents.
Collapse
Affiliation(s)
- Alex D Johnson
- Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD 2080, Malta
| | - Rodrianne Zammit
- Department of Biology, Faculty of Science, University of Malta, Msida, MSD 2080, Malta
| | - Jasmine Vella
- Department of Physiology and Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, MSD 2080, Malta
| | - Mario Valentino
- Department of Physiology and Biochemistry, Faculty of Medicine & Surgery, University of Malta, Msida, MSD 2080, Malta
| | - Joseph A Buhagiar
- Department of Biology, Faculty of Science, University of Malta, Msida, MSD 2080, Malta
| | - David C Magri
- Department of Chemistry, Faculty of Science, University of Malta, Msida, MSD 2080, Malta.
| |
Collapse
|
8
|
Vascular Endothelial Growth Factor Receptor (VEGFR-2)/KDR Inhibitors: Medicinal Chemistry Perspective. MEDICINE IN DRUG DISCOVERY 2019. [DOI: 10.1016/j.medidd.2019.100009] [Citation(s) in RCA: 170] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
9
|
Pilon A, Lorenzo J, Rodriguez-Calado S, Adão P, Martins AM, Valente A, Alves LG. New Cyclams and Their Copper(II) and Iron(III) Complexes: Synthesis and Potential Application as Anticancer Agents. ChemMedChem 2019; 14:770-778. [PMID: 30694018 DOI: 10.1002/cmdc.201800702] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 01/25/2019] [Indexed: 11/06/2022]
Abstract
New cyclam derivatives (HOCH2 CH2 CH2 )2 (PhCH2 )2 Cyclam and (HOCH2 CH2 CH2 )2 ( 4 - CF 3 PhCH2 )2 Cyclam, as well as their CuII and FeIII complexes, were synthesized and characterized and their stability in cellular media was assessed. The cytotoxic effect of all compounds was examined on human cervical cancer (HeLa) cells, revealing strong anticancer activity. After 24 h, only complexes with the (HOCH2 CH2 CH2 )2 ( 4 - CF 3 PhCH2 )2 Cyclam ligand are cytotoxic, whereas after incubation for 72 h all compounds show significant antiproliferative effects. Notably, compounds containing 4 - CF 3 PhCH2 pendant arms on the cyclam ring revealed the most activity, with cytotoxicity values up to 12 times higher than those of cisplatin. All metal complexes seem to induce cell death through the formation of reactive oxygen species.
Collapse
Affiliation(s)
- Adhan Pilon
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal.,Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Julia Lorenzo
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Sergi Rodriguez-Calado
- Institut de Biotecnologia i de Biomedicina, Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, 08193 Bellaterra, Barcelona, Spain
| | - Pedro Adão
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Ana M Martins
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| | - Andreia Valente
- Centro de Química Estrutural, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016, Lisbon, Portugal
| | - Luis G Alves
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais 1, 1049-001, Lisbon, Portugal
| |
Collapse
|
10
|
Chen Z, Xu Y, Qian X. Naphthalimides and analogues as antitumor agents: A review on molecular design, bioactivity and mechanism of action. CHINESE CHEM LETT 2018. [DOI: 10.1016/j.cclet.2018.09.020] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
11
|
Streciwilk W, Terenzi A, Cheng X, Hager L, Dabiri Y, Prochnow P, Bandow JE, Wölfl S, Keppler BK, Ott I. Fluorescent organometallic rhodium(I) and ruthenium(II) metallodrugs with 4-ethylthio-1,8-naphthalimide ligands: Antiproliferative effects, cellular uptake and DNA-interaction. Eur J Med Chem 2018; 156:148-161. [PMID: 30006161 DOI: 10.1016/j.ejmech.2018.06.056] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2018] [Revised: 06/22/2018] [Accepted: 06/23/2018] [Indexed: 12/28/2022]
Abstract
Fluorescent 4-ethylthio-1,8-naphthalimides containing rhodium(I) N-heterocyclic carbene (NHC) and ruthenium (II) NHC fragments were synthesised and evaluated for their antiproliferative effects, cellular uptake and DNA-binding activity. Both types of organometallics triggered ligand dependent efficient cytotoxic effects against tumor cells with the rhodium(I) NHC derivatives causing stronger effects than the ruthenium (II) NHC analogues. Antiproliferative effects could also be observed against several pathogenic Gram-positive bacterial strains, whereas the growth of Gram-negative bacteria was not substantially affected. Cellular uptake was confirmed by atomic absorption spectroscopy as well as by fluorescence microscopy indicating a general ligand dependent accumulation in the cells. An in-depth study on the interaction with DNA confirmed insertion of the naphthalimide moiety between the planar bases of B-DNA via an intercalation mechanism, as well as its stacking on top of the quartets of G-quadruplex structures. Furthermore, additional coordinative binding of the organometallic complexes to the model DNA base 9-ethylguanine could be detected. The studied compounds thus represent promising bioorganometallics featuring strong pharmacological effects in combination with excellent cellular imaging properties.
Collapse
Affiliation(s)
- Wojciech Streciwilk
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethoven Straße 55, 38106, Braunschweig, Germany
| | - Alessio Terenzi
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Straße 42, A-1090, Vienna, Austria
| | - Xinlai Cheng
- Department of Pharmacy and Molecular Biotechnology, Division of Pharmaceutical Biology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Laura Hager
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Straße 42, A-1090, Vienna, Austria
| | - Yasamin Dabiri
- Department of Pharmacy and Molecular Biotechnology, Division of Pharmaceutical Biology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Pascal Prochnow
- Applied Microbiology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Julia Elisabeth Bandow
- Applied Microbiology, Ruhr-Universität Bochum, Universitätsstraße 150, 44801, Bochum, Germany
| | - Stefan Wölfl
- Department of Pharmacy and Molecular Biotechnology, Division of Pharmaceutical Biology, University of Heidelberg, Im Neuenheimer Feld 364, D-69120, Heidelberg, Germany
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Straße 42, A-1090, Vienna, Austria
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethoven Straße 55, 38106, Braunschweig, Germany.
| |
Collapse
|
12
|
Synthesis and Characterization of a New PAMAM Metallodendrimer for Antimicrobial Modification of Cotton Fabric. Macromol Res 2018. [DOI: 10.1007/s13233-018-6043-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
13
|
Grabchev I, Vasileva-Tonkova E, Staneva D, Bosch P, Kukeva R, Stoyanova R. Impact of Cu(ii) and Zn(ii) ions on the functional properties of new PAMAM metallodendrimers. NEW J CHEM 2018. [DOI: 10.1039/c8nj00384j] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Two new PAMAM metallodendrimers have been synthesized and characterized and their antimicrobial activity in solution and after deposition on textile fabrics has been described.
Collapse
Affiliation(s)
- Ivo Grabchev
- Sofia University “St. Kliment Ohridski”
- Faculty of Medicine
- 1407 Sofia
- Bulgaria
| | | | | | - Paula Bosch
- Institute of Science and Technology of Polymers
- CSIC
- Madrid
- Spain
| | - Rositsa Kukeva
- Institute of General and Inorganic Chemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| | - Radostina Stoyanova
- Institute of General and Inorganic Chemistry
- Bulgarian Academy of Sciences
- 1113 Sofia
- Bulgaria
| |
Collapse
|
14
|
Langdon-Jones EE, Williams CF, Hayes AJ, Lloyd D, Coles SJ, Horton PN, Groves LM, Pope SJA. Luminescent 1,8-Naphthalimide-Derived ReIComplexes: Syntheses, Spectroscopy, X-ray Structure and Preliminary Bioimaging in Fission Yeast Cells. Eur J Inorg Chem 2017. [DOI: 10.1002/ejic.201700549] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
| | - Catrin F. Williams
- School of Engineering; Cardiff University; CF24 3AA Cardiff UK
- School of Biosciences; Cardiff University; CF10 3AT Cardiff UK
| | | | - David Lloyd
- School of Biosciences; Cardiff University; CF10 3AT Cardiff UK
| | - Simon J. Coles
- UK National Crystallographic Service; Chemistry, Faculty of Natural and Environmental Sciences; University of Southampton; Highfield SO17 1BJ, England Southampton UK
| | - Peter N. Horton
- UK National Crystallographic Service; Chemistry, Faculty of Natural and Environmental Sciences; University of Southampton; Highfield SO17 1BJ, England Southampton UK
| | - Lara M. Groves
- School of Chemistry; Cardiff University; CF10 3AT Cardiff UK
| | | |
Collapse
|
15
|
Streciwilk W, Terenzi A, Misgeld R, Frias C, Jones PG, Prokop A, Keppler BK, Ott I. Metal NHC Complexes with Naphthalimide Ligands as DNA-Interacting Antiproliferative Agents. ChemMedChem 2017; 12:214-225. [PMID: 27997743 DOI: 10.1002/cmdc.201600557] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 12/14/2016] [Indexed: 01/08/2023]
Abstract
Naphthalimide-based N-heterocyclic carbene (NHC) complexes of the type [(1,5-cyclooctadiene)(NHC)RhCl)] (4 a-c), [(p-cymene)(NHC)RuCl2 )] (5 a-c), and [(NHC)CuBr] (6 a-c) were synthesized and investigated as antiproliferative agents that target DNA. The cytotoxic effects were largely driven by the naphthalimide structure, which is a DNA-intercalating moiety. Regarding the metal center, the highest activities were observed with the rhodium complexes, and cytotoxic activity was significantly lower for the ruthenium derivatives. The stable coordination of the NHC ligands of selected complexes 4 b and 5 b in solution was confirmed, and their DNA binding properties were studied by UV/Vis spectroscopy, mass spectrometry, and circular dichroism. Stable intercalative binding into the DNA for all selected naphthalimide-based complexes is indicated by high DNA binding constants. Particularly efficient binding was observed in the case of the rhodium complex 4 b. More detailed biological studies on 4 b showed promising activities against multidrug-resistant Nalm-6 cells and confirmed an important role for mitochondrial pathways in 4 b-induced apoptosis.
Collapse
Affiliation(s)
- Wojciech Streciwilk
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106, Braunschweig, Germany
| | - Alessio Terenzi
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Straße 42, 1090, Vienna, Austria.,Research Platform "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Rainer Misgeld
- Department of Paedriatric Oncology, Childrens Hospital Cologne, Amsterdamer Strasse 59, 50735, Cologne, Germany
| | - Corazon Frias
- Department of Paedriatric Oncology, Childrens Hospital Cologne, Amsterdamer Strasse 59, 50735, Cologne, Germany
| | - Peter G Jones
- Institute of Inorganic and Analytical Chemistry, Technische Universität Braunschweig, Postfach 3329, 38023, Braunschweig, Germany
| | - Aram Prokop
- Department of Paedriatric Oncology, Childrens Hospital Cologne, Amsterdamer Strasse 59, 50735, Cologne, Germany
| | - Bernhard K Keppler
- Institute of Inorganic Chemistry, University of Vienna, Waehringer Straße 42, 1090, Vienna, Austria.,Research Platform "Translational Cancer Therapy Research", University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Ingo Ott
- Institute of Medicinal and Pharmaceutical Chemistry, Technische Universität Braunschweig, Beethovenstr. 55, 38106, Braunschweig, Germany
| |
Collapse
|
16
|
Nath JK, Baruah JB. Cyclic aromatic imides as a potential class of molecules for supramolecular interactions. CrystEngComm 2015. [DOI: 10.1039/c5ce01485a] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Prospects of stacking interactions of imides beneficial to generation of new soft materials are projected by analysing examples of primary building blocks that provide a basis for understanding at the molecular level.
Collapse
Affiliation(s)
- Jayanta K. Nath
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039, India
| | - Jubaraj B. Baruah
- Department of Chemistry
- Indian Institute of Technology Guwahati
- Guwahati 781 039, India
| |
Collapse
|