1
|
Hao Q, Zhao W, Li Z, Lai Y, Wang Y, Yang Q, Zhang L. Combination therapy and dual-target inhibitors based on cyclin-dependent kinases (CDKs): Emerging strategies for cancer therapy. Eur J Med Chem 2025; 289:117465. [PMID: 40037064 DOI: 10.1016/j.ejmech.2025.117465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Revised: 02/22/2025] [Accepted: 02/26/2025] [Indexed: 03/06/2025]
Abstract
Cyclin-dependent kinases (CDKs) are pivotal regulators of the cell cycle and transcriptional machinery, making them attractive targets for cancer therapy. While CDK inhibitors have demonstrated promising clinical outcomes, they also face challenges in enhancing efficacy, particularly in overcoming drug resistance. Combination therapies have emerged as a key strategy to augment the effectiveness of CDK inhibitors when used alongside other kinase inhibitors or non-kinase-targeted agents. Dual-target inhibitors that simultaneously inhibit CDKs and other oncogenic drivers are gaining attention, offering novel avenues to optimize cancer therapy. Based on the structural characterization and biological functions of CDKs, this review comprehensively examines the structure-activity relationship (SAR) of existing dual-target CDK inhibitors from a drug design perspective. We also thoroughly investigate the preclinical studies and clinical translational potential of combination therapies and dual-target inhibitors. Tailoring CDK inhibitors to specific cancer subtypes and therapeutic settings will inspire innovative approaches for the next generation of CDK-related therapies, ultimately improving patient survival.
Collapse
Affiliation(s)
- Qi Hao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Wenzhe Zhao
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Zhijia Li
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yue Lai
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Yan Wang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Qianqian Yang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China
| | - Lan Zhang
- Sichuan Engineering Research Center for Biomimetic Synthesis of Natural Drugs, School of Life Science and Engineering, Southwest Jiaotong University, Chengdu, 610031, China; Institute of Precision Drug Innovation and Cancer Center, Second Affiliated Hospital of Dalian Medical University, Dalian, 116023, China.
| |
Collapse
|
2
|
Nemr MTM, Elshewy A, Ibrahim ML, El Kerdawy AM, Halim PA. Design, synthesis, antineoplastic activity of new pyrazolo[3,4-d]pyrimidine derivatives as dual CDK2/GSK3β kinase inhibitors; molecular docking study, and ADME prediction. Bioorg Chem 2024; 150:107566. [PMID: 38896936 DOI: 10.1016/j.bioorg.2024.107566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 06/06/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
In the current study, novel pyrazolo[3,4-d]pyrimidine derivatives 5a-h were designed and synthesized as targeted anti-cancer agents through dual CDK2/GSK-3β inhibition. The designed compounds demonstrated moderate to potent activity on the evaluated cancer cell lines (MCF-7 and T-47D). Compounds 5c and 5 g showed the most promising cytotoxic activity against the tested cell lines surpassing that of the used reference standard; staurosporine. On the other hand, both compounds showed good safety and tolerability on normal fibroblast cell line (MCR5). The final compounds 5c and 5 g showed a promising dual CDK2/GSK-3β inhibitory activity with IC50 of 0.244 and 0.128 μM, respectively, against CDK2, and IC50 of 0.317 and 0.160 μM, respectively, against GSK-3β. Investigating the effect of compounds 5c and 5 g on CDK2 and GSK-3β downstream cascades showed that they reduced the relative cellular content of phosphorylated RB1 and β-catenin compared to that in the untreated MCF-7 cells. Moreover, compounds 5c and 5 g showed a reasonable selective inhibition against the target kinases CDK2/GSK-3β in comparison to a set of seven off-target kinases. Furthermore, the most potent compound 5 g caused cell cycle arrest at the S phase in MCF-7 cells preventing the cells' progression to G2/M phase inducing cell apoptosis. Molecular docking studies showed that the final pyrazolo[3,4-d]pyrimidine derivatives have analogous binding modes in the target kinases interacting with the hinge region key amino acids. Molecular dynamics simulations confirmed the predicted binding mode by molecular docking. Moreover, in silico predictions indicated their favorable physicochemical and pharmacokinetic properties in addition to their promising cytotoxic activity.
Collapse
Affiliation(s)
- Mohamed T M Nemr
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Ahmed Elshewy
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt; Department of Medicinal Chemistry, Faculty of Pharmacy, Galala University, New Galala 43713, Egypt.
| | - Mohammed L Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Ahmed M El Kerdawy
- School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom; Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| | - Peter A Halim
- Department of Pharmaceutical Organic Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, Cairo, P.O. Box 11562, Egypt
| |
Collapse
|
3
|
Sulaibi MA, Zahra J, Bardaweel S, El Abadleh M, Taha MO. Docking-guided exploration of the anti-flt3 potential of isoindigo derivatives towards potential treatments of acute myeloid leukemia. Med Chem Res 2024; 33:1242-1266. [DOI: 10.1007/s00044-024-03259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 06/07/2024] [Indexed: 07/10/2024]
|
4
|
Abdo Moustafa E, Abdelrasheed Allam H, Fouad MA, El Kerdawy AM, Nasser Eid El-Sayed N, Wagner C, Abdel-Aziz HA, Abdel Fattah Ezzat M. Discovery of novel quinolin-2-one derivatives as potential GSK-3β inhibitors for treatment of Alzheimer's disease: Pharmacophore-based design, preliminary SAR, in vitro and in vivo biological evaluation. Bioorg Chem 2024; 146:107324. [PMID: 38569322 DOI: 10.1016/j.bioorg.2024.107324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/05/2024]
Abstract
Recently, glycogen synthase kinase-3β (GSK-3β) has been considered as a critical factor implicated in Alzheimer's disease (AD). In a previous work, a 3D pharmacophore model for GSK-3β inhibitors was created and the results suggested that derivative ZINC67773573, VIII, may provide a promising lead for developing novel GSK-3β inhibitors for the AD's treatment. Consequently, in this work, novel series of quinolin-2-one derivatives were synthesized and assessed for their GSK-3β inhibitory properties. In vitro screening identified three compounds: 7c, 7e and 7f as promising GSK-3β inhibitors. Compounds 7c, 7e and 7f were found to exhibit superior inhibitory effect on GSK-3β with IC50 value ranges between 4.68 ± 0.59 to 8.27 ± 0.60 nM compared to that of staurosporine (IC50 = 6.12 ± 0.74 nM). Considerably, compounds 7c, 7e and 7f effectively lowered tau hyperphosphorylated aggregates and proving their safety towards the SH-SY5Y and THLE2 normal cell lines. The most promising compound 7c alleviated cognitive impairments in the scopolamine-induced model in mice. Compound 7c's activity profile, while not highly selective, may provide a starting point and valuable insights into the design of multi-target inhibitors. According to the ADME prediction results, compounds 7c, 7e and 7f followed Lipinski's rule of five and could almost permeate through the BBB. Molecular docking simulations showed that these compounds are well accommodated in the ATP binding site interacting by its quinoline-2-one ring through hydrogen bonding with the key amino acids Asp133 and Val135 at the hinge region. The findings of this study suggested that these new compounds may have potential as anti-AD drugs targeting GSK-3β.
Collapse
Affiliation(s)
| | - Heba Abdelrasheed Allam
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt
| | - Marwa A Fouad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt; Pharmaceutical Chemistry Department, School of Pharmacy, Newgiza University, Newgiza, km 22 Cairo- Alexandria Desert Road, Cairo, Egypt
| | - Ahmed M El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt; School of Pharmacy, College of Health and Science, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, United Kingdom
| | | | - Christoph Wagner
- Institut für Chemie, Naturwissenschaftliche FakultätII, Universität Halle, Kurt-Mothes-Str. 206120, Halle, Germany
| | - Hatem A Abdel-Aziz
- Department of Applied Organic Chemistry, National Research Center, Dokki, Giza, P.O. Box 12622, Egypt
| | - Manal Abdel Fattah Ezzat
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Kasr El-Aini Street, 11562 Cairo, Egypt.
| |
Collapse
|
5
|
Chen W, Wen LQ, Lu XB, Zhou H. Iron-catalyzed selective construction of indole derivatives via oxidative C(sp 3)-H functionalization of indolin-2-ones. Org Biomol Chem 2024; 22:3073-3079. [PMID: 38563186 DOI: 10.1039/d4ob00133h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Considering the importance of developing powerful catalysts and the pharmacophore characteristics of indole derivatives, we describe a switchable approach for the iron-catalyzed oxidative C(sp3)-H functionalization of indolin-2-ones. Selective transformations displayed excellent activity and chemoselectivity using FeCl2 as the catalyst, air as the oxidant, and alcohol as the solvent. By manipulating the reaction conditions, particularly the choice of solvent, catalyst loading, and reaction sequence, a series of valuable indole derivatives, including isatins and symmetrical and nonsymmetrical isoindigos, were selectively synthesized in good to excellent yields. Furthermore, the gram-scale synthesis of compounds with biological anticancer activity under simple conditions highlights their great potential in practical applications.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Lang-Qi Wen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Hui Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
6
|
El-Abadelah MM, Abdullah AH, Zahra JA, Sabri SS, Bardaweel SK, Taha MO. Synthesis and antitumor activity of model cyclopentene-[ g]annelated isoindigos. Z NATURFORSCH C 2024; 79:41-46. [PMID: 38414412 DOI: 10.1515/znc-2023-0119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 02/11/2024] [Indexed: 02/29/2024]
Abstract
A set of cyclopenten-[g]annelated isoindigos (5a-g) has been prepared and tested for their in vitro antiproliferative activities against MCF-7 and HL60 cells. Among, the N-1-methyl-5'-nitro derivative (5g) displayed the highest activity against HL60 cells (IC50 = 67 nM) and acted as the most potent Flt3 inhibitor. Compounds 5d-g exhibited moderate activity against MCF-7 (IC50 = 50-80 μM).
Collapse
Affiliation(s)
| | | | - Jalal A Zahra
- Chemistry Department, The University of Jordan, Amman 11942, Jordan
| | - Salim S Sabri
- Chemistry Department, The University of Jordan, Amman 11942, Jordan
| | - Sanaa K Bardaweel
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Mutasem O Taha
- Department of Pharmaceutical Sciences, School of Pharmacy, The University of Jordan, Amman 11942, Jordan
| |
Collapse
|
7
|
Salama EE, Youssef MF, Aboelmagd A, Boraei ATA, Nafie MS, Haukka M, Barakat A, Sarhan AAM. Discovery of Potent Indolyl-Hydrazones as Kinase Inhibitors for Breast Cancer: Synthesis, X-ray Single-Crystal Analysis, and In Vitro and In Vivo Anti-Cancer Activity Evaluation. Pharmaceuticals (Basel) 2023; 16:1724. [PMID: 38139850 PMCID: PMC10748079 DOI: 10.3390/ph16121724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/02/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
According to data provided by the World Health Organization (WHO), a total of 2.3 million women across the globe received a diagnosis of breast cancer in the year 2020, and among these cases, 685,000 resulted in fatalities. As the incidence of breast cancer statistics continues to rise, it is imperative to explore new avenues in the ongoing battle against this disease. Therefore, a number of new indolyl-hydrazones were synthesized by reacting the ethyl 3-formyl-1H-indole-2-carboxylate 1 with thiosemicarbazide, semicarbazide.HCl, 4-nitrophenyl hydrazine, 2,4-dinitrophenyl hydrazine, and 4-amino-5-(1H-indol-2-yl)-1,2,4-triazole-3-thione to afford the new hit compounds, which were assigned chemical structures as thiosemicarbazone 3, bis(hydrazine derivative) 5, semicarbzone 6, Schiff base 8, and the corresponding hydrazones 10 and 12 by NMR, elemental analysis, and X-ray single-crystal analysis. The MTT assay was employed to investigate the compounds' cytotoxicity against breast cancer cells (MCF-7). Cytotoxicity results disclosed potent IC50 values against MCF-7, especially compounds 5, 8, and 12, with IC50 values of 2.73 ± 0.14, 4.38 ± 0.23, and 7.03 ± 0.37 μM, respectively, compared to staurosproine (IC50 = 8.32 ± 0.43 μM). Consequently, the activities of compounds 5, 8, and 12 in relation to cell migration were investigated using the wound-healing test. The findings revealed notable wound-healing efficacy, with respective percentages of wound closure measured at 48.8%, 60.7%, and 51.8%. The impact of the hit compounds on cell proliferation was assessed by examining their apoptosis-inducing properties. Intriguingly, compound 5 exhibited a significant enhancement in cell death within MCF-7 cells, registering a notable increase of 39.26% in comparison to the untreated control group, which demonstrated only 1.27% cell death. Furthermore, the mechanism of action of compound 5 was scrutinized through testing against kinase receptors. The results revealed significant kinase inhibition, particularly against PI3K-α, PI3K-β, PI3K-δ, CDK2, AKT-1, and EGFR, showcasing promising activity, compared to standard drugs targeting these receptors. In the conclusive phase, through in vivo assay, compound 5 demonstrated a substantial reduction in tumor volume, decreasing from 106 mm³ in the untreated control to 56.4 mm³. Moreover, it significantly attenuated tumor proliferation by 46.9%. In view of these findings, the identified leads exhibit promises for potential development into future medications for the treatment of breast cancer, as they effectively hinder both cell migration and proliferation.
Collapse
Affiliation(s)
- Eid E. Salama
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
| | - Mohamed F. Youssef
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
| | - Ahmed Aboelmagd
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
| | - Ahmed T. A. Boraei
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
| | - Mohamed S. Nafie
- Department of Chemistry, Faculty of Science, Suez Canal University, Ismailia 41522, Egypt; (M.F.Y.); (A.A.); or (A.T.A.B.); (M.S.N.)
- Department of Chemistry, College of Sciences, University of Sharjah, Sharjah P.O. Box 27272, United Arab Emirates
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-40014 Jyväskylä, Finland;
| | - Assem Barakat
- Chemistry Department, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi Arabia
| | - Ahmed A. M. Sarhan
- Chemistry Department, Faculty of Science, Arish University, Al-Arish 45511, Egypt; or
| |
Collapse
|
8
|
Chen W, Lu X, Zhou H. Base‐catalyzed Sulfurative Condensation of 2‐Oxoindoles to Isoindigos Using Elemental Sulfur. ASIAN J ORG CHEM 2022. [DOI: 10.1002/ajoc.202200430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Wei Chen
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Xiao‐Bing Lu
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| | - Hui Zhou
- State Key Laboratory of Fine Chemicals Dalian University of Technology Dalian 116024 China
| |
Collapse
|
9
|
Zhao S, Gao N, Bao N, Qian M, Chen ZY, Zhang MJ, Chen X. Stereoselective Synthesis of Tetrasubstituted Olefins via Visible-Light-Promoted Iodine-Mediated Homo-Coupling of Diazo. J Org Chem 2022; 87:11826-11837. [PMID: 36001822 DOI: 10.1021/acs.joc.2c01647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A visible-light-promoted iodine-mediated homo-coupling of diazo was first described. A series of tetrasubstituted olefins were synthesized in high yields and with low to high Z-selectivities from phenyldiazoacetates. For 3-diazooxindoles, isoindigo derivatives were provided in moderate to high yields and with excellent E-selectivities. Experimental results showed that the reaction proceeded through a diiodo intermediate. The synthetic usefulness of this reaction was illustrated by the synthesis of maleimide derivatives and dispiro epoxy.
Collapse
Affiliation(s)
- Shuai Zhao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Nan Gao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Ning Bao
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Mingcheng Qian
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Zi-Yun Chen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Meng-Jia Zhang
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| | - Xin Chen
- School of Pharmacy, Changzhou University, Changzhou, Jiangsu 213164, China
| |
Collapse
|
10
|
Zhou K, Wang D, Ju G, Deng Z, Huang P, Huang Z, Li B, Zhao Y. Ligand-Promoted Fluorinated Olefination of Isatins at the C5 Position via a Palladium Catalyst. Org Lett 2022; 24:5568-5572. [PMID: 35867047 DOI: 10.1021/acs.orglett.2c02104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A palladium-catalyzed nondirected fluorinated olefination was developed. The oxalyl amide ligand greatly improved the yield of the reaction. A wide variety of isatin derivatives were well tolerated and yielded the corresponding products in moderate to good yields. Various fluorinated olefins were also compatible. The application and synthesis of bioactive compounds such as a Metisazone derivative highlight the synthetic value of this approach.
Collapse
Affiliation(s)
- Kehan Zhou
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Dongjie Wang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Guodong Ju
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zefeng Deng
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Pengcheng Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Zhibin Huang
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China
| | - Bao Li
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P. R. China
| | - Yingsheng Zhao
- Key Laboratory of Organic Synthesis of Jiangsu Province, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang 453000, P. R. China
| |
Collapse
|
11
|
Jagtap RA, Pradhan C, Gonnade RG, Punji B. An Efficient Route to 3,3'-Biindolinylidene-diones by Iron-Catalyzed Dimerization of Isatins. Chem Asian J 2022; 17:e202200414. [PMID: 35608328 DOI: 10.1002/asia.202200414] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/19/2022] [Indexed: 11/06/2022]
Abstract
Iron-catalyzed dimerization of various isatin derivatives is described for the efficient synthesis of 3,3'-biindolinylidene-diones (isoindigos). The reaction provides easy access to self-coupled and cross-coupled 3,3'-indolinylidene-diones that have high relevance to biology and materials. This Fe(0)- or Fe(II)-catalyzed dimerization reaction tolerates a wide range of functionalities, such as fluoro, chloro, bromo, alkenyl, nitrile, ether, ester, pyrrolyl, indolyl and carbazolyl groups, including cyclic and acyclic alkyls as well as an alkyl-bearing fatty-alcohol moiety. Especially, the coupling between two distinct isatins provided excellent selectivity for the cross-dimerization with trace of self-couplings. The single-crystal X-ray diffraction study established the molecular structure of eight dimerized products. A preliminary mechanistic study of the Fe-catalyzed dimerization supported the radical pathway for the reaction.
Collapse
Affiliation(s)
- Rahul A Jagtap
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR, Organic Chemistry Division, Dr Homi Bhabha Road, 411008, Pune, INDIA
| | - Chandini Pradhan
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR, Organic Chemistry Division, Dr Homi Bhabha Road, 411008, Pune, INDIA
| | - Rajesh G Gonnade
- CSIR-National Chemical Laboratory: National Chemical Laboratory CSIR, Centre for Material Characterization, Dr Homi Bhabha Road, 411008, Pune, INDIA
| | - Benudhar Punji
- National Chemical Laboratory CSIR, Chemical Engineering Division, Dr. Homi Bhabha Road, 411008, Pune, INDIA
| |
Collapse
|
12
|
Chaube U, Bhatt H. Identification of potent, non-toxic, selective CDK2 inhibitor through the pharmacophore-based scaffold hopping, molecular dynamics simulation-assisted molecular docking study, Lee Richard contour map analysis, and ADMET properties. Struct Chem 2022. [DOI: 10.1007/s11224-022-01958-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
13
|
Synthesis of new substituted 7-azaisoindigos. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
14
|
Khalili G, Rezaei F, Keller PA. The Synthesis and Theoretical Investigation of Functionalized
N
,
N
′‐Arylthioalkylisoindigo Derivatives. ChemistrySelect 2022. [DOI: 10.1002/slct.202103008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Gholamhossein Khalili
- School of Chemistry and Molecular Bioscience Molecular Horizons University of Wollongong, and Illawarra Health and Medical Research Institute Wollongong New South Wales 2522 Australia
- Chemistry Department Islamic Azad University Bushehr Branch, PO Box 7519619555 Bushehr Iran
| | - Farideh Rezaei
- Department of Chemistry College of Sciences Shiraz University Shiraz 7194684795 Iran
| | - Paul A. Keller
- School of Chemistry and Molecular Bioscience Molecular Horizons University of Wollongong, and Illawarra Health and Medical Research Institute Wollongong New South Wales 2522 Australia
| |
Collapse
|
15
|
Izmest'ev AN, Anikina L, Zanin IE, Kolotyrkina NG, Ekaterina IS, Kravchenko AN, Gazieva GA. Design, synthesis and in vitro evaluation of the hybrids of oxindolylidene and imidazothiazolotriazine as efficient antiproliferative agents. NEW J CHEM 2022. [DOI: 10.1039/d2nj01454h] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
1,3-Diethyl-6-oxindolylidenetetrahydroimidazo[4,5-e]thiazolo[3,2-b]-1,2,4-triazine-2,7-dione with 2-propyl substituent at the nitrogen atom of oxindole fragment (1d) was identified previously as a lead compound in an antiproliferative agent discovery effort based on oxindolylidene derivatives of...
Collapse
|
16
|
Chen W, Zhou H, Ren BH, Ren WM, Lu XB. COS-triggered oxygen/sulfur exchange of isatins: chemoselective synthesis of functionalized isoindigos and spirothiopyrans via self-condensation and the thio-Diels-Alder reaction. Org Biomol Chem 2021; 20:678-685. [PMID: 34939627 DOI: 10.1039/d1ob02157e] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Herein, we present the first organocatalytic oxygen/sulfur atom exchange reaction (O/S ER) of isatins by employing carbonyl sulfide (COS) as a novel sulfuring reagent under mild reaction conditions. 8-Diazabicyclo[5.4.0]undec-7-ene (DBU) exhibited excellent activity in this approach. Remarkably, the chemical transformations of in situ generated 3-thioisatins can be tuned via the judicious choice of reaction solvents in a one pot process, enabling the selective formation of either functionalized isoindigos in CH3CN via a self-condensation process or spirothiopyrans in DMSO in the presence of conjugated dienes via the thio-Diels-Alder reaction. Mechanistic studies with experimental and density functional theory approaches revealed that the O/S ER between isatins and COS results in the formation of 3-thioisatins as the key intermediates, which further undergo solvent-controlled transformations to generate isoindigos or spirothiopyrans, respectively. The easily-accessible substrates and operational simplicity make the process suitable for further exploration. The practicality of this transformation was demonstrated by the gram-scale synthesis of isoindigo-based drug molecules and donor-acceptor conjugated polymers.
Collapse
Affiliation(s)
- Wei Chen
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Hui Zhou
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Bai-Hao Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Wei-Min Ren
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| | - Xiao-Bing Lu
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, China.
| |
Collapse
|
17
|
Eldehna WM, Al-Rashood ST, Al-Warhi T, Eskandrani RO, Alharbi A, El Kerdawy AM. Novel oxindole/benzofuran hybrids as potential dual CDK2/GSK-3β inhibitors targeting breast cancer: design, synthesis, biological evaluation, and in silico studies. J Enzyme Inhib Med Chem 2021; 36:270-285. [PMID: 33327806 PMCID: PMC7751407 DOI: 10.1080/14756366.2020.1862101] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 02/08/2023] Open
Abstract
The serine/threonine protein kinases CDK2 and GSK-3β are key oncotargets in breast cancer cell lines, therefore, in the present study three series of oxindole-benzofuran hybrids were designed and synthesised as dual CDK2/GSK-3β inhibitors targeting breast cancer (5a-g, 7a-h, and 13a-b). The N1 -unsubstituted oxindole derivatives, series 5, showed moderate to potent activity on both MCF-7 and T-47D breast cancer cell lines. Compounds 5d-f showed the most potent cytotoxic activity with IC50 of 3.41, 3.45 and 2.27 μM, respectively, on MCF-7 and of 3.82, 4.53 and 7.80 μM, respectively, on T-47D cell lines, in comparison to the used reference standard (staurosporine) IC50 of 4.81 and 4.34 μM, respectively. On the other hand, the N1 -substituted oxindole derivatives, series 7 and 13, showed moderate to weak cytotoxic activity on both breast cancer cell lines. CDK2 and GSK-3β enzyme inhibition assay of series 5 revealed that compounds 5d and 5f are showing potent dual CDK2/GSK-3β inhibitory activity with IC50 of 37.77 and 52.75 nM, respectively, on CDK2 and 32.09 and 40.13 nM, respectively, on GSK-3β. The most potent compounds 5d-f caused cell cycle arrest in the G2/M phase in MCF-7 cells inducing cell apoptosis because of the CDK2/GSK-3β inhibition. Molecular docking studies showed that the newly synthesised N1 -unsubstituted oxindole hybrids have comparable binding patterns in both CDK2 and GSK-3β. The oxindole ring is accommodated in the hinge region interacting through hydrogen bonding with the backbone CO and NH of the key amino acids Glu81 and Leu83, respectively, in CDK2 and Asp133 and Val135, respectively, in GSK-3β. Whereas, in series 7 and 13, the N1 -substitutions on the oxindole nucleus hinder the compounds from achieving these key interactions with hinge region amino acids what rationalises their moderate to low anti-proliferative activity.
Collapse
Affiliation(s)
- Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Tarfah Al-Warhi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Razan O. Eskandrani
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Amal Alharbi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ahmed M. El Kerdawy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Cairo University, Cairo, Egypt
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, New Giza University, Cairo, Egypt
| |
Collapse
|
18
|
Kiss FL, Corbet BP, Simeth NA, Feringa BL, Crespi S. Predicting the substituent effects in the optical and electrochemical properties of N,N'-substituted isoindigos. Photochem Photobiol Sci 2021; 20:927-938. [PMID: 34227039 PMCID: PMC8550769 DOI: 10.1007/s43630-021-00071-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 06/24/2021] [Indexed: 11/30/2022]
Abstract
Isoindigo, the structural isomer of the well-known dye indigo, has seen a major revival recently because of the increasing interest of its use as a potential drug core structure and for the development of organic photovoltaic materials. Highly beneficial for diverse applications are its facile synthesis, straightforward functionalisation and the broad absorption band in the visible range. Moreover, its intrinsic electron deficiency renders isoindigo a promising acceptor structure in bulk heterojunction architectures. Here we present new insights into the substituent effects of N-functionalised isoindigos, developing a reliable and fast in silico screening approach of a library of compounds. Using experimental UV-Vis and electrochemical data increased the accuracy of the TD-DFT method employed. This procedure allowed us to accurately predict the optical and electrochemical properties of N-functionalised isoindigos and the elucidation of the relationship between substituent effects and electronic properties.
Collapse
Affiliation(s)
- Ferdinand L Kiss
- Faculty for Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
- Department Chemie, Ludwig-Maximilians-Universität München, 81377, Munich, Germany
| | - Brian P Corbet
- Faculty for Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Nadja A Simeth
- Faculty for Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands
| | - Ben L Feringa
- Faculty for Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| | - Stefano Crespi
- Faculty for Science and Engineering, Stratingh Institute for Chemistry, University of Groningen, Nijenborgh 4, 9747 AG, Groningen, The Netherlands.
| |
Collapse
|
19
|
Jankowska A, Satała G, Bojarski AJ, Pawłowski M, Chłoń-Rzepa G. Multifunctional Ligands with Glycogen Synthase Kinase 3 Inhibitory Activity as a New Direction in Drug Research for Alzheimer's Disease. Curr Med Chem 2021; 28:1731-1745. [PMID: 32338201 DOI: 10.2174/0929867327666200427100453] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/09/2020] [Accepted: 04/10/2020] [Indexed: 11/22/2022]
Abstract
Alzheimer's disease (AD) belongs to the most common forms of dementia that causes a progressive loss of brain cells and leads to memory impairment and decline of other thinking skills. There is yet no effective treatment for AD; hence, the search for new drugs that could improve memory and other cognitive functions is one of the hot research topics worldwide. Scientific efforts are also directed toward combating behavioral and psychological symptoms of dementia, which are an integral part of the disease. Several studies have indicated that glycogen synthase kinase 3 beta (GSK3β) plays a crucial role in the pathogenesis of AD. Moreover, GSK3β inhibition provided beneficial effects on memory improvement in multiple animal models of AD. The present review aimed to update the most recent reports on the discovery of novel multifunctional ligands with GSK3β inhibitory activity as potential drugs for the symptomatic and disease-modifying therapy of AD. Compounds with GSK3β inhibitory activity seem to be an effective pharmacological approach for treating the causes and symptoms of AD as they reduced neuroinflammation and pathological hallmarks in animal models of AD and provided relief from cognitive and neuropsychiatric symptoms. These compounds have the potential to be used as drugs for the treatment of AD, but their precise pharmacological, pharmacokinetic, toxicological and clinical profiles need to be defined.
Collapse
Affiliation(s)
- Agnieszka Jankowska
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| | - Grzegorz Satała
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Andrzej J Bojarski
- Department of Medicinal Chemistry, Maj Institute of Pharmacology, Polish Academy of Sciences, 12 Smetna Street, 31-343 Krakow, Poland
| | - Maciej Pawłowski
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| | - GraŻyna Chłoń-Rzepa
- Jagiellonian University Medical College, Faculty of Pharmacy, Department of Medicinal Chemistry, 9 Medyczna Street, 30-688 Krakow, Poland
| |
Collapse
|
20
|
Zhang Y, Du H, Liu H, He Q, Xu Z. Isatin dimers and their biological activities. Arch Pharm (Weinheim) 2020; 353:e1900299. [DOI: 10.1002/ardp.201900299] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/20/2019] [Accepted: 12/28/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Ya‐Zhou Zhang
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Hong‐Zhi Du
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Hai‐Lin Liu
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Qian‐Song He
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| | - Zhi Xu
- Teaching and Research Office of Analytical Chemistry, School of Pharmaceutical SciencesGuizhou University of Traditional Chinese Medicine Guizhou China
| |
Collapse
|
21
|
Design and development of Isatin-triazole hydrazones as potential inhibitors of microtubule affinity-regulating kinase 4 for the therapeutic management of cell proliferation and metastasis. Eur J Med Chem 2019; 163:840-852. [DOI: 10.1016/j.ejmech.2018.12.026] [Citation(s) in RCA: 48] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 12/04/2018] [Accepted: 12/12/2018] [Indexed: 12/23/2022]
|
22
|
Yi W, Fang XX, Liu QY, Liu GQ. Metal-Free Synthesis of Oxazolidine-2,4-diones and 3,3-Disubstituted Oxindoles via ICl-Induced Cyclization. European J Org Chem 2018. [DOI: 10.1002/ejoc.201801250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Wei Yi
- College of Pharmacy; Nantong University; 19 Qixiu Road 226001 People's Republic of China Nantong
| | - Xing-Xiao Fang
- College of Pharmacy; Nantong University; 19 Qixiu Road 226001 People's Republic of China Nantong
| | - Qing-Yun Liu
- College of Pharmacy; Nantong University; 19 Qixiu Road 226001 People's Republic of China Nantong
| | - Gong-Qing Liu
- College of Pharmacy; Nantong University; 19 Qixiu Road 226001 People's Republic of China Nantong
| |
Collapse
|
23
|
Zhang HH, Wang YQ, Huang LT, Zhu LQ, Feng YY, Lu YM, Zhao QY, Wang XQ, Wang Z. NaI-mediated divergent synthesis of isatins and isoindigoes: a new protocol enabled by an oxidation relay strategy. Chem Commun (Camb) 2018; 54:8265-8268. [PMID: 29989115 DOI: 10.1039/c8cc04471f] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
A new approach for the synthesis of isatins and isoindigoes by an inexpensive and environmentally friendly NaI-mediated transformation is disclosed. The selectivity could be switched by simply varying the solvent, and isatins (using THF) and isoindigoes (using DMSO) could be obtained in moderate to excellent yields.
Collapse
Affiliation(s)
- Hong-Hua Zhang
- School of Pharmacy, Lanzhou University, West Donggang Road. No. 199, Lanzhou 730000, China.
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Synthesis of isatin-conjugated 3H-indole-N-oxides and their serendipitous conversion to spiroindolenines. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.03.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
25
|
Seo DY, Roh HJ, Jo HY, Cho S, Kim JN. The first synthesis of cis-N,N′-dialkylisoindigo derivatives from 3-indolyl-2-oxindoles with DDQ. Tetrahedron Lett 2018. [DOI: 10.1016/j.tetlet.2018.01.079] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
26
|
Saraswati AP, Ali Hussaini SM, Krishna NH, Babu BN, Kamal A. Glycogen synthase kinase-3 and its inhibitors: Potential target for various therapeutic conditions. Eur J Med Chem 2017; 144:843-858. [PMID: 29306837 DOI: 10.1016/j.ejmech.2017.11.103] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 11/16/2022]
Abstract
Glycogen Synthase Kinase-3 (GSK-3) is a serine/threonine kinase which is ubiquitously expressed and is regarded as a regulator for various cellular events and signalling pathways. It exists in two isoforms, GSK-3α and GSK-3β and can phosphorylate a wide range of substrates. Aberrancy in the GSK-3 activity can lead to various diseases like Alzheimer's, diabetes, cancer, neurodegeneration etc., rendering it an attractive target to develop potent and specific inhibitors. The present review focuses on the recent developments in the area of GSK-3 inhibitors and also enlightens its therapeutic applicability in various disease conditions.
Collapse
Affiliation(s)
- A Prasanth Saraswati
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - S M Ali Hussaini
- Medicinal Chemistry & Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Namballa Hari Krishna
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India; Medicinal Chemistry & Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
| | - Bathini Nagendra Babu
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India
| | - Ahmed Kamal
- Department of Medicinal Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, 500 037, India; Medicinal Chemistry & Pharmacology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India; School Pharmaceutical Education and Research (SPER), Jamia Hamdard, New Delhi 110062, India.
| |
Collapse
|
27
|
Seo DY, Roh HJ, Min BK, Kim JN. Facile Synthesis of Isoindigo Derivatives from 3-Indolyl-2-Oxindoles with DDQ. B KOREAN CHEM SOC 2017. [DOI: 10.1002/bkcs.11317] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Da Young Seo
- Department of Chemistry and Institute of Basic Science; Chonnam National University; Gwangju 500-757 Korea
| | - Hwa Jung Roh
- Department of Chemistry and Institute of Basic Science; Chonnam National University; Gwangju 500-757 Korea
| | - Beom Kyu Min
- Department of Chemistry and Institute of Basic Science; Chonnam National University; Gwangju 500-757 Korea
| | - Jae Nyoung Kim
- Department of Chemistry and Institute of Basic Science; Chonnam National University; Gwangju 500-757 Korea
| |
Collapse
|
28
|
Bao H, Zhang Q, Zhu Z, Xu H, Ding F, Wang M, Du S, Du Y, Yan Z. BHX, a novel pyrazoline derivative, inhibits breast cancer cell invasion by reversing the epithelial-mesenchymal transition and down-regulating Wnt/β-catenin signalling. Sci Rep 2017; 7:9153. [PMID: 28831201 PMCID: PMC5567253 DOI: 10.1038/s41598-017-09655-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2017] [Accepted: 07/26/2017] [Indexed: 12/17/2022] Open
Abstract
The novel pyrazoline derivative, BHX, has recently been shown to exhibit potent anti-tumour activity by blocking the Wnt/β-catenin signalling pathway. However, its effect on breast cancer growth and invasion are unknown. Our results show that BHX suppresses MDA-MB-231 cell viability and colony formation in a dose-dependent manner, and induces apoptosis and G0/G1 phase arrest. BHX-treated breast cancer cells showed morphological characteristics of cells undergoing apoptosis. Furthermore, BHX inhibited cell migration and invasion, which was associated with increased E-cadherin mRNA and protein expression, and down-regulation of SNAIL and vimentin. In addition, BHX induced the generation of intracellular ROS and decreased β-catenin protein and mRNA expression. We used a mouse xenograft model to investigate the effects of BHX in vivo, where the growth of MDA-MB-231 xenografted tumours was suppressed in nude mice treated continuously with BHX for 21 days. Finally, the rat plasma concentration of BHX was measured by ultra-performance liquid-chromatography tandem mass spectrometry and the pharmacokinetic parameters of BHX were processed by non-compartmental analysis. In conclusion, BHX merits further study as a novel therapeutic small molecule for the treatment of breast cancer.
Collapse
Affiliation(s)
- Hanmei Bao
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Qing Zhang
- Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,Department of Hematology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Zhongling Zhu
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Hui Xu
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Fengxia Ding
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Meisa Wang
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Shuangshuang Du
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Yibo Du
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China
| | - Zhao Yan
- Department of Clinical Pharmacology, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China. .,Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, 300060, China.
| |
Collapse
|
29
|
Wang CP, Jiang GF. An efficient method based on indoles for the synthesis of isatins by taking advantage of I 2 O 5 as oxidant. Tetrahedron Lett 2017. [DOI: 10.1016/j.tetlet.2017.03.060] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
30
|
|
31
|
Li G, Zhou G, Zhang-Negrerie D, Du Y, Huang J, Zhao K. Palladium(II) Acetate-Catalyzed Dual C-H Functionalization and C-C Bond Formation: A Domino Reaction for the Synthesis of Functionalized (E)-Bisindole-2-ones from Diarylbut-2-ynediamides. Adv Synth Catal 2016. [DOI: 10.1002/adsc.201600767] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Guangchen Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 People's Republic of China
| | - Guangshuai Zhou
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 People's Republic of China
| | - Daisy Zhang-Negrerie
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 People's Republic of China
| | - Yunfei Du
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 People's Republic of China
| | - Jianhui Huang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 People's Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin 300072 People's Republic of China
| | - Kang Zhao
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology; Tianjin University; Tianjin 300072 People's Republic of China
| |
Collapse
|
32
|
A Hybrid Chalcone Combining the Trimethoxyphenyl and Isatinyl Groups Targets Multiple Oncogenic Proteins and Pathways in Hepatocellular Carcinoma Cells. PLoS One 2016; 11:e0161025. [PMID: 27525972 PMCID: PMC4985065 DOI: 10.1371/journal.pone.0161025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 07/28/2016] [Indexed: 12/20/2022] Open
Abstract
Small molecule inhibitors that can simultaneously inhibit multiple oncogenic proteins in essential pathways are promising therapeutic chemicals for hepatocellular carcinoma (HCC). To combine the anticancer effects of combretastatins, chalcones and isatins, we synthesized a novel hybrid molecule 3’,4’,5’-trimethoxy-5-chloro-isatinylchalcone (3MCIC). 3MCIC inhibited proliferation of cultured HepG2 cells, causing rounding-up of the cells and massive vacuole accumulation in the cytoplasm. Paxillin and focal adhesion plaques were downregulated by 3MCIC. Surprisingly, unlike the microtubule (MT)-targeting agent CA-4 that inhibits tubulin polymerization, 3MCIC stabilized tubulin polymers both in living cells and in cell lysates. 3MCIC treatment reduced cyclin B1, CDK1, p-CDK1/2, and Rb, but increased p53 and p21. Moreover, 3MCIC caused GSK3β degradation by promoting GSK3β-Ser9 phosphorylation. Nevertheless, 3MCIC inhibited the Wnt/β-catenin pathway by downregulating β-catenin, c-Myc, cyclin D1 and E2F1. 3MCIC treatment not only activated the caspase-3-dependent apoptotic pathway, but also caused massive autophagy evidenced by rapid and drastic changes of LC3 and p62. 3MCIC also promoted cleavage and maturation of the lysosomal protease cathepsin D. Using ligand-affinity chromatography (LAC), target proteins captured onto the Sephacryl S1000-C12-3MCIC resins were isolated and analyzed by mass spectrometry (MS). Some of the LAC-MS identified targets, i.e., septin-2, vimentin, pan-cytokeratin, nucleolin, EF1α1/2, EBP1 (PA2G4), cyclin B1 and GSK3β, were further detected by Western blotting. Moreover, both septin-2 and HIF-1α decreased drastically in 3MCIC-treated HepG2 cells. Our data suggest that 3MCIC is a promising anticancer lead compound with novel targeting mechanisms, and also demonstrate the efficiency of LAC-MS based target identification in anticancer drug development.
Collapse
|
33
|
Chen YS, Cheng MJ, Hsiao Y, Chan HY, Hsieh SY, Chang CW, Liu TW, Chang HS, Chen IS. Chemical Constituents of the Endophytic FungusHypoxylonsp. 12F0687 Isolated from TaiwaneseIlex formosana. Helv Chim Acta 2015. [DOI: 10.1002/hlca.201500048] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
34
|
Saleh AM, El-Abadelah MM, Aziz MA, Taha MO, Nasr A, Rizvi SAA. Antiproliferative activity of the isoindigo 5'-Br in HL-60 cells is mediated by apoptosis, dysregulation of mitochondrial functions and arresting cell cycle at G0/G1 phase. Cancer Lett 2015; 361:251-261. [PMID: 25790909 DOI: 10.1016/j.canlet.2015.03.013] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 12/25/2022]
Abstract
Our new compound, 5'-Br [(E)-1-(5'-bromo-2'-oxoindolin-3'-ylidene)-6-ethyl-2,3,6,9-tetrahydro-2,9-dioxo-1H-pyrrolo[3,2-f]quinoline-8-carboxylic acid], had shown strong, selective antiproliferative activity against different cancer cell lines. Here, we aim to comprehensively characterize the mechanisms associated with its cytotoxicity in the human promyelocytic leukemia HL-60 cells. We focused at studying the involvement of apoptotic pathway and cell cycle effects. 5'-Br significantly inhibited proliferation by inducing caspase-dependent apoptosis. Involvement of caspase independent mechanism is also possible due to observed inability of z-VAD-FMK to rescue apoptotic cells. 5'-Br was found to trigger intrinsic apoptotic pathway as indicated by depolarization of the mitochondrial inner membrane, decreased level of cellular ATP, modulated expression and phosphorylation of Bcl-2 leading to loss of its association with Bax, and increased release of cytochrome c. 5'-Br treated cells were found arrested at G0/G1 phase with modulation in protein levels of cyclins, dependent kinases and their inhibitors. Expression and enzymatic activity of CDK2 and CDK4 was found inhibited. Retinoblastoma protein (Rb) phosphorylation was also inhibited whereas p21 protein levels were increased. These results suggest that the antiproliferative mechanisms of action of 5'-Br could involve apoptotic pathways, dysregulation of mitochondrial functions and disruption of cell cycle checkpoint.
Collapse
Affiliation(s)
- Ayman M Saleh
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), National Guard Health Affairs, P.O. Box: 3660, Mail Code: 3127, Riyadh 11481, Saudi Arabia; King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs, P.O. Box 22490, Riyadh 11426, Saudi Arabia.
| | - Mustafa M El-Abadelah
- Department of Chemistry, Faculty of Science, The University of Jordan, Amman 11942, Jordan
| | - Mohammad Azhar Aziz
- King Abdullah International Medical Research Center (KAIMRC), National Guard Health Affairs, P.O. Box 22490, Riyadh 11426, Saudi Arabia
| | - Mutasem O Taha
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, The University of Jordan, Amman 11942, Jordan
| | - Amre Nasr
- Department of Basic Medical Sciences, College of Medicine, King Saud Bin Abdulaziz University for Health Sciences (KSAU-HS), National Guard Health Affairs, P.O. Box: 3660, Mail Code: 3127, Riyadh 11481, Saudi Arabia; Department of Microbiology, Faculty of Sciences and Technology, Al-Neelain University, Khartoum, Sudan
| | - Syed A A Rizvi
- Department of Pharmaceutical Sciences, College of Pharmacy, Nova Southeastern University (NSU), Fort Lauderdale, Florida 33328, USA
| |
Collapse
|
35
|
Fershtat LL, Epishina MA, Kulikov AS, Struchkova MI, Makhova NN. Synthesis of hetarylsulfanyl- and hetaryloxyfuroxans by nucleophilic substitution of nitro group in nitrofuroxans with heterocyclic thiol and hydroxy derivatives*. Chem Heterocycl Compd (N Y) 2015. [DOI: 10.1007/s10593-015-1678-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
36
|
Eldehna WM, Altoukhy A, Mahrous H, Abdel-Aziz HA. Design, synthesis and QSAR study of certain isatin-pyridine hybrids as potential anti-proliferative agents. Eur J Med Chem 2015; 90:684-94. [DOI: 10.1016/j.ejmech.2014.12.010] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 12/03/2014] [Accepted: 12/06/2014] [Indexed: 01/07/2023]
|