1
|
Quan YS, Liu JY, Wang YL, Liu Z, Quan ZS, Wang SH, Yin XM. Application of Chalcone in the Structural Modification of Natural Products: An Overview. Chem Biodivers 2025; 22:e202401953. [PMID: 39560393 DOI: 10.1002/cbdv.202401953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 11/11/2024] [Accepted: 11/18/2024] [Indexed: 11/20/2024]
Abstract
Natural products frequently display a range of biological activities, yet many exhibit only moderate efficacy during initial evaluations. Often, these natural substances necessitate structural alterations to yield promising lead compounds. Chalcones, characterized by their β-unsaturated carbonyl aromatic ketone structure, are prevalent in plant life and serve as fundamental scaffolds for the biosynthetic precursors of flavonoids and isoflavones. Due to their straightforward synthesis and extensive spectrum of biological effects, chalcones have found extensive application in medicinal chemistry. Chalcone analogs have demonstrated significant potential for drug discovery and development, as structural modifications can both amplify pharmacological efficacy and effectively mitigate toxic side effects. This paper endeavors to delve into the applications of chalcones in the structural modification of natural products, providing a theoretical foundation for future endeavors in derivatization and drug development. The full paper is organized into categories based on the biological activities of the derivatives, including anti-dyslipidemic, antibacterial, antimalarial, anti-inflammatory, anticancer, anti-Alzheimer, and α-glucosidase inhibitory activities.
Collapse
Affiliation(s)
- Yin-Sheng Quan
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, P. R. China
| | - Jin-Ying Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, P. R. China
| | - Ya-Lan Wang
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, P. R. China
| | - Zheng Liu
- Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji, Jilin, P. R. China
| | - Zhe-Shan Quan
- College of Pharmacy, Yanbian University, Yanji, Jilin, P. R. China
| | - Si-Hong Wang
- Analysis and Inspection Center, Yanbian University, Yanji, Jilin, P. R. China
| | - Xiu-Mei Yin
- College of Pharmacy, Yanbian University, Yanji, Jilin, P. R. China
| |
Collapse
|
2
|
Marchesi E, Perrone D, Navacchia ML. Molecular Hybridization as a Strategy for Developing Artemisinin-Derived Anticancer Candidates. Pharmaceutics 2023; 15:2185. [PMID: 37765156 PMCID: PMC10536797 DOI: 10.3390/pharmaceutics15092185] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/21/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Artemisinin is a natural compound extracted from Artemisia species belonging to the Asteraceae family. Currently, artemisinin and its derivatives are considered among the most significant small-molecule antimalarial drugs. Artemisinin and its derivatives have also been shown to possess selective anticancer properties, however, there are several limitations and gaps in knowledge that retard their repurposing as effective anticancer agents. Hybridization resulting from a covalent combination of artemisinin with one or more active pharmacophores has emerged as a promising approach to overcome several issues. The variety of hybridization partners allows improvement in artemisinin activity by tuning the ability of conjugated artemisinin to interact with various molecule targets involved in multiple biological pathways. This review highlights the current scenario of artemisinin-derived hybrids with potential anticancer activity. The synthetic approaches to achieve the corresponding hybrids and the structure-activity relationships are discussed to facilitate further rational design of more effective candidates.
Collapse
Affiliation(s)
- Elena Marchesi
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Daniela Perrone
- Department of Environmental and Prevention Sciences, University of Ferrara, 44121 Ferrara, Italy;
| | - Maria Luisa Navacchia
- Institute for Organic Synthesis and Photoreactivity (ISOF), National Research Council of Italy (CNR), 40129 Bologna, Italy
| |
Collapse
|
3
|
Duay SS, Yap RCY, Gaitano AL, Santos JAA, Macalino SJY. Roles of Virtual Screening and Molecular Dynamics Simulations in Discovering and Understanding Antimalarial Drugs. Int J Mol Sci 2023; 24:ijms24119289. [PMID: 37298256 DOI: 10.3390/ijms24119289] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Malaria continues to be a global health threat, with approximately 247 million cases worldwide. Despite therapeutic interventions being available, patient compliance is a problem due to the length of treatment. Moreover, drug-resistant strains have emerged over the years, necessitating urgent identification of novel and more potent treatments. Given that traditional drug discovery often requires a great deal of time and resources, most drug discovery efforts now use computational methods. In silico techniques such as quantitative structure-activity relationship (QSAR), docking, and molecular dynamics (MD) can be used to study protein-ligand interactions and determine the potency and safety profile of a set of candidate compounds to help prioritize those tested using assays and animal models. This paper provides an overview of antimalarial drug discovery and the application of computational methods in identifying candidate inhibitors and elucidating their potential mechanisms of action. We conclude with the continued challenges and future perspectives in the field of antimalarial drug discovery.
Collapse
Affiliation(s)
- Searle S Duay
- Department of Chemistry, De La Salle University, Manila 0922, Philippines
| | - Rianne Casey Y Yap
- Department of Chemistry, De La Salle University, Manila 0922, Philippines
| | - Arturo L Gaitano
- Chemistry Department, Adamson University, Manila 1000, Philippines
| | | | | |
Collapse
|
4
|
Kumar A, Jain S, Chauhan S, Aggarwal S, Saini D. Novel hybrids of quinoline with pyrazolylchalcones as potential antimalarial agents: Synthesis, biological evaluation, molecular docking and ADME prediction. Chem Biol Interact 2023; 373:110379. [PMID: 36738914 DOI: 10.1016/j.cbi.2023.110379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
A novel series of pyrazolyl chalcones containing quinoline scaffold, 5 a-v has been synthesized by Claisen Schimdt condensation of aromatic acetophenone with 1-(4-methylquinolin-2-yl)-3-aryl-1H-pyrazole-4-carbaldehyde in quantitative yield. The compounds were characterized using IR, NMR, MS and elemental analysis. An E-configuration about CC ethylenic bond was determined using 1H NMR spectroscopy. These compounds exhibited significant antimalarial potential against CQ-sensitive and CQ-resistant strain of Plasmodium falciparum. Structure activity relationship has also been established based on outcomes of in vitro schizont inhibition assay. Compound 5u, (Z)-3-(1-(4-methylquinolin-2-yl)-3-p-tolyl-1H-pyrazol-4-yl)-1-p-tolylprop-2-en-1-one, was found to be the most potent among the series of synthetic analogues. In vivo, it demonstrated significant parasitemia suppression of 78.01% at a dose of 200 mg/kg against P. berghei in infected mice without any mortality in 7 days. In silico molecular docking study revealed that this compound 5u bound to the active site of cysteine protease falcipain-2 enzyme. Furthermore, in silico ADME studies, were also performed and physicochemical qualifications of the title compounds were determined. The biological outcomes of newer heterocyclic compounds may pave the new paths for researchers in development of potential antimalarial agents.
Collapse
Affiliation(s)
- Ajay Kumar
- Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Sandeep Jain
- Drug Discovery and Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India
| | - Shilpi Chauhan
- Lloyd Institute of Management and Technology, Plot No. 11, Knowledge Park-II, Greater, Noida, 201306, India
| | | | - Deepika Saini
- Drug Discovery and Research Laboratory, Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar, 125001, India; Lloyd Institute of Management and Technology, Plot No. 11, Knowledge Park-II, Greater, Noida, 201306, India.
| |
Collapse
|
5
|
Çelik F, Süleymanoğlu N, Ustabaş R, Türkan F, Güler Hİ, Ünver Y, Kahriman N. New chalcone derivative, ethyl 2-(4-(3-(benzo[ b]thiophen-2-yl)acryloyl)phenoxy)acetate: synthesis, characterization, DFT study, enzyme inhibition activities and docking study. J Biomol Struct Dyn 2022; 40:12260-12267. [PMID: 34445923 DOI: 10.1080/07391102.2021.1969287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Chalcone derivative, ethyl 2-(4-(3-(benzo[b]thiophen-2yl)acryloyl)phenoxy)acetate (I), was synthesized. Compound I was characterized by proton and carbon-13 nuclear magnetic resonance (1H- and 13C- NMR), fourier transform infrared (FTIR) and mass (LC-ESI-MS/MS) spectroscopic methods. Density Functional Theory (DFT) calculations for compound I were performed at B3LYP/6-311++G(d,p) level. Optimized geometry, frontier molecular orbitals (HOMO; highest occupied molecular orbital; LUMO: lowest unoccupied molecular orbital), IR and NMR parameters of compound I were obtained. The evaluations reveal that the calculation results support the experimental results. The inhibition effects of compound I on cholinesterases and GST enzyme were investigated. Ki and inhibition concentration (IC50) values were calculated separately. Ki values of compound I were found for GST 14.19 ± 2.15, for AChE 11.13 ± 1.22 and for BChE 8.74 ± 0.76 recpectively. The docking analysis of compound I supported the enzym inhibition activity exhibiting high inhibition constant and binding energy for three receptors. Compound I is strongly bound to AChE, huBChE and Glutathione S-transferase with binding energies -11.24, -8.56 and -10.39 kcal/mol, respectively.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Fatih Çelik
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Nevin Süleymanoğlu
- Vocational School of Technical Sciences, Gazi University, Ostim, Ankara, Turkey
| | - Reşat Ustabaş
- Department of Mathematics and Science Education, Educational Faculty, Ondokuz Mayıs University, Kurupelit, Samsun, Turkey
| | - Fikret Türkan
- Health Services Vocational School, Iğdır University, Iğdır, Turkey
| | - Halil İbrahim Güler
- Department of Molecular Biology and Genetics, Karadeniz Technical University Faculty of Science, Trabzon, Turkey
| | - Yasemin Ünver
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| | - Nuran Kahriman
- Department of Chemistry, Faculty of Sciences, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
6
|
Comparative analysis of an anthraquinone and chalcone derivatives-based virtual combinatorial library. A cheminformatics "proof-of-concept" study. J Mol Graph Model 2022; 117:108307. [PMID: 36096064 DOI: 10.1016/j.jmgm.2022.108307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 08/08/2022] [Accepted: 08/08/2022] [Indexed: 01/14/2023]
Abstract
A Laplacian scoring algorithm for gene selection and the Gini coefficient to identify the genes whose expression varied least across a large set of samples were the state-of-the-art methods used here. These methods have not been trialed for their feasibility in cheminformatics. This was a maiden attempt to investigate a complete comparative analysis of an anthraquinone and chalcone derivatives-based virtual combinatorial library. This computational "proof-of-concept" study illustrated the combinatorial approach used to explain how the structure of the selected natural products (NPs) undergoes molecular diversity analysis. A virtual combinatorial library (1.6 M) based on 20 anthraquinones and 24 chalcones was enumerated. The resulting compounds were optimized to the near drug-likeness properties, and the physicochemical descriptors were calculated for all datasets including FDA, Non-FDA, and NPs from ZINC 15. UMAP and PCA were applied to compare and represent the chemical space coverage of each dataset. Subsequently, the Laplacian score and Gini coefficient were applied to delineate feature selection and selectivity among properties, respectively. Finally, we demonstrated the diversity between the datasets by employing Murcko's and the central scaffolds systems, calculating three fingerprint descriptors and analyzing their diversity by PCA and SOM. The optimized enumeration resulted in 1,610,268 compounds with NP-Likeness, and synthetic feasibility mean scores close to FDA, Non-FDA, and NPs datasets. The overlap between the chemical space of the 1.6 M database was more prominent than with the NPs dataset. A Laplacian score prioritized NP-likeness and hydrogen bond acceptor properties (1.0 and 0.923), respectively, while the Gini coefficient showed that all properties have selective effects on datasets (0.81-0.93). Scaffold and fingerprint diversity indicated that the descending order for the tested datasets was FDA, Non-FDA, NPs and 1.6 M. Virtual combinatorial libraries based on NPs can be considered as a source of the combinatorial compound with NP-likeness properties. Furthermore, measuring molecular diversity is supposed to be performed by different methods to allow for comparison and better judgment.
Collapse
|
7
|
Xu C, Xiao L, Lin P, Yang X, Zou X, Mu L, Yang X. Synthesis and Antitumor Activities of Novel Mitochondria-Targeted Dihydroartemisinin Ether Derivatives. ACS OMEGA 2022; 7:38832-38846. [PMID: 36340114 PMCID: PMC9631890 DOI: 10.1021/acsomega.2c04562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 10/06/2022] [Indexed: 06/16/2023]
Abstract
Ten novel mitochondria-targeted dihydroartemisinin ether derivatives were designed, synthesized, and evaluated for antitumor activity against five cancer cell lines in vitro. Profoundly, compound D8-T (IC50 = 56.9 nM) showed the most potent antiproliferative activity against the T24 cells with low cytotoxicity in normal human umbilical vein endothelial cells. High-performance liquid chromatography analysis confirmed that D8-T targeted mitochondria 6.3-fold higher than DHA. ATP content assay demonstrated that D8-T decreased the ATP level of bladder cancer cells. The effect of D8-T on cell apoptosis was determined by flow cytometry and western blot of Bax and Bcl-2. Surprisingly, the results indicated that D8-T did not induce bladder cancer cell apoptosis. In contrast, the cell cycle analysis and western blot of CDK4, CDK6, cyclin D1, and p21 demonstrated that the cancer cell cycle was arrested at the G1 phase after D8-T treatment. Furthermore, the consistent results were received by RNA-seq assay. These promising findings implied that D8-T could serve as a great candidate against bladder cancer for further investigation.
Collapse
|
8
|
Aucamp J, N’Da DD. SHORT COMMUNICATION: In vitro antileishmanial efficacy of antiplasmodial active aminoquinoline-chalcone hybrids. Exp Parasitol 2022; 236-237:108249. [DOI: 10.1016/j.exppara.2022.108249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/24/2022] [Accepted: 03/16/2022] [Indexed: 11/30/2022]
|
9
|
Yepes AF, Arias JD, Cardona-G W, Herrera-R A, Moreno G. New class of hybrids based on chalcone and melatonin: a promising therapeutic option for the treatment of colorectal cancer. Med Chem Res 2021. [DOI: 10.1007/s00044-021-02805-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
10
|
Vinindwa B, Dziwornu GA, Masamba W. Synthesis and Evaluation of Chalcone-Quinoline Based Molecular Hybrids as Potential Anti-Malarial Agents. Molecules 2021; 26:molecules26134093. [PMID: 34279438 PMCID: PMC8272121 DOI: 10.3390/molecules26134093] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 06/27/2021] [Accepted: 07/01/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular hybridization is a drug discovery strategy that involves the rational design of new chemical entities by the fusion (usually via a covalent linker) of two or more drugs, both active compounds and/or pharmacophoric units recognized and derived from known bioactive molecules. The expected outcome of this chemical modification is to produce a new hybrid compound with improved affinity and efficacy compared to the parent drugs. Additionally, this strategy can result in compounds presenting modified selectivity profiles, different and/or dual modes of action, reduced undesired side effects and ultimately lead to new therapies. In this study, molecular hybridization was used to generate new molecular hybrids which were tested against the chloroquine sensitive (NF54) strain of P. falciparum. To prepare the new molecular hybrids, the quinoline nucleus, one of the privileged scaffolds, was coupled with various chalcone derivatives via an appropriate linker to produce a total of twenty-two molecular hybrids in 11%–96% yield. The synthesized compounds displayed good antiplasmodial activity with IC50 values ranging at 0.10–4.45 μM.
Collapse
Affiliation(s)
- Bonani Vinindwa
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive, Mthatha 5117, South Africa;
| | | | - Wayiza Masamba
- Department of Chemical and Physical Sciences, Faculty of Natural Sciences, Walter Sisulu University, Nelson Mandela Drive, Mthatha 5117, South Africa;
- Correspondence:
| |
Collapse
|
11
|
Ouyang Y, Li J, Chen X, Fu X, Sun S, Wu Q. Chalcone Derivatives: Role in Anticancer Therapy. Biomolecules 2021; 11:894. [PMID: 34208562 PMCID: PMC8234180 DOI: 10.3390/biom11060894] [Citation(s) in RCA: 146] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 12/17/2022] Open
Abstract
Chalcones (1,3-diaryl-2-propen-1-ones) are precursors for flavonoids and isoflavonoids, which are common simple chemical scaffolds found in many naturally occurring compounds. Many chalcone derivatives were also prepared due to their convenient synthesis. Chalcones as weandhetic analogues have attracted much interest due to their broad biological activities with clinical potentials against various diseases, particularly for antitumor activity. The chalcone family has demonstrated potential in vitro and in vivo activity against cancers via multiple mechanisms, including cell cycle disruption, autophagy regulation, apoptosis induction, and immunomodulatory and inflammatory mediators. It represents a promising strategy to develop chalcones as novel anticancer agents. In addition, the combination of chalcones and other therapies is expected to be an effective way to improve anticancer therapeutic efficacy. However, despite the encouraging results for their response to cancers observed in clinical studies, a full description of toxicity is required for their clinical use as safe drugs for the treatment of cancer. In this review, we will summarize the recent advances of the chalcone family as potential anticancer agents and the mechanisms of action. Besides, future applications and scope of the chalcone family toward the treatment and prevention of cancer are brought out.
Collapse
Affiliation(s)
- Yang Ouyang
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xinyue Chen
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| | - Si Sun
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China
| | - Qi Wu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; (Y.O.); (J.L.); (X.C.); (X.F.)
| |
Collapse
|
12
|
Sahoo SK, Rani B, Gaikwad NB, Ahmad MN, Kaul G, Shukla M, Nanduri S, Dasgupta A, Chopra S, Yaddanapudi VM. Synthesis and structure-activity relationship of new chalcone linked 5-phenyl-3-isoxazolecarboxylic acid methyl esters potentially active against drug resistant Mycobacterium tuberculosis. Eur J Med Chem 2021; 222:113580. [PMID: 34116324 DOI: 10.1016/j.ejmech.2021.113580] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 01/06/2023]
Abstract
In search of novel therapeutic agents active against emerging drug-resistant Mycobacterium tuberculosis and to counter the long treatment protocol of existing drugs, herein we present synthesis and biological evaluation of a new series of 5-phenyl-3-isoxazolecarboxylic acid methyl ester-chalcone hybrids. Among 35 synthesized compounds, 32 analogues displayed potent in-vitro activity against Mycobacterium tuberculosis H37Rv with MIC 0.12-16 μg/mL. Cell viability test against Vero cells indicated 29 compounds to be non-cytotoxic (CC50 > 20 μg/mL & SI > 10). Most potent compounds with MIC 0.12 μg/mL (7 b, 7j, 7 ab) exhibited selectivity index (SI) in excess of 320. Further studies on activity against drug-resistant Mycobacterium tuberculosis revealed 7j as the most potent compound with MIC 0.03-0.5 μg/mL. Time-kill kinetic study suggested compound 7j displaying concentration-dependent bactericidal killing activity with relatively comparable potency to that of current first-line anti-TB drugs. Taken together, 7j presents a novel hit with potential to be translated into a potent antimycobacterial.
Collapse
Affiliation(s)
- Santosh Kumar Sahoo
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Bandela Rani
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Nikhil Baliram Gaikwad
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Mohammad Naiyaz Ahmad
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Grace Kaul
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Manjulika Shukla
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India
| | - Srinivas Nanduri
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India
| | - Arunava Dasgupta
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Sidharth Chopra
- Division of Microbiology, CSIR-Central Drug Research Institute, Sitapur Road, Sector 10, Janakipuram Extension, Lucknow, 226031, Uttar Pradesh, India; AcSIR: Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| | - Venkata Madhavi Yaddanapudi
- Department of Pharmaceutical Technology and Process Chemistry, National Institute of Pharmaceutical Education and Research (NIPER), Balanagar, Hyderabad, 500037, Telangana, India.
| |
Collapse
|
13
|
Xu C, Xiao L, Zhang X, Zhuang T, Mu L, Yang X. Synthesis and biological activities of novel mitochondria-targeted artemisinin ester derivatives. Bioorg Med Chem Lett 2021; 39:127912. [PMID: 33691167 DOI: 10.1016/j.bmcl.2021.127912] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 02/10/2021] [Accepted: 02/15/2021] [Indexed: 11/18/2022]
Abstract
A series of novel artemisinin ester derivatives were designed and synthesized for targeting mitochondria. Cytotoxicity against SMMC-7721, HepG2, OVCAR3, A549 and J82 cancer cell lines was evaluated. Compound 2c (IC50 = 3.0 μM) was the most potent anti-proliferative molecule against the OVCAR3 cells with low cytotoxicity in normal HUVEC cells. The mechanism of action of compound 2c was further investigated by analyzing cell apoptosis, mitochondrial membrane potential (Δψm) and intracellular ROS generation. The results indicated that compound 2c targeted mitochondria and induced cell apoptosis. ROS and heme attributed to the cytotoxicity and cell apoptosis of compound 2c. These promising findings indicated the compound 2c could serve as a great candidate against ovarian cancer for further investigation.
Collapse
Affiliation(s)
- Cangcang Xu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Linfan Xiao
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Xia Zhang
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha, Hunan, China
| | - Tao Zhuang
- Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lingli Mu
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.
| | - Xiaoping Yang
- Key Laboratory of Study and Discovery of Small Targeted Molecules of Hunan Province, Department of Pharmacy, School of Medicine, Hunan Normal University, Changsha, Hunan, China.
| |
Collapse
|
14
|
Ferreira LT, Borba JVB, Moreira-Filho JT, Rimoldi A, Andrade CH, Costa FTM. QSAR-Based Virtual Screening of Natural Products Database for Identification of Potent Antimalarial Hits. Biomolecules 2021; 11:biom11030459. [PMID: 33808643 PMCID: PMC8003391 DOI: 10.3390/biom11030459] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 03/15/2021] [Accepted: 03/16/2021] [Indexed: 01/15/2023] Open
Abstract
With about 400,000 annual deaths worldwide, malaria remains a public health burden in tropical and subtropical areas, especially in low-income countries. Selection of drug-resistant Plasmodium strains has driven the need to explore novel antimalarial compounds with diverse modes of action. In this context, biodiversity has been widely exploited as a resourceful channel of biologically active compounds, as exemplified by antimalarial drugs such as quinine and artemisinin, derived from natural products. Thus, combining a natural product library and quantitative structure-activity relationship (QSAR)-based virtual screening, we have prioritized genuine and derivative natural compounds with potential antimalarial activity prior to in vitro testing. Experimental validation against cultured chloroquine-sensitive and multi-drug-resistant P. falciparum strains confirmed the potent and selective activity of two sesquiterpene lactones (LDT-597 and LDT-598) identified in silico. Quantitative structure-property relationship (QSPR) models predicted absorption, distribution, metabolism, and excretion (ADME) and physiologically based pharmacokinetic (PBPK) parameters for the most promising compound, showing that it presents good physiologically based pharmacokinetic properties both in rats and humans. Altogether, the in vitro parasite growth inhibition results obtained from in silico screened compounds encourage the use of virtual screening campaigns for identification of promising natural compound-based antimalarial molecules.
Collapse
Affiliation(s)
- Letícia Tiburcio Ferreira
- Laboratory of Tropical Diseases Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP 13083-864, Brazil; (L.T.F.); (J.V.B.B.); (A.R.)
| | - Joyce V. B. Borba
- Laboratory of Tropical Diseases Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP 13083-864, Brazil; (L.T.F.); (J.V.B.B.); (A.R.)
- Laboratory of Molecular Modeling and Drug Design, LabMol, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-170, Brazil; (J.T.M.-F.); (C.H.A.)
| | - José Teófilo Moreira-Filho
- Laboratory of Molecular Modeling and Drug Design, LabMol, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-170, Brazil; (J.T.M.-F.); (C.H.A.)
| | - Aline Rimoldi
- Laboratory of Tropical Diseases Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP 13083-864, Brazil; (L.T.F.); (J.V.B.B.); (A.R.)
| | - Carolina Horta Andrade
- Laboratory of Molecular Modeling and Drug Design, LabMol, Faculty of Pharmacy, Federal University of Goiás, Goiânia, GO 74605-170, Brazil; (J.T.M.-F.); (C.H.A.)
| | - Fabio Trindade Maranhão Costa
- Laboratory of Tropical Diseases Prof. Dr. Luiz Jacintho da Silva, Department of Genetics, Evolution, Microbiology and Immunology, University of Campinas-UNICAMP, Campinas, SP 13083-864, Brazil; (L.T.F.); (J.V.B.B.); (A.R.)
- Correspondence: ; Tel.: +55-19-3521-6288
| |
Collapse
|
15
|
Matsumoto S, Marumoto H, Akazome M, Otani Y, Kaiho T. Chemoselective Reduction of α, β-Unsaturated Carbonyl and Carboxylic Compounds by Hydrogen Iodide. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2021. [DOI: 10.1246/bcsj.20200341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Shoji Matsumoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
- Soft Molecular Activation Research Center (SMARC), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Hayato Marumoto
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Motohiro Akazome
- Department of Applied Chemistry and Biotechnology, Graduate School of Engineering, Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| | - Yasuhiko Otani
- GODO SHIGEN CO., LTD., 1365 Nanaido, Chosei-mura, Chosei-gun, Chiba 299-4333, Japan
| | - Tatsuo Kaiho
- GODO SHIGEN CO., LTD., 1365 Nanaido, Chosei-mura, Chosei-gun, Chiba 299-4333, Japan
- Chiba Iodine Resource Innovation Center (CIRIC), Chiba University, 1-33 Yayoi-cho, Inage-ku, Chiba 263-8522, Japan
| |
Collapse
|
16
|
Patel OPS, Beteck RM, Legoabe LJ. Exploration of artemisinin derivatives and synthetic peroxides in antimalarial drug discovery research. Eur J Med Chem 2021; 213:113193. [PMID: 33508479 DOI: 10.1016/j.ejmech.2021.113193] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Revised: 12/04/2020] [Accepted: 01/11/2021] [Indexed: 12/22/2022]
Abstract
Malaria is a life-threatening infectious disease caused by protozoal parasites belonging to the genus Plasmodium. It caused an estimated 405,000 deaths and 228 million malaria cases globally in 2018 as per the World Malaria Report released by World Health Organization (WHO) in 2019. Artemisinin (ART), a "Nobel medicine" and its derivatives have proven potential application in antimalarial drug discovery programs. In this review, antimalarial activity of the most active artemisinin derivatives modified at C-10/C-11/C-16/C-6 positions and synthetic peroxides (endoperoxides, 1,2,4-trioxolanes, 1,2,4-trioxanes, and 1,2,4,5-tetraoxanes) are systematically summarized. The developmental trend of ART derivatives, and cyclic peroxides along with their antimalarial activity and how the activity is affected by structural variations on different sites of the compounds are discussed. This compilation would be very useful towards scaffold hopping aimed at avoiding the unnecessary complexity in cyclic peroxides, and ultimately act as a handy resource for the development of potential chemotherapeutics against Plasmodium species.
Collapse
Affiliation(s)
- Om P S Patel
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| | - Richard M Beteck
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Lesetja J Legoabe
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Private Bag X6001, Potchefstroom, 2520, South Africa.
| |
Collapse
|
17
|
Ma J, Qiao W, Mu X, Dong J, Quan J, Tian C. Optical Properties of Artemisinin and Its Derivatives. ACS OMEGA 2020; 5:30849-30857. [PMID: 33324794 PMCID: PMC7726762 DOI: 10.1021/acsomega.0c03361] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/30/2020] [Indexed: 06/12/2023]
Abstract
Artemisinin and its derivatives are of great research value in biology. In this work, we study their chiral and optical properties. The multidimensional multifunction analysis method is used to analyze the linear and nonlinear optical processes (one-photon and two-photon absorption: OPA and TPA), electronic circular dichroism (ECD), and Raman optical activity (ROA) mechanisms under light excitation. Transition dipole moments (TDMs) and charge difference density (CDD) are used to describe the electromagnetic interaction between ECD and ROA when a substance is excited by light. The theoretical research results of the study show that the dioxygen atoms provide an intermediary for the transfer between charges and also enhance the role of the TDMs. This generalized chiral theory can not only explain the traditional sources of chirality but also distinguish whether the molecule has chirality when the chiral center is not obvious. By analyzing ROA and different vibration modes, we can clearly observe that each part of the molecule responds differently when excited.
Collapse
Affiliation(s)
- Jialin Ma
- School
of Physics Science and Technology, Lingnan
Normal University, Zhanjiang 524048, P. R. China
- School
of Mathematics and Physics, University of
Science and Technology Beijing, Beijing 100083, P. R.
China
| | - Wenhua Qiao
- School
of Mathematics and Physics, University of
Science and Technology Beijing, Beijing 100083, P. R.
China
| | - Xijiao Mu
- School
of Mathematics and Physics, University of
Science and Technology Beijing, Beijing 100083, P. R.
China
| | - Jun Dong
- School
of Electronic Engineering, Xi’an
University of Posts and Telecommunications, Xi’an 710121, P. R. China
| | - Jun Quan
- School
of Physics Science and Technology, Lingnan
Normal University, Zhanjiang 524048, P. R. China
| | - Chunhua Tian
- School
of Physics Science and Technology, Lingnan
Normal University, Zhanjiang 524048, P. R. China
| |
Collapse
|
18
|
Fayed TA, Gaber M, El-Nahass MN, Diab H, El-Gamil MM. Synthesis, Structural characterization, thermal, molecular modeling and biological studies of chalcone and Cr(III), Mn(II), Cu(II) Zn(II) and Cd(II) chelates. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128742] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Huang TE, Deng YN, Hsu JL, Leu WJ, Marchesi E, Capobianco ML, Marchetti P, Navacchia ML, Guh JH, Perrone D, Hsu LC. Evaluation of the Anticancer Activity of a Bile Acid-Dihydroartemisinin Hybrid Ursodeoxycholic-Dihydroartemisinin in Hepatocellular Carcinoma Cells. Front Pharmacol 2020; 11:599067. [PMID: 33343369 PMCID: PMC7748086 DOI: 10.3389/fphar.2020.599067] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 10/09/2020] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy in adults and accounts for 85-90% of all primary liver cancer. Based on the estimation by the International Agency for Research on Cancer in 2018, liver cancer is the fourth leading cause of cancer death globally. Dihydroartemisinin (DHA), the main active metabolite of artemisinin derivatives, is a well-known drug for the treatment of malaria. Previous studies have demonstrated that DHA exhibits antitumor effects toward a variety of human cancers and has a potential for repurposing as an anticancer drug. However, its short half-life is a concern and may limit the application in cancer therapy. We have reported that UDC-DHA, a hybrid of bile acid ursodeoxycholic acid (UDCA) and DHA, is ∼12 times more potent than DHA against a HCC cell line HepG2. In this study, we found that UDC-DHA was also effective against another HCC cell line Huh-7 with an IC50 of 2.16 μM, which was 18.5-fold better than DHA with an IC50 of 39.96 μM. UDC-DHA was much more potent than the combination of DHA and UDCA at 1:1 molar ratio, suggesting that the covalent linkage rather than a synergism between UDCA and DHA is critical for enhancing DHA potency in HepG2 cells. Importantly, UDC-DHA was much less toxic to normal cells than DHA. UDC-DHA induced G0/G1 arrest and apoptosis. Both DHA and UDC-DHA significantly elevated cellular reactive oxygen species generation but with different magnitude and timing in HepG2 cells; whereas only DHA but not UDC-DHA induced reactive oxygen species in Huh-7 cells. Depolarization of mitochondrial membrane potential was detected in both HepG2 and Huh-7 cells and may contribute to the anticancer effect of DHA and UDC-DHA. Furthermore, UDC-DHA was much more stable than DHA based on activity assays and high performance liquid chromatography-MS/MS analysis. In conclusion, UDC-DHA and DHA may exert anticancer actions via similar mechanisms but a much lower concentration of UDC-DHA was required, which could be attributed to a better stability of UDC-DHA. Thus, UDC-DHA could be a better drug candidate than DHA against HCC and further investigation is warranted.
Collapse
Affiliation(s)
- Tzu-En Huang
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Yi-Ning Deng
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Jui-Ling Hsu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Wohn-Jenn Leu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Elena Marchesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Massimo L Capobianco
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Bologna, Italy
| | - Paolo Marchetti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Maria Luisa Navacchia
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Bologna, Italy
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Daniela Perrone
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Ferrara, Italy
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
20
|
Farooq S, Ngaini Z, Mortadza NA. Microwave‐assisted Synthesis and Molecular Docking Study of Heteroaromatic Chalcone Derivatives as Potential Antibacterial Agents. B KOREAN CHEM SOC 2020. [DOI: 10.1002/bkcs.12088] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Saba Farooq
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Sarawak 94300 Malaysia
| | - Zainab Ngaini
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Sarawak 94300 Malaysia
| | - Nur Arif Mortadza
- Faculty of Resource Science and Technology Universiti Malaysia Sarawak Kota Samarahan Sarawak 94300 Malaysia
| |
Collapse
|
21
|
Gao F, Huang G, Xiao J. Chalcone hybrids as potential anticancer agents: Current development, mechanism of action, and structure-activity relationship. Med Res Rev 2020; 40:2049-2084. [PMID: 32525247 DOI: 10.1002/med.21698] [Citation(s) in RCA: 75] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022]
Abstract
The continuous emergency of drug-resistant cancers and the low specificity of anticancer agents have been the major challenges in the control and treatment of cancer, making an urgent need to develop novel anticancer agents with high efficacy. Chalcones, precursors of flavonoids and isoflavonoids, exhibit structural heterogeneity and can act on various drug targets. Chalcones which demonstrated potential in vitro and in vivo activity against both drug-susceptible and drug-resistant cancers, are useful templates for the development of novel anticancer agents. Hybridization of chalcone moiety with other anticancer pharmacophores could provide the hybrids which have the potential to overcome drug resistance and improve the specificity, so it represents a promising strategy to develop novel anticancer agents. This review emphasizes the development, the mechanisms of action as well as structure-activity relationships of chalcone hybrids with potential therapeutic application for many cancers in recent 10 years.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Gang Huang
- Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, China.,Shanghai Key Laboratory of Molecular Imaging, Shanghai University of Medicine and Health Sciences, Shanghai, China
| |
Collapse
|
22
|
Horn CM, Aucamp J, Smit FJ, Seldon R, Jordaan A, Warner DF, N’Da DD. Synthesis and in vitro antimycobacterial and antileishmanial activities of hydroquinone-triazole hybrids. Med Chem Res 2020. [DOI: 10.1007/s00044-020-02553-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
23
|
Cheng P, Yang L, Huang X, Wang X, Gong M. Chalcone hybrids and their antimalarial activity. Arch Pharm (Weinheim) 2020; 353:e1900350. [PMID: 32003489 DOI: 10.1002/ardp.201900350] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 01/08/2020] [Accepted: 01/09/2020] [Indexed: 02/06/2023]
Abstract
Malaria, one of the most striking, re-emerging infectious diseases caused by the genus Plasmodium, places a huge burden on global healthcare systems. A major challenge in the control and eradication of malaria is the continuous emergence of increasingly widespread drug-resistant malaria, creating an urgent need to develop novel antimalarial agents. Chalcone derivatives are ubiquitous in nature and have become indispensable units in medicinal chemistry applications due to their diverse biological profiles. Many chalcone derivatives demonstrate potential in vitro and in vivo antimalarial activity, so chalcone could be a useful template for the development of novel antimalarial agents. This review covers the recent development of chalcone hybrids as antimalarial agents. The critical aspects of the design and structure-activity relationship of these compounds are also discussed.
Collapse
Affiliation(s)
- Peng Cheng
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, China
| | - Linlin Yang
- Department of Vector Biological Control, Jining Municipal Center for Disease Control and Prevention, Jining, Shandong, China
| | - Xiaodan Huang
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, China
| | - Xuejun Wang
- Shandong Provincial Key Laboratory of Infectious Disease Control and Prevention, Shandong Center for Disease Control and Prevention, Jinan, China
| | - Maoqing Gong
- Shandong Institute of Parasitic Diseases, Shandong First Medical University & Shandong Academy of Medical Sciences, Jining, Shandong, China
| |
Collapse
|
24
|
Marchesi E, Chinaglia N, Capobianco ML, Marchetti P, Huang TE, Weng HC, Guh JH, Hsu LC, Perrone D, Navacchia ML. Dihydroartemisinin-Bile Acid Hybridization as an Effective Approach to Enhance Dihydroartemisinin Anticancer Activity. ChemMedChem 2020; 14:779-787. [PMID: 30724466 DOI: 10.1002/cmdc.201800756] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2018] [Revised: 02/02/2019] [Indexed: 12/29/2022]
Abstract
A series of hybrid compounds based on natural products-bile acids and dihydroartemisinin-were prepared by different synthetic methodologies and investigated for their in vitro biological activity against HL-60 leukemia and HepG2 hepatocellular carcinoma cell lines. Most of these hybrids presented significantly improved antiproliferative activities with respect to dihydroartemisinin and the parent bile acid. The two most potent hybrids of the series exhibited a 10.5- and 15.4-fold increase in cytotoxic activity respect to dihydroartemisinin alone in HL-60 and HepG2 cells, respectively. Strong evidence that an ursodeoxycholic acid hybrid induced apoptosis was obtained by flow cytometric analysis and western blot analysis.
Collapse
Affiliation(s)
- Elena Marchesi
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Nicola Chinaglia
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Massimo L Capobianco
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Via P. Gobetti 101, 40129, Bologna, Italy
| | - Paolo Marchetti
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Tzu-En Huang
- School of Pharmacy, National Taiwan University, No. 33 Linsen South Road, Taipei, 10050, Taiwan
| | - Hao-Cheng Weng
- School of Pharmacy, National Taiwan University, No. 33 Linsen South Road, Taipei, 10050, Taiwan
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, No. 33 Linsen South Road, Taipei, 10050, Taiwan
| | - Lih-Ching Hsu
- School of Pharmacy, National Taiwan University, No. 33 Linsen South Road, Taipei, 10050, Taiwan
| | - Daniela Perrone
- Department of Chemical and Pharmaceutical Sciences, University of Ferrara, Via L. Borsari 46, 44121, Ferrara, Italy
| | - Maria Luisa Navacchia
- Institute of Organic Synthesis and Photoreactivity, National Research Council, Via P. Gobetti 101, 40129, Bologna, Italy
| |
Collapse
|
25
|
Gao F, Sun Z, Kong F, Xiao J. Artemisinin-derived hybrids and their anticancer activity. Eur J Med Chem 2020; 188:112044. [PMID: 31945642 DOI: 10.1016/j.ejmech.2020.112044] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Revised: 01/01/2020] [Accepted: 01/06/2020] [Indexed: 11/16/2022]
Abstract
The emergence of drug-resistance and the low specificity of anticancer agents are the major challenges in the treatment of cancer and can result in many side effects, creating an urgent demand to develop novel anticancer agents. Artemisinin-derived compounds, bearing a peroxide-containing sesquiterpene lactone moiety, could form free radicals with high reactivity and possess diverse pharmaceutical properties including in vitro and in vivo anticancer activity besides their typical antimalarial activity. Hybrid molecules have the potential to improve the specificity and overcome the drug resistance, therefore hybridization of artemisinin skeleton with other anticancer pharmacophores may provide novel anticancer candidates with high specificity and great potency against drug-resistant cancers. The review outlines the recent advances of artemisinin-derived hybrids as potential anticancer agents, and the structure-activity relationships are also discussed to provide an insight for rational designs of novel hybrids with high activity.
Collapse
Affiliation(s)
- Feng Gao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China.
| | - Zhou Sun
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China
| | - Jiaqi Xiao
- State Key Laboratory of Biobased Material and Green Papermaking (LBMP), Qilu University of Technology (Shandong Academy of Sciences), Jinan, PR China.
| |
Collapse
|
26
|
Sinha S, Batovska DI, Medhi B, Radotra BD, Bhalla A, Markova N, Sehgal R. In vitro anti-malarial efficacy of chalcones: cytotoxicity profile, mechanism of action and their effect on erythrocytes. Malar J 2019; 18:421. [PMID: 31842914 PMCID: PMC6916019 DOI: 10.1186/s12936-019-3060-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2019] [Accepted: 12/08/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Malaria extensively leads to mortality and morbidity in endemic regions, and the emergence of drug resistant parasites is alarming. Plant derived synthetic pharmaceutical compounds are found to be a foremost research to obtain diverse range of potent leads. Amongst them, the chalcone scaffold is a functional template for drug discovery. The present study involves synthesis of ten chalcones with various substitution pattern in rings A and B and assessment of their anti-malarial efficacy against chloroquine sensitive and chloroquine resistant strains as well as of their cytotoxicity and effect on haemozoin production. METHODS The chalcones were synthesized by Claisen-Schmidt condensation between equimolar quantities of substituted acetophenones and aryl benzaldehydes (or indole-3-carboxaldehyde) and were screened for anti-malarial activity by WHO Mark III schizont maturation inhibition assay. The cytotoxicity profile of a HeLa cell line was evaluated through MTT viability assay and the selectivity index (SI) was calculated. Haemozoin inhibition assay was performed to illustrate mode of action on a Plasmodium falciparum strain. RESULTS The IC50 values of all compounds were in the range 0.10-0.40 μg/mL for MRC-2 (a chloroquine sensitive strain) and 0.14-0.55 μg/mL for RKL-9 (a chloroquine resistant strain) of P. falciparum. All the chalcones showed low cellular toxicity with minimal haemolysis. The statistically significant reduction (p < 0.05) in the haemozoin production suggests a similar mechanism than that of chloroquine. CONCLUSIONS Out of ten chalcones, number 7 was found to be a lead compound with the highest potency (IC50 = 0.11 µg/mL), as compared to licochalcone (IC50 = 1.43 µg/mL) and with high selectivity index of 85.05.
Collapse
Affiliation(s)
- Shweta Sinha
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India
| | - Daniela I Batovska
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Bikash Medhi
- Department of Pharmacology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - B D Radotra
- Department of Histopathology, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Ashish Bhalla
- Department of Internal Medicine, Post Graduate Institute of Medical Education and Research, Chandigarh, India
| | - Nadezhda Markova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Rakesh Sehgal
- Department of Medical Parasitology, Post Graduate Institute of Medical Education and Research, Chandigarh, 160012, India.
| |
Collapse
|
27
|
Narula AK, Azad CS, Nainwal LM. New dimensions in the field of antimalarial research against malaria resurgence. Eur J Med Chem 2019; 181:111353. [DOI: 10.1016/j.ejmech.2019.05.043] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Revised: 04/16/2019] [Accepted: 05/15/2019] [Indexed: 12/20/2022]
|
28
|
Combination Therapy Strategies for the Treatment of Malaria. Molecules 2019; 24:molecules24193601. [PMID: 31591293 PMCID: PMC6804225 DOI: 10.3390/molecules24193601] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 08/15/2019] [Accepted: 08/21/2019] [Indexed: 11/16/2022] Open
Abstract
Malaria is a vector- and blood-borne infection that is responsible for a large number of deaths around the world. Most of the currently used antimalarial therapeutics suffer from drug resistance. The other limitations associated with the currently used antimalarial drugs are poor drug bioavailability, drug toxicity, and poor water solubility. Combination therapy is one of the best approaches that is currently used to treat malaria, whereby two or more therapeutic agents are combined. Different combination therapy strategies are used to overcome the aforementioned limitations. This review article reports two strategies of combination therapy; the incorporation of two or more antimalarials into polymer-based carriers and hybrid compounds designed by hybridization of two antimalarial pharmacophores.
Collapse
|
29
|
Abdelgawad N, Ismail MF, Hekal MH, Marzouk MI. Design, Synthesis, and Evaluation of Some Novel Heterocycles Bearing Pyrazole Moiety as Potential Anticancer Agents. J Heterocycl Chem 2019. [DOI: 10.1002/jhet.3544] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Affiliation(s)
- Nancy Abdelgawad
- Chemistry Department, Faculty of ScienceAin Shams University Abbassia Cairo 11566 Egypt
| | - Mahmoud F. Ismail
- Chemistry Department, Faculty of ScienceAin Shams University Abbassia Cairo 11566 Egypt
| | - Mohamed H. Hekal
- Chemistry Department, Faculty of ScienceAin Shams University Abbassia Cairo 11566 Egypt
| | - Magda I. Marzouk
- Chemistry Department, Faculty of ScienceAin Shams University Abbassia Cairo 11566 Egypt
| |
Collapse
|
30
|
Li S, Li G, Yang X, Meng Q, Yuan S, He Y, Sun D. Design, synthesis and biological evaluation of artemisinin derivatives containing fluorine atoms as anticancer agents. Bioorg Med Chem Lett 2018; 28:2275-2278. [PMID: 29789258 DOI: 10.1016/j.bmcl.2018.05.035] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 05/10/2018] [Accepted: 05/16/2018] [Indexed: 12/25/2022]
Abstract
Ten novel artemisinin derivatives containing fluorine atoms were synthesized and their structures were confirmed by 1H NMR, 13C NMR and HRMS technologies in this study. The in vitro cytotoxicity against U87MG, SH-SY5Y, MCF-7, MDA-MB-231, A549 and A375 cancer cell lines was evaluated by MTT assay. Compound 9j was the most potent anti-proliferative agent against the human breast cancer MCF-7 cells (IC50 = 2.1 μM). The mechanism of action of compound 9j was further investigated by analysis of cell apoptosis and cell cycle. Compound 9j induced cell apoptosis and arrested cell cycle at G1 phase in MCF-7 cells. Our promising findings indicated that the compound 9j could stand as potential lead compound for further investigation.
Collapse
Affiliation(s)
- Shu Li
- Marine College, Shandong University at Weihai, No. 180, Wenhua West Road, Weihai 264209, PR China
| | - Gongming Li
- Marine College, Shandong University at Weihai, No. 180, Wenhua West Road, Weihai 264209, PR China
| | - Xiaohong Yang
- School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Chongqing 401331, PR China
| | - Qian Meng
- Marine College, Shandong University at Weihai, No. 180, Wenhua West Road, Weihai 264209, PR China
| | - Shuo Yuan
- Marine College, Shandong University at Weihai, No. 180, Wenhua West Road, Weihai 264209, PR China
| | - Yun He
- School of Pharmaceutical Sciences, Chongqing University, 55 Daxuecheng South Road, Chongqing 401331, PR China
| | - Dequn Sun
- Marine College, Shandong University at Weihai, No. 180, Wenhua West Road, Weihai 264209, PR China.
| |
Collapse
|
31
|
PINHEIRO LUIZC, FEITOSA LÍVIAM, SILVEIRA FLÁVIAFDA, BOECHAT NUBIA. Current Antimalarial Therapies and Advances in the Development of Semi-Synthetic Artemisinin Derivatives. ACTA ACUST UNITED AC 2018; 90:1251-1271. [DOI: 10.1590/0001-3765201820170830] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2017] [Accepted: 12/18/2017] [Indexed: 12/16/2022]
Affiliation(s)
| | - LÍVIA M. FEITOSA
- Fundação Oswaldo Cruz, Brazil; Universidade Federal do Rio de Janeiro, Brazil
| | | | | |
Collapse
|
32
|
Thillainayagam M, Malathi K, Ramaiah S. In-Silico molecular docking and simulation studies on novel chalcone and flavone hybrid derivatives with 1, 2, 3-triazole linkage as vital inhibitors of Plasmodium falciparum dihydroorotate dehydrogenase. J Biomol Struct Dyn 2017; 36:3993-4009. [DOI: 10.1080/07391102.2017.1404935] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Mahalakshmi Thillainayagam
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, TamilNadu, India
| | - Kullappan Malathi
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, TamilNadu, India
| | - Sudha Ramaiah
- Medical & Biological Computing Laboratory, School of Biosciences and Technology, Vellore Institute of Technology (VIT), Vellore 632 014, TamilNadu, India
| |
Collapse
|
33
|
Apoptotic effect of chalcone derivatives of 2-acetylthiophene in human breast cancer cells. Pharmacol Rep 2017; 69:156-161. [DOI: 10.1016/j.pharep.2016.10.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 02/05/2023]
|
34
|
Fröhlich T, Ndreshkjana B, Muenzner JK, Reiter C, Hofmeister E, Mederer S, Fatfat M, El-Baba C, Gali-Muhtasib H, Schneider-Stock R, Tsogoeva SB. Synthesis of Novel Hybrids of Thymoquinone and Artemisinin with High Activity and Selectivity Against Colon Cancer. ChemMedChem 2017; 12:226-234. [PMID: 27973725 DOI: 10.1002/cmdc.201600594] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Indexed: 12/28/2022]
Abstract
Colorectal cancer causes 0.5 million deaths each year. To combat this type of cancer the development of new specific drug candidates is urgently needed. In the present work seven novel thymoquinone-artemisinin hybrids with different linkers were synthesized and tested for their in vitro anticancer activity against a panel of various tumor cell lines. The thymoquinone-artesunic acid hybrid 7 a, in which both subunits are connected via an ester bond, was found to be the most active compound and selectively decreased the viability of colorectal cancer cells with an IC50 value of 2.4 μm (HCT116) and 2.8 μm (HT29). Remarkably, hybrid 7 a was up to 20-fold more active than its parent compounds (thymoquinone and artesunic acid), while not affecting nonmalignant colon epithelial HCEC cells (IC50 >100 μm). Moreover, the activity of hybrid 7 a was superior to that of various 1:1 mixtures of thymoquinone and artesunic acid. Furthermore, hybrid 7 a was even more potent against both colon cancer cell lines than the clinically used drug 5-fluorouracil. These results are another excellent proof of the hybridization concept and confirm that the type and length of the linker play a crucial role for the biological activity of a hybrid drug. Besides an increase in reactive oxygen species (ROS), elevated levels of the DNA-damage marker γ-H2AX were observed. Both effects seem to be involved in the molecular mechanism of action for hybrid 7 a in colorectal cancer cells.
Collapse
Affiliation(s)
- Tony Fröhlich
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University of Erlangen-Nürnberg, Henkestr. 42, 91054, Erlangen, Germany
| | - Benardina Ndreshkjana
- Experimental Tumor Pathology, Institute of Pathology, Friedrich Alexander University of Erlangen-Nürnberg, Universitätsstr. 22, 91054, Erlangen, Germany
| | - Julienne K Muenzner
- Experimental Tumor Pathology, Institute of Pathology, Friedrich Alexander University of Erlangen-Nürnberg, Universitätsstr. 22, 91054, Erlangen, Germany
| | - Christoph Reiter
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University of Erlangen-Nürnberg, Henkestr. 42, 91054, Erlangen, Germany
| | - Elisabeth Hofmeister
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University of Erlangen-Nürnberg, Henkestr. 42, 91054, Erlangen, Germany
| | - Sandra Mederer
- Experimental Tumor Pathology, Institute of Pathology, Friedrich Alexander University of Erlangen-Nürnberg, Universitätsstr. 22, 91054, Erlangen, Germany
| | - Maamoun Fatfat
- Department of Biology, Department of Anatomy, Cell Biology and Physiological Science, American University of Beirut, Beirut, Lebanon
| | - Chirine El-Baba
- Experimental Tumor Pathology, Institute of Pathology, Friedrich Alexander University of Erlangen-Nürnberg, Universitätsstr. 22, 91054, Erlangen, Germany
| | - Hala Gali-Muhtasib
- Department of Biology, Department of Anatomy, Cell Biology and Physiological Science, American University of Beirut, Beirut, Lebanon
| | - Regine Schneider-Stock
- Experimental Tumor Pathology, Institute of Pathology, Friedrich Alexander University of Erlangen-Nürnberg, Universitätsstr. 22, 91054, Erlangen, Germany
| | - Svetlana B Tsogoeva
- Organic Chemistry Chair I and Interdisciplinary Center for Molecular Materials (ICMM), Friedrich Alexander University of Erlangen-Nürnberg, Henkestr. 42, 91054, Erlangen, Germany
| |
Collapse
|
35
|
Design, synthesis, cytotoxicity, HuTopoIIα inhibitory activity and molecular docking studies of pyrazole derivatives as potential anticancer agents. Bioorg Chem 2016; 69:77-90. [DOI: 10.1016/j.bioorg.2016.10.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Revised: 10/03/2016] [Accepted: 10/04/2016] [Indexed: 12/14/2022]
|
36
|
Synthesis and cytotoxicity of novel artemisinin derivatives containing sulfur atoms. Eur J Med Chem 2016; 123:763-768. [PMID: 27537924 DOI: 10.1016/j.ejmech.2016.08.015] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2016] [Revised: 08/08/2016] [Accepted: 08/09/2016] [Indexed: 12/11/2022]
Abstract
Ten novel artemisinin derivatives containing sulfur atoms were designed and synthesized and their structures were confirmed by (1)H NMR, (13)C NMR and HRMS technologies in this study. All compounds were reported for the first time. The in vitro cytotoxicity against PC-3, SGC-7901, A549 and MDA-MB-435s cancer cell lines was evaluated by MTT assay. Compounds 4a and 4f displayed potent antitumor activity against PC-3, SGC-7901 and A549 cells with IC50 ranging from 1.6 to 30.5 μM, which values are compared to that of 5-FU (IC50 from 6.8 to 42.5 μM). Compounds 4a and 4f showed high specificity towards human lung cancer A549 cells compared to normal human hepatic L-02 cells with selectivity index of 16.1 and 50.1 respectively. Our promising findings indicated that the compounds 4a and 4f could stand as potential lead compounds for further investigation.
Collapse
|
37
|
|
38
|
Pérez-Moreno G, Cantizani J, Sánchez-Carrasco P, Ruiz-Pérez LM, Martín J, el Aouad N, Pérez-Victoria I, Tormo JR, González-Menendez V, González I, de Pedro N, Reyes F, Genilloud O, Vicente F, González-Pacanowska D. Discovery of New Compounds Active against Plasmodium falciparum by High Throughput Screening of Microbial Natural Products. PLoS One 2016; 11:e0145812. [PMID: 26735308 PMCID: PMC4703298 DOI: 10.1371/journal.pone.0145812] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2015] [Accepted: 12/09/2015] [Indexed: 12/03/2022] Open
Abstract
Due to the low structural diversity within the set of antimalarial drugs currently available in the clinic and the increasing number of cases of resistance, there is an urgent need to find new compounds with novel modes of action to treat the disease. Microbial natural products are characterized by their large diversity provided in terms of the chemical complexity of the compounds and the novelty of structures. Microbial natural products extracts have been underexplored in the search for new antiparasitic drugs and even more so in the discovery of new antimalarials. Our objective was to find new druggable natural products with antimalarial properties from the MEDINA natural products collection, one of the largest natural product libraries harboring more than 130,000 microbial extracts. In this work, we describe the optimization process and the results of a phenotypic high throughput screen (HTS) based on measurements of Plasmodium lactate dehydrogenase. A subset of more than 20,000 extracts from the MEDINA microbial products collection has been explored, leading to the discovery of 3 new compounds with antimalarial activity. In addition, we report on the novel antiplasmodial activity of 4 previously described natural products.
Collapse
Affiliation(s)
- Guiomar Pérez-Moreno
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016-Armilla (Granada), Spain
| | - Juan Cantizani
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 34.18016-Armilla (Granada), Spain
| | - Paula Sánchez-Carrasco
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016-Armilla (Granada), Spain
| | - Luis Miguel Ruiz-Pérez
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016-Armilla (Granada), Spain
| | - Jesús Martín
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 34.18016-Armilla (Granada), Spain
| | - Noureddine el Aouad
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 34.18016-Armilla (Granada), Spain
| | - Ignacio Pérez-Victoria
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 34.18016-Armilla (Granada), Spain
| | - José Rubén Tormo
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 34.18016-Armilla (Granada), Spain
| | - Víctor González-Menendez
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 34.18016-Armilla (Granada), Spain
| | - Ignacio González
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 34.18016-Armilla (Granada), Spain
| | - Nuria de Pedro
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 34.18016-Armilla (Granada), Spain
| | - Fernando Reyes
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 34.18016-Armilla (Granada), Spain
| | - Olga Genilloud
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 34.18016-Armilla (Granada), Spain
| | - Francisca Vicente
- Fundación MEDINA, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, 34.18016-Armilla (Granada), Spain
| | - Dolores González-Pacanowska
- Instituto de Parasitología y Biomedicina “López-Neyra”, Consejo Superior de Investigaciones Científicas, Parque Tecnológico de Ciencias de la Salud, Avenida del Conocimiento, s/n, 18016-Armilla (Granada), Spain
- * E-mail:
| |
Collapse
|
39
|
Xu CC, Deng T, Fan ML, Lv WB, Liu JH, Yu BY. Synthesis and in vitro antitumor evaluation of dihydroartemisinin-cinnamic acid ester derivatives. Eur J Med Chem 2016; 107:192-203. [DOI: 10.1016/j.ejmech.2015.11.003] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 10/14/2015] [Accepted: 11/02/2015] [Indexed: 11/30/2022]
|
40
|
Wang GF, Zhang X, Sun SW, Han QP, Yang X, Li H, Ma HX, Yao CZ, Sun H, Dong HB. Synthesis and crystal structure of a novel Mn(II) coordination polymer with 3-(4-(1H-benzo[d]imidazol-1-yl)-4-methoxyphenyl)-1-phenylprop-2-en-1-one ligands. CRYSTALLOGR REP+ 2015. [DOI: 10.1134/s1063774515070305] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
41
|
Mahapatra DK, Bharti SK, Asati V. Anti-cancer chalcones: Structural and molecular target perspectives. Eur J Med Chem 2015; 98:69-114. [PMID: 26005917 DOI: 10.1016/j.ejmech.2015.05.004] [Citation(s) in RCA: 329] [Impact Index Per Article: 32.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 04/16/2015] [Accepted: 05/05/2015] [Indexed: 12/12/2022]
Abstract
Chalcone or (E)-1,3-diphenyl-2-propene-1-one scaffold remained a fascination among researchers in the 21st century due to its simple chemistry, ease of synthesis and a wide variety of promising biological activities. Several natural and (semi) synthetic chalcones have shown anti-cancer activity due to their inhibitory potential against various targets namely ABCG2/P-gp/BCRP, 5α-reductase, aromatase, 17-β-hydroxysteroid dehydrogenase, HDAC/Situin-1, proteasome, VEGF, VEGFR-2 kinase, MMP-2/9, JAK/STAT signaling pathways, CDC25B, tubulin, cathepsin-K, topoisomerase-II, Wnt, NF-κB, B-Raf and mTOR etc. In this review, a comprehensive study on molecular targets/pathways involved in carcinogenesis, mechanism of actions (MOAs), structure activity relationships (SARs) and patents granted have been highlighted. With the knowledge of molecular targets, structural insights and SARs, this review may be helpful for (medicinal) chemists to design more potent, safe, selective and cost effective anti-cancer chalcones.
Collapse
Affiliation(s)
- Debarshi Kar Mahapatra
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| | - Sanjay Kumar Bharti
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India.
| | - Vivek Asati
- Institute of Pharmaceutical Sciences, Guru Ghasidas Vishwavidyalaya (A Central University), Bilaspur 495009, Chhattisgarh, India
| |
Collapse
|
42
|
Gaur R, Cheema HS, Kumar Y, Singh SP, Yadav DK, Darokar MP, Khan F, Bhakuni RS. In vitro antimalarial activity and molecular modeling studies of novel artemisinin derivatives. RSC Adv 2015. [DOI: 10.1039/c5ra07697h] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cerebral malaria is a serious and sometimes fatal disease caused by aPlasmodium falciparumparasite that infects a female anopheles mosquito which feeds on humans.
Collapse
Affiliation(s)
- Rashmi Gaur
- Medicinal Chemistry Division
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Harveer Singh Cheema
- Molecular Bio-prospection Department
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Yogesh Kumar
- Metabolic and Structural Biology Department
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Suriya Pratap Singh
- Medicinal Chemistry Division
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Dharmendra K. Yadav
- Metabolic and Structural Biology Department
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
| | - Mahendra Padurang Darokar
- Molecular Bio-prospection Department
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Feroz Khan
- Metabolic and Structural Biology Department
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
- Academy of Scientific and Innovative Research (AcSIR)
| | - Rajendra Singh Bhakuni
- Medicinal Chemistry Division
- CSIR-Central Institute of Medicinal and Aromatic Plants
- Lucknow-226015
- India
- Academy of Scientific and Innovative Research (AcSIR)
| |
Collapse
|