1
|
Espinosa-Bustos C, Bertrand J, Villegas-Menares A, Guerrero S, Di Marcotullio L, Navacci S, Schulte G, Kozielewicz P, Bloch N, Villela V, Paulino M, Kogan MJ, Cantero J, Salas CO. New Smoothened ligands based on the purine scaffold as potential agents for treating pancreatic cancer. Bioorg Chem 2024; 151:107681. [PMID: 39106711 DOI: 10.1016/j.bioorg.2024.107681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/27/2024] [Accepted: 07/27/2024] [Indexed: 08/09/2024]
Abstract
Aberrant activation of the Hedgehog (Hh) signalling pathway has been associated with the development and progression of pancreatic cancer. For this reason, blockade of Hh pathway by inhibitors targeting the G protein-coupled receptor Smoothened (SMO) has been considered as a therapeutic target for the treatment of this cancer. In our previous work, we obtained a new SMO ligand based on a purine scaffold (compound I), which showed interesting antitumor activity in several cancer cell lines. In this work, we report the design and synthesis of 17 new purine derivatives, some of which showed high cytotoxic effect on Mia-PaCa-2 (Hh-dependent pancreatic cancer cell lines) and low toxicity on non-neoplastic HEK-293 cells compared with gemcitabine, such as 8f, 8g and 8h (IC50 = 4.56, 4.11 and 3.08 μM, respectively). Two of these purines also showed their ability to bind to SMO through NanoBRET assays (pKi = 5.17 for 8f and 5.01 for 8h), with higher affinities to compound I (pKi = 1.51). In addition, docking studies provided insight the purine substitution pattern is related to the affinity on SMO. Finally, studies of Hh inhibition for selected purines, using a transcriptional functional assay based on luciferase activity in NIH3T3 Shh-Light II cells, demonstrated that 8g reduced GLI activity with a IC50 = 6.4 μM as well as diminished the expression of Hh target genes in two specific Hh-dependent cell models, Med1 cells and Ptch1-/- mouse embryonic fibroblasts. Therefore, our results provide a platform for the design of SMO ligands that could be potential selective cytotoxic agents for the treatment of pancreatic cancer.
Collapse
Affiliation(s)
- Christian Espinosa-Bustos
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Jeanluc Bertrand
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Alondra Villegas-Menares
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Simón Guerrero
- Facultad de Medicina, Universidad de Atacama, 153601 Copiapó, Chile
| | - Lucia Di Marcotullio
- Department of Molecular Medicine, Faculty Pharmacy and Medicine, Sapienza University, 00161 Rome, Italy; Istituto Pasteur-Fondazione Cenci Bolognetti, Sapienza University, 00161 Rome, Italy
| | - Shirin Navacci
- Department of Molecular Medicine, Faculty Pharmacy and Medicine, Sapienza University, 00161 Rome, Italy
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institute, 17165 Solna, Stockholm, Sweden
| | - Pawel Kozielewicz
- Department of Physiology and Pharmacology, Karolinska Institute, 17165 Solna, Stockholm, Sweden
| | - Nicolas Bloch
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Valentina Villela
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile
| | - Margot Paulino
- Departamento DETEMA, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Marcelo J Kogan
- Departamento de Química Farmacológica y Toxicológica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, 8380492 Santiago, Chile; Advanced Center of Chronic Diseases (ACCDiS), Universidad de Chile, 8380492 Santiago, Chile
| | - Jorge Cantero
- Departamento DETEMA, Facultad de Química, Universidad de la República, 11800 Montevideo, Uruguay
| | - Cristian O Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, 702843 Santiago, Chile.
| |
Collapse
|
2
|
Fatih Polat M, Durmaz Şahin I, Kul P, Cetin Atalay R, Tuncbilek M. Synthesis and cytotoxicity of novel 6,8,9-trisubstituted purine analogs against liver cancer cells. Bioorg Med Chem Lett 2024; 106:129775. [PMID: 38688437 DOI: 10.1016/j.bmcl.2024.129775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/19/2024] [Accepted: 04/27/2024] [Indexed: 05/02/2024]
Abstract
A series of novel 6-(substituted phenyl piperazine)-8-(4-substituted phenyl)-9-cyclopentyl purines, 10-51, were synthesized by a four-step synthesis, achieving an overall yield of about 43 %. The reaction conditions were effectively optimized, and the final products were obtained with high purity and yield in all synthesis steps. The synthesized nucleobases were evaluated for their in vitro cytotoxic activities on selected human cancer cell lines (HUH7 (liver), HCT116 (colon), and MCF7 (breast)) using the Sulforhodamine B (SRB) assay. Among these analogs, compounds bearing 4-trifluoromethyl phenyl (19, 20 and 21), 4-methoxy phenyl (27) and 4-fluoro phenyl (34) substitutions at C-8 of purine were the most potent, and they were also analyzed in drug-resistance and drug-sensitive hepatocellular cancer cell (HCC) panels. Compound 19 displayed remarkable anticancer activities (IC50 = 2.9-9.3 μM) against Huh7, FOCUS, SNU475, SNU182, HepG2, and Hep3B cells compared to the positive control, Fludarabine. Additionally, the pharmacological properties and toxicity profiles of the molecules were investigated computationally by the Swiss-ADME and Pro-Tox II online tools, respectively. Results showed that our compounds have favorable physicochemical characteristics for oral bioavailability and do not reveal any toxicity endpoints such as carcinogenicity, immunotoxicity, mutagenicity, or cytotoxicity.
Collapse
Affiliation(s)
- M Fatih Polat
- Department of Pharmaceutical Basic Sciences, Faculty of Pharmacy, Erzincan Binali Yildirim University, 24100, Erzincan, Turkey
| | - Irem Durmaz Şahin
- Koc University Research Center for Translational Medicine (KUTTAM), Sariyer, 34450, Istanbul, Turkey; Koc University, School of Medicine, Sariyer, 34450, Istanbul, Turkey; Cancer Systems Biology Laboratory, Graduate School of Informatics, ODTU, Ankara 06800, Turkey
| | - Pınar Kul
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey; Department of Pharmaceutical Chemistry, Graduate School of Health Sciences, Ankara University, 06110, Ankara, Turkey
| | - Rengul Cetin Atalay
- Cancer Systems Biology Laboratory, Graduate School of Informatics, ODTU, Ankara 06800, Turkey; Section of Pulmonary and Critical Care Medicine, the University of Chicago, Chicago, IL, 60637, USA
| | - Meral Tuncbilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06560, Ankara, Turkey.
| |
Collapse
|
3
|
Díaz-Muñoz M, Hernández-Muñoz R, Butanda-Ochoa A. Structure-activity features of purines and their receptors: implications in cell physiopathology. MOLECULAR BIOMEDICINE 2022; 3:5. [PMID: 35079944 PMCID: PMC8789959 DOI: 10.1186/s43556-022-00068-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 01/19/2022] [Indexed: 11/21/2022] Open
Abstract
The purine molecular structure consists of fused pyrimidine and imidazole rings. Purines are main pieces that conform the structure of nucleic acids which rule the inheritance processes. Purines also work as metabolic intermediates in different cell functions and as messengers in the signaling pathways throughout cellular communication. Purines, mainly ATP and adenosine (ADO), perform their functional and pharmacological properties because of their structural/chemical characteristics that make them either targets of mutagenesis, mother frameworks for designing molecules with controlled effects (e.g. anti-cancer), or chemical donors (e.g., of methyl groups, which represent a potential chemoprotective action against cancer). Purines functions also come from their effect on specific receptors, channel-linked and G-protein coupled for ATP, and exclusively G-coupled receptors for ADO (also known as ADORAs), which are involved in cell signaling pathways, there, purines work as chemical messengers with autocrine, paracrine, and endocrine actions that regulate cell metabolism and immune response in tumor progression which depends on the receptor types involved in these signals. Purines also have antioxidant and anti-inflammatory properties and participate in the cell energy homeostasis. Therefore, purine physiology is important for a variety of functions relevant to cellular health; thus, when these molecules present a homeostatic imbalance, the stability and survival of the cellular systems become compromised.
Collapse
Affiliation(s)
- Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular Y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, UNAM, Boulevard Juriquilla 3001, C.P. 76230, Juriquilla, Querétaro, México
| | - Rolando Hernández-Muñoz
- Departamento de Biología Celular Y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria/Circuito Exterior, C.P. 04510, Ciudad de México, México
| | - Armando Butanda-Ochoa
- Departamento de Biología Celular Y Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, UNAM, Ciudad Universitaria/Circuito Exterior, C.P. 04510, Ciudad de México, México.
| |
Collapse
|
4
|
Bayya C, Dokala A, Manda S. Novel 6, 7-disubstituted 7H-purine analogues as potential EGFR/HER2 dual kinase inhibitors overcome lapatinib resistance: Design, synthesis,in-vitroandin-vivoevaluation. RESULTS IN CHEMISTRY 2022. [DOI: 10.1016/j.rechem.2022.100516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
5
|
Zárate AM, Espinosa-Bustos C, Guerrero S, Fierro A, Oyarzún-Ampuero F, Quest AFG, Di Marcotullio L, Loricchio E, Caimano M, Calcaterra A, González-Quiroz M, Aguirre A, Meléndez J, Salas CO. A New Smoothened Antagonist Bearing the Purine Scaffold Shows Antitumour Activity In Vitro and In Vivo. Int J Mol Sci 2021; 22:8372. [PMID: 34445078 PMCID: PMC8395040 DOI: 10.3390/ijms22168372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 12/14/2022] Open
Abstract
The Smoothened (SMO) receptor is the most druggable target in the Hedgehog (HH) pathway for anticancer compounds. However, SMO antagonists such as vismodegib rapidly develop drug resistance. In this study, new SMO antagonists having the versatile purine ring as a scaffold were designed, synthesised, and biologically tested to provide an insight to their mechanism of action. Compound 4s was the most active and the best inhibitor of cell growth and selectively cytotoxic to cancer cells. 4s induced cell cycle arrest, apoptosis, a reduction in colony formation and downregulation of PTCH and GLI1 expression. BODIPY-cyclopamine displacement assays confirmed 4s is a SMO antagonist. In vivo, 4s strongly inhibited tumour relapse and metastasis of melanoma cells in mice. In vitro, 4s was more efficient than vismodegib to induce apoptosis in human cancer cells and that might be attributed to its dual ability to function as a SMO antagonist and apoptosis inducer.
Collapse
Affiliation(s)
- Ana María Zárate
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile; (A.M.Z.); (A.F.)
| | - Christian Espinosa-Bustos
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile;
| | - Simón Guerrero
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile; (S.G.); (F.O.-A.); (A.F.G.Q.)
- Instituto de Investigación Interdisciplinar en Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad SEK (I3CBSEK), Fernando Manterola 0789, Providencia, Santiago 7520317, Chile
| | - Angélica Fierro
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile; (A.M.Z.); (A.F.)
| | - Felipe Oyarzún-Ampuero
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile; (S.G.); (F.O.-A.); (A.F.G.Q.)
- Departamento de Ciencias y Tecnología Farmacéuticas, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santos Dumont 964, Independencia, Santiago 8380494, Chile
| | - Andrew F. G. Quest
- Advanced Center for Chronic Diseases (ACCDiS), Universidad de Chile, Sergio Livingstone 1007, Independencia, Santiago 8380492, Chile; (S.G.); (F.O.-A.); (A.F.G.Q.)
- Laboratorio de Comunicaciones Celulares, Centro de Estudios en Ejercicio, Metabolismo y Cáncer (CEMC), Program of Cellular and Molecular Biology, Instituto de Ciencias Biomédicas (ICBM), Facultad de Medicina, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile
| | - Lucia Di Marcotullio
- Laboratory Affiliated to Insituto Pasteur Italia, Fondazione Cenci Bognetti, Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Elena Loricchio
- Center For Life Nano Science@Sapienza, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Miriam Caimano
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 291, 00161 Rome, Italy;
| | - Andrea Calcaterra
- Department of Chemistry and Technology of Drugs, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy;
| | - Matías González-Quiroz
- Program of Cellular and Molecular Biology, Institute of Biomedical Sciences, Universidad de Chile, Independencia 1027, Santiago 8380453, Chile;
| | - Adam Aguirre
- Laboratorio de Medicina Traslacional, Fundación Arturo López Pérez, Rancagua 878, Lower Fifth Floor, Providencia, Santiago 8320000, Chile;
| | - Jaime Meléndez
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile;
| | - Cristian O. Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Vicuña Mackenna 4860, Macul, Santiago 702843, Chile; (A.M.Z.); (A.F.)
| |
Collapse
|
6
|
Zhang RH, Guo HY, Deng H, Li J, Quan ZS. Piperazine skeleton in the structural modification of natural products: a review. J Enzyme Inhib Med Chem 2021; 36:1165-1197. [PMID: 34080510 PMCID: PMC8183565 DOI: 10.1080/14756366.2021.1931861] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Piperazine moiety is a cyclic molecule containing two nitrogen atoms in positions 1 and 4, as well as four carbon atoms. Piperazine is one of the most sought heterocyclics for the development of new drug candidates with a wide range of applications. Over 100 molecules with a broad range of bioactivities, including antitumor, antibacterial, anti-inflammatory, antioxidant, and other activities, were reviewed. This article reviewed investigations regarding piperazine groups for the modification of natural product derivatives in the last decade, highlighting parameters that affect their biological activity.
Collapse
Affiliation(s)
- Run-Hui Zhang
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hong-Yan Guo
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Hao Deng
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| | - Jinzi Li
- Affiliated Hospital of Yanbian University, Yanji, Jilin, China
| | - Zhe-Shan Quan
- College of Pharmacy, Yanbian University, Yanji, Jilin, 133002, China
| |
Collapse
|
7
|
Matić J, Jukić M, Ismaili H, Saftić D, Ban Ž, Tandarić T, Vianello R, Opačak-Bernardi T, Glavaš-Obrovac L, Žinić B. 6-Morpholino- and 6-amino-9-sulfonylpurine derivatives. Synthesis, computational analysis, and biological activity. NUCLEOSIDES NUCLEOTIDES & NUCLEIC ACIDS 2021; 40:470-503. [PMID: 33709867 DOI: 10.1080/15257770.2021.1896001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The synthesis of novel 6-chloro/morpholino/amino/-9-sulfonylpurine derivatives was accomplished in two ways, either (i) involving the condensation reaction of 6-chloropurine with commercially available arylsulfonyl chlorides in acetone and the presence of aqueous KOH at 0 °C, followed by the substitution of C6-chlorine with morpholine, or (ii) employing a reversed synthetic approach where 6-morpholinopurine and commercially available adenine bases were reacted with the corresponding alkyl, 2-arylethene and arylsulfonyl chlorides giving the N9 sulfonylated products, the latter particularly used where prior nonselective sulfonylation was observed. In both approaches, the sulfonylation reaction occurred regioselectively at the purine N9 position lacking any concurrent N7 derivatives, except in the case of a smaller methyl substituent on SO2 and the free amino group at C6 of the purine ring. The tautomeric features of initial N9 unsubstituted purines, as well as stability trends among the prepared N-9-sulfonylpurine derivates, were investigated using DFT calculations with an important conclusion that electron-donating C6 substituents are beneficial for the synthesis as they both promote the predominance of the desired N9 tautomers and help to assure the stability of the final products. The newly synthesized 6-morpholino and 6-amino-9-sulfonylpurine derivatives showed antiproliferative activity on human carcinoma, lymphoma, and leukemia cells. Among the tested compounds, 6-morpholino 17 and 6-amino 22 derivatives, with trans-β-styrenesulfonyl group attached at the N9 position of purine, proved to be the most effective antiproliferative agents, causing accumulation of leukemia cells in subG0 cell cycle phase.
Collapse
Affiliation(s)
- Josipa Matić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Marijana Jukić
- Department of Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Osijek, Croatia
| | - Hamit Ismaili
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia.,Faculty of Mathematical and Natural Sciences, University of Prishtina, Prishtina, Kosovo
| | - Dijana Saftić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Željka Ban
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Tana Tandarić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Robert Vianello
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| | - Teuta Opačak-Bernardi
- Department of Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Osijek, Croatia
| | - Ljubica Glavaš-Obrovac
- Department of Chemistry, Biochemistry and Clinical Chemistry, Faculty of Medicine, Osijek, Croatia
| | - Biserka Žinić
- Division of Organic Chemistry and Biochemistry, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
8
|
Abstract
Abstract
Using purine as a scaffold, the methods for preparation of novel 2-aminopurine and purine derivatives substituted at position C
6 by the fragments of natural amino acids, short peptides, and N-heterocycles, including enantiopure ones, have been proposed. The methods for determination of the enantiomeric purity of the obtained chiral compounds have been developed. Conjugates exhibiting high antimycobacterial or anti-herpesvirus activity against both laboratory and multidrug-resistant strains were revealed among the obtained compounds.
Collapse
|
9
|
O. Salas C, Zarate AM, Kryštof V, Mella J, Faundez M, Brea J, Loza MI, Brito I, Hendrychová D, Jorda R, Cabrera AR, Tapia RA, Espinosa-Bustos C. Promising 2,6,9-Trisubstituted Purine Derivatives for Anticancer Compounds: Synthesis, 3D-QSAR, and Preliminary Biological Assays. Int J Mol Sci 2019; 21:ijms21010161. [PMID: 31881717 PMCID: PMC6981454 DOI: 10.3390/ijms21010161] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 12/17/2019] [Accepted: 12/20/2019] [Indexed: 12/11/2022] Open
Abstract
We designed, synthesized, and evaluated novel 2,6,9-trisubstituted purine derivatives for their prospective role as antitumor compounds. Using simple and efficient methodologies, 31 compounds were obtained. We tested these compounds in vitro to draw conclusions about their cell toxicity on seven cancer cells lines and one non-neoplastic cell line. Structural requirements for antitumor activity on two different cancer cell lines were analyzed with SAR and 3D-QSAR. The 3D-QSAR models showed that steric properties could better explain the cytotoxicity of compounds than electronic properties (70% and 30% of contribution, respectively). From this analysis, we concluded that an arylpiperazinyl system connected at position 6 of the purine ring is beneficial for cytotoxic activity, while the use of bulky systems at position C-2 of the purine is not favorable. Compound 7h was found to be an effective potential agent when compared with a currently marketed drug, cisplatin, in four out of the seven cancer cell lines tested. Compound 7h showed the highest potency, unprecedented selectivity, and complied with all the Lipinski rules. Finally, it was demonstrated that 7h induced apoptosis and caused cell cycle arrest at the S-phase on HL-60 cells. Our study suggests that substitution in the purine core by arylpiperidine moiety is essential to obtain derivatives with potential anticancer activity.
Collapse
Affiliation(s)
- Cristian O. Salas
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago de Chile 702843, Chile; (A.M.Z.); (R.A.T.)
- Correspondence: (C.O.S.); (C.E.-B.); Tel.: +56-22-354-4427 (C.O.S.); +56-22-354-4838 (C.E.-B.)
| | - Ana Maria Zarate
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago de Chile 702843, Chile; (A.M.Z.); (R.A.T.)
| | - Vladimir Kryštof
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (V.K.); (D.H.); (R.J.)
| | - Jaime Mella
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, 2360102, Av. Gran Bretaña 1111, Playa Ancha, Valparaíso, Casilla 5030, Chile;
| | - Mario Faundez
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago de Chile 702843, Chile;
| | - Jose Brea
- Innopharma Screening Platform-BioFarma Research Group, Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela 15706, Spain; (J.B.); (M.I.L.)
| | - María Isabel Loza
- Innopharma Screening Platform-BioFarma Research Group, Centre for Research in Molecular Medicine and Chronic Diseases, University of Santiago de Compostela, Santiago de Compostela 15706, Spain; (J.B.); (M.I.L.)
| | - Ivan Brito
- Departamento de Química, Facultad de Ciencias Básicas, Universidad de Antofagasta, Av. Angamos 601, Antofagasta 1240000, Chile;
| | - Denisa Hendrychová
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (V.K.); (D.H.); (R.J.)
| | - Radek Jorda
- Laboratory of Growth Regulators, Palacký University and Institute of Experimental Botany AS CR, Slechtitelu 27, 783 71 Olomouc, Czech Republic; (V.K.); (D.H.); (R.J.)
- Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University, Hnevotinská 5, 77900 Olomouc, Czech Republic
| | - Alan R. Cabrera
- Departamento de Química Inorgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago de Chile 702843, Chile;
| | - Ricardo A. Tapia
- Departamento de Química Orgánica, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago de Chile 702843, Chile; (A.M.Z.); (R.A.T.)
| | - Christian Espinosa-Bustos
- Departamento de Farmacia, Facultad de Química y de Farmacia, Pontificia Universidad Católica de Chile, Santiago de Chile 702843, Chile;
- Correspondence: (C.O.S.); (C.E.-B.); Tel.: +56-22-354-4427 (C.O.S.); +56-22-354-4838 (C.E.-B.)
| |
Collapse
|
10
|
Abstract
The present study investigated the effect of cladribine (CLA) and six of its derivatives containing a formamidine group at position 6 (CLA-FDM, CLA-FPAZ, CLA-FPIR, CLA-FPIP, CLA-FHEX, and CLA-FMOR) on acute promyelocytic, lymphoblastic, and acute monocytic leukemia cells. The role of ATR kinase in deoxycytidine kinase (dCK) activation in response to DNA damage was assessed. The presence of DNA lesions was assessed by measurement phosphorylation of H2AX and by using the alkaline comet assay with proteinase K post-treatment following assessment of the cell cycle. Apoptotic events such as alterations in intracellular calcium concentration, caspase-3/7 activity and increased sub-G1 cell population were measured. CLA derivatives were highly effective against leukemic cells, showing high cytotoxicity, causing DNA fragmentation, and inducing DNA-protein cross-links in leukemic cells. CLA-FMOR showed the highest efficacy. CLA derivatives increased the levels of intracellular calcium ions, caspase-3/7 and the percentage of sub-G1 apoptotic cells and blocked cells in the S phase of the cell cycle to a greater extent than free CLA. The selective ATR inhibitor VE-821 significantly suppressed the increase in dCK activity and decreased basal dCK activity. The present results suggested that ATR kinase controls dCK activity in response to synthetic CLA derivatives.
Collapse
|
11
|
Krasnov VP, Musiyak VV, Vozdvizhenskaya OA, Galegov GA, Andronova VL, Gruzdev DA, Chulakov EN, Vigorov AY, Ezhikova MA, Kodess MI, Levit GL, Charushin VN. N-[ω-(Purin-6-yl)aminoalkanoyl] Derivatives of Chiral Heterocyclic Amines as Promising Anti-Herpesvirus Agents. European J Org Chem 2019. [DOI: 10.1002/ejoc.201900727] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Victor P. Krasnov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Vera V. Musiyak
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Olga A. Vozdvizhenskaya
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Georgiy A. Galegov
- Gamaleya Federal Research Centre for Epidemiology and Microbiology; Ministry of Healthcare of the Russian Federation; Ivanovsky Institute of Virology; 123098 Moscow Russia
| | - Valeria L. Andronova
- Gamaleya Federal Research Centre for Epidemiology and Microbiology; Ministry of Healthcare of the Russian Federation; Ivanovsky Institute of Virology; 123098 Moscow Russia
| | - Dmitry A. Gruzdev
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
- Institute of Chemical Engineering; Ministry of Healthcare of the Russian Federation; Ural Federal University; 620002 Ekaterinburg Russia
| | - Evgeny N. Chulakov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Alexey Yu. Vigorov
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Marina A. Ezhikova
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
| | - Mikhail I. Kodess
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
- Institute of Chemical Engineering; Ministry of Healthcare of the Russian Federation; Ural Federal University; 620002 Ekaterinburg Russia
| | - Galina L. Levit
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
- Institute of Chemical Engineering; Ministry of Healthcare of the Russian Federation; Ural Federal University; 620002 Ekaterinburg Russia
| | - Valery N. Charushin
- Postovsky Institute of Organic Synthesis of RAS (Ural Branch); 22/20 S. Kovalevskoy/Akademicheskaya St. 620990 Ekaterinburg Russia
- Institute of Chemical Engineering; Ministry of Healthcare of the Russian Federation; Ural Federal University; 620002 Ekaterinburg Russia
| |
Collapse
|
12
|
Synthesis and antimycobacterial activity of purine conjugates with (S)-lysine and (S)-ornithine. MENDELEEV COMMUNICATIONS 2019. [DOI: 10.1016/j.mencom.2019.01.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Tuncbilek M, Kucukdumlu A, Guven EB, Altiparmak D, Cetin-Atalay R. Synthesis of novel 6-substituted amino-9-(β-d-ribofuranosyl)purine analogs and their bioactivities on human epithelial cancer cells. Bioorg Med Chem Lett 2018; 28:235-239. [PMID: 29326016 DOI: 10.1016/j.bmcl.2017.12.070] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/29/2017] [Accepted: 12/31/2017] [Indexed: 01/13/2023]
Abstract
New nucleoside derivatives with nitrogen substitution at the C-6 position were prepared and screened initially for their in vitro anticancer bioactivity against human epithelial cancer cells (liver Huh7, colon HCT116, breast MCF7) by the NCI-sulforhodamine B assay. N6-(4-trifluoromethylphenyl)piperazine analog (27) exhibited promising cytotoxic activity. The compound 27 was more cytotoxic (IC50 = 1-4 μM) than 5-FU, fludarabine on Huh7, HCT116 and MCF7 cell lines. The most potent nucleosides (11, 13, 16, 18, 19, 21, 27, 28) were further screened for their cytotoxicity in hepatocellular cancer cell lines. The compound 27 demonstrated the highest cytotoxic activity against Huh7, Mahlavu and FOCUS cells (IC50 = 1, 3 and 1 μM respectively). Physicochemical properties, drug-likeness, and drug score profiles of the molecules showed that they are estimated to be orally bioavailable. The results pointed that the novel derivatives would be potential drug candidates.
Collapse
Affiliation(s)
- Meral Tuncbilek
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey.
| | - Aslıgul Kucukdumlu
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
| | - Ebru Bilget Guven
- Department of Molecular Biology and Genetics, Bilkent University, 06800 Ankara, Turkey
| | - Duygu Altiparmak
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Ankara University, 06100 Ankara, Turkey
| | - Rengul Cetin-Atalay
- Cancer Systems Biology Laboratory, Graduate School of Informatics, ODTU, Ankara 06800, Turkey.
| |
Collapse
|
14
|
Synthesis and antimycobacterial activity of novel purin-6-yl and 2-aminopurin-6-yl conjugates with ( S )-aspartic and ( S )-glutamic acids. MENDELEEV COMMUNICATIONS 2017. [DOI: 10.1016/j.mencom.2017.11.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
15
|
Wang JH, Zhang ZL, Wang YQ, Yang M, Wang CH, Li XW, Guo YW. Chemical Constituents from Mycelia and Spores of Fungus Cordyceps cicadae. CHINESE HERBAL MEDICINES 2017. [DOI: 10.1016/s1674-6384(17)60094-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
|
16
|
Giannouli V, Lougiakis N, Kostakis IK, Pouli N, Marakos P, Skaltsounis AL, Nam S, Jove R, Horne D, Tenta R, Pratsinis H, Kletsas D. The discovery of new cytotoxic pyrazolopyridine derivatives. Bioorg Med Chem Lett 2016; 26:5229-5233. [DOI: 10.1016/j.bmcl.2016.09.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Revised: 09/22/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023]
|
17
|
Krasnov VP, Vigorov AY, Gruzdev DA, Levit GL, Demin AM, Nizova IA, Tumashov AA, Sadretdinova LS, Gorbunov EB, Charushin VN. Synthesis of enantiomers of N-(2-aminopurin-6-yl)amino acids. Russ Chem Bull 2016. [DOI: 10.1007/s11172-015-1125-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
18
|
Morales F, Campos JM, Conejo-García A. 1 H and 13 C NMR spectral data of p-nitrobenzenesulfonamides and dansylsulfonamides derived from N-alkylated o-(purinemethyl)anilines. MAGNETIC RESONANCE IN CHEMISTRY : MRC 2016; 54:760-770. [PMID: 27108541 DOI: 10.1002/mrc.4442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 03/30/2016] [Accepted: 03/31/2016] [Indexed: 06/05/2023]
Affiliation(s)
- Fátima Morales
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, c/ Campus de Cartuja s/n, Granada, Spain
| | - Joaquín M Campos
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, c/ Campus de Cartuja s/n, Granada, Spain
| | - Ana Conejo-García
- Department of Pharmaceutical and Organic Chemistry, Faculty of Pharmacy, University of Granada, c/ Campus de Cartuja s/n, Granada, Spain
| |
Collapse
|
19
|
V. Dolzhenko A, Phei Lin Lim F, Kee Kow K, Hwa Yeo E, Chuen Chow S. Synthesis and Antileukemic Activity of New Fluorinated 5-Aza-9-deazapurines. HETEROCYCLES 2016. [DOI: 10.3987/com-16-13464] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
20
|
Chemoenzymatic arabinosylation of 2-aminopurines bearing the chiral fragment of 7,8-difluoro-3-methyl-3,4-dihydro-2H-[1,4]benzoxazines. MENDELEEV COMMUNICATIONS 2016. [DOI: 10.1016/j.mencom.2016.01.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
21
|
Krasnov VP, Gruzdev DA, Chulakov EN, Vigorov AY, Musiyak VV, Matveeva TV, Tumashov AA, Levit GL, Charushin VN. Synthesis of novel purin-6-yl conjugates with heterocyclic amines linked via 6-aminohexanoyl fragment. MENDELEEV COMMUNICATIONS 2015. [DOI: 10.1016/j.mencom.2015.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|