1
|
Elsebaei MM, Ezzat HG, Helal AM, El-Shershaby MH, Abdulrahman MS, Alsedawy M, Aljohani AKB, Almaghrabi M, Alsulaimany M, Almohaywi B, Alghamdi R, Miski SF, Musa A, Ahmed HEA. Rational design and synthesis of novel phenyltriazole derivatives targeting MRSA cell wall biosynthesis. RSC Adv 2024; 14:39977-39994. [PMID: 39713184 PMCID: PMC11659749 DOI: 10.1039/d4ra07367c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 12/02/2024] [Indexed: 12/24/2024] Open
Abstract
Antimicrobial resistance in methicillin-resistant Staphylococcus aureus (MRSA) is a major global health challenge. This study reports the design and synthesis of novel phenyltriazole derivatives as potential anti-MRSA agents. The new scaffold replaces the thiazole core with a 1,2,3-triazole ring, enhancing antimicrobial efficacy and physicochemical properties. A series of derivatives were synthesized and evaluated, with four compounds (20, 23, 29 and 30) showing significant activity against MRSA (MIC ≤ 4 μg mL-1). Compound 29 emerged as the most promising candidate, showing rapid bactericidal activity and superior performance over vancomycin in time-kill assays. It exhibited selective toxicity against bacterial cells, minimal cytotoxicity in human cell lines and low hemolytic activity. Mechanistic studies showed that compound 29 targets the bacterial cell wall by binding to penicillin-binding protein 2a (PBP2a), disrupting cell wall integrity. Additionally, it showed strong anti-biofilm activity and reduced MRSA biofilms by up to 40%. Preliminary pharmacokinetic profiles suggested a favorable profile, including a prolonged plasma half-life and good oral bioavailability. These results suggest that compound 29 is a promising lead for further development in the fight against MRSA.
Collapse
Affiliation(s)
- Mohamed M Elsebaei
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Hany G Ezzat
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Ahmed M Helal
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohamed H El-Shershaby
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Mohammed S Abdulrahman
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Moaz Alsedawy
- Microbiology and Immunology Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| | - Ahmed K B Aljohani
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Mohammed Almaghrabi
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Marwa Alsulaimany
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Basmah Almohaywi
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Khalid University Abha 61421 Saudi Arabia
| | - Read Alghamdi
- Pharmacognosy and Pharmaceutical Chemistry Department, Pharmacy College, Taibah University Al-Madinah Al-Munawarah 41477 Saudi Arabia
| | - Samar F Miski
- Department of Pharmacology and Toxicology, College of Pharmacy, Taibah University Medina 42353 Saudi Arabia
| | - Arafa Musa
- Department of Pharmacognosy, College of Pharmacy, Jouf University Sakaka Aljouf 72341 Saudi Arabia
| | - Hany E A Ahmed
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Al-Azhar University Nasr City 11884 Cairo Egypt
| |
Collapse
|
2
|
Roman G. Anticancer activity of Mannich bases: a review of recent literature. ChemMedChem 2022; 17:e202200258. [PMID: 35678192 DOI: 10.1002/cmdc.202200258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/06/2022] [Indexed: 11/05/2022]
Abstract
This report summarizes the latest published data on the antiproliferative action and cytotoxic activity of Mannich bases, a structurally heterogeneous category of chemical entities that includes compounds which are synthesized via the grafting of an aminomethyl function onto diverse substrates by means of the Mannich reaction. The present overview of the topic is an update to the information assembled in a previously published review that covered the literature up to 2014.
Collapse
Affiliation(s)
- Gheorghe Roman
- Petru Poni Institute of Macromolecular Chemistry, Department of Inorganic polymers, 41A Aleea Gr. Ghica Voda, 700487, Iasi, ROMANIA
| |
Collapse
|
3
|
Necardo C, Alfano AI, Del Grosso E, Pelliccia S, Galli U, Novellino E, Meneghetti F, Giustiniano M, Tron GC. Aryl Azides as Forgotten Electrophiles in the Van Leusen Reaction: A Multicomponent Transformation Affording 4-Tosyl-1-arylimidazoles. J Org Chem 2019; 84:16299-16307. [PMID: 31779310 DOI: 10.1021/acs.joc.9b02546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
Considering aryl azides as electrophilic partners for the TosMIC mediated Van Leusen reaction, a novel multicomponent synthesis of 4-tosyl-1-arylimidazoles is reported. In this transformation, two molecules of TosMIC participate in the reaction mechanism in two different ways, with the second molecule undergoing a novel type of fragmentation resulting in the incorporation of a C-H into the final product.
Collapse
Affiliation(s)
- Cristiana Necardo
- Dipartimento di Scienze del Farmaco , Università del Piemonte Orientale "A. Avogadro" , Largo Donegani 2 , 28100 Novara , Italy
| | - Antonella Ilenia Alfano
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Erika Del Grosso
- Dipartimento di Scienze del Farmaco , Università del Piemonte Orientale "A. Avogadro" , Largo Donegani 2 , 28100 Novara , Italy
| | - Sveva Pelliccia
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Ubaldina Galli
- Dipartimento di Scienze del Farmaco , Università del Piemonte Orientale "A. Avogadro" , Largo Donegani 2 , 28100 Novara , Italy
| | - Ettore Novellino
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Fiorella Meneghetti
- Dipartimento di Scienze Farmaceutiche , Università degli Studi di Milano , via L. Mangiagalli 25 , 20133 Milano , Italy
| | - Mariateresa Giustiniano
- Dipartimento di Farmacia , Università degli Studi di Napoli "Federico II" , via D. Montesano 49 , 80131 Napoli , Italy
| | - Gian Cesare Tron
- Dipartimento di Scienze del Farmaco , Università del Piemonte Orientale "A. Avogadro" , Largo Donegani 2 , 28100 Novara , Italy
| |
Collapse
|
4
|
Damiano C, Gadolini S, Intrieri D, Lay L, Colombo C, Gallo E. Iron and Ruthenium Glycoporphyrins: Active Catalysts for the Synthesis of Cyclopropanes and Aziridines. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201900829] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Caterina Damiano
- Department of Chemistry University of Milan Via Golgi 19 20133 Milan Italy
| | | | - Daniela Intrieri
- Department of Chemistry University of Milan Via Golgi 19 20133 Milan Italy
| | - Luigi Lay
- Department of Chemistry University of Milan Via Golgi 19 20133 Milan Italy
| | - Cinzia Colombo
- Department of Chemistry University of Milan Via Golgi 19 20133 Milan Italy
| | - Emma Gallo
- Department of Chemistry University of Milan Via Golgi 19 20133 Milan Italy
| |
Collapse
|
5
|
Aguilar-Morales CM, de Loera D, Contreras-Celedón C, Cortés-García CJ, Chacón-García L. Synthesis of 1,5-disubstituted tetrazole-1,2,3 triazoles hybrids via Ugi-azide/CuAAC. SYNTHETIC COMMUN 2019. [DOI: 10.1080/00397911.2019.1616301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Cesia M. Aguilar-Morales
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Ciudad Universitaria, Morelia, Mexico
| | - Denisse de Loera
- Facultad de Ciencias Químicas, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Claudia Contreras-Celedón
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Ciudad Universitaria, Morelia, Mexico
| | - Carlos J. Cortés-García
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Ciudad Universitaria, Morelia, Mexico
| | - Luis Chacón-García
- Laboratorio de Diseño Molecular, Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo. Ciudad Universitaria, Morelia, Mexico
| |
Collapse
|
6
|
Singh D, Narayanamoorthy S, Gamre S, Majumdar AG, Goswami M, Gami U, Cherian S, Subramanian M. Hydroxychavicol, a key ingredient of Piper betle induces bacterial cell death by DNA damage and inhibition of cell division. Free Radic Biol Med 2018; 120:62-71. [PMID: 29550331 DOI: 10.1016/j.freeradbiomed.2018.03.021] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2017] [Revised: 02/21/2018] [Accepted: 03/12/2018] [Indexed: 11/19/2022]
Abstract
Antibiotic resistance is a global problem and there is an urgent need to augment the arsenal against pathogenic bacteria. The emergence of different drug resistant bacteria is threatening human lives to be pushed towards the pre-antibiotic era. Botanical sources remain a vital source of diverse organic molecules that possess antibacterial property as well as augment existing antibacterial molecules. Piper betle, a climber, is widely used in south and south-east Asia whose leaves and nuts are consumed regularly. Hydroxychavicol (HC) isolated from Piper betle has been reported to possess antibacterial activity. It is currently not clear how the antibacterial activity of HC is manifested. In this investigation we show HC generates superoxide in E. coli cells. Antioxidants protected E. coli against HC induced cell death while gshA mutant was more sensitive to HC than wild type. DNA damage repair deficient mutants are hypersensitive to HC and HC induces the expression of DNA damage repair genes that repair oxidative DNA damage. HC treated E. coli cells are inhibited from growth and undergo DNA condensation. In vitro HC binds to DNA and cleaves it in presence of copper. Our data strongly indicates HC mediates bacterial cell death by ROS generation and DNA damage. Damage to iron sulfur proteins in the cells contribute to amplification of oxidative stress initiated by HC. Further HC is active against a number of Gram negative bacteria isolated from patients with a wide range of clinical symptoms and varied antibiotic resistance profiles.
Collapse
Affiliation(s)
- Deepti Singh
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | | | - Sunita Gamre
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Ananda Guha Majumdar
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Manish Goswami
- Molecular Biology Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India
| | - Umesh Gami
- Department of Pathology, BARC Hospital, Anushaktinagar, Mumbai 400094, India
| | - Susan Cherian
- Department of Pathology, BARC Hospital, Anushaktinagar, Mumbai 400094, India
| | - Mahesh Subramanian
- Bio-Organic Division, Bhabha Atomic Research Centre, Trombay, Mumbai 400085, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India.
| |
Collapse
|
7
|
Kumar C, Rasool RU, Iqra Z, Nalli Y, Dutt P, Satti NK, Sharma N, Gandhi SG, Goswami A, Ali A. Alkyne-azide cycloaddition analogues of dehydrozingerone as potential anti-prostate cancer inhibitors via the PI3K/Akt/NF-kB pathway. MEDCHEMCOMM 2017; 8:2115-2124. [PMID: 30108729 PMCID: PMC6072283 DOI: 10.1039/c7md00267j] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 10/02/2017] [Indexed: 12/20/2022]
Abstract
Herein, we report the isolation and synthetic modification of dehydrozingerone (DHZ, 1), a secondary metabolite present in the rhizome of Zingiber officinale. We synthesized O-propargylated dehydrozingerone, which was subsequently coupled by alkyne-azide cycloaddition (3-20) using click chemistry. The compounds (1-20) were evaluated for their in vitro cytotoxic activity in a panel of three cancer cell lines. Among all the DHZ derivatives, 3, 6, 7, 8, 9 and 15 displayed potent cytotoxic potential with an IC50 value ranging from 1.8-3.0 μM in MCF-7, PC-3 and HCT-116 cell lines. Furthermore, compound 7 has proven to be the most potent cytotoxic compound in all the three distinct cancer cell lines and also demonstrated significant anti-invasive potential in prostate cancer. The mechanistic study of compound 7 showed that it not only suppressed the AKT/mTOR signalling which regulates nuclear transcription factor-NF-kB but also augmented the expression of anti-invasive markers E-cadherin and TIMP. Compound 7 significantly decreased the expression of pro-invasive markers vimentin, MMP-2 and MMP-9, respectively. This study underscores an efficient synthetic approach employed to evaluate the structure-activity relationship of dehydrozingerone (1) in search of potential new anticancer agents.
Collapse
Affiliation(s)
- Chetan Kumar
- Natural Product Chemistry Division , India . ; ; Tel: +91 191 2569222
| | - Reyaz Ur Rasool
- Academy of Scientific & Innovative Research (AcSIR) , Anusandhan Bhawan, 2 Rafi Marg , New Delhi-110001 , India
- Cancer Pharmacology Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India .
| | - Zainab Iqra
- Cancer Pharmacology Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India .
| | - Yedukondalu Nalli
- Natural Product Chemistry Division , India . ; ; Tel: +91 191 2569222
| | - Prabhu Dutt
- Natural Product Chemistry Division , India . ; ; Tel: +91 191 2569222
| | - Naresh K Satti
- Natural Product Chemistry Division , India . ; ; Tel: +91 191 2569222
| | - Neha Sharma
- Natural Product Chemistry Division , India . ; ; Tel: +91 191 2569222
| | - Sumit G Gandhi
- Plant Biotechnology division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu , India
| | - Anindya Goswami
- Cancer Pharmacology Division , CSIR-Indian Institute of Integrative Medicine , Canal Road , Jammu-180001 , India .
| | - Asif Ali
- Natural Product Chemistry Division , India . ; ; Tel: +91 191 2569222
| |
Collapse
|
8
|
Tian J, Yi C, He Z, Yao M, Sang D. Aluminum Triiodide-Mediated Cleavage ofo-Hydroxyphenyl Alkyl Ethers Using Inorganic Bases and Metal Oxides as Acid Scavengers. ChemistrySelect 2017. [DOI: 10.1002/slct.201701685] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Juan Tian
- Jingchu University of Technology; 33 Xiangshan Road, Jingmen Hubei 448000, P. R. of China
| | - Cuicui Yi
- Jingchu University of Technology; 33 Xiangshan Road, Jingmen Hubei 448000, P. R. of China
| | - Zhoujun He
- Jingchu University of Technology; 33 Xiangshan Road, Jingmen Hubei 448000, P. R. of China
| | - Ming Yao
- Jingchu University of Technology; 33 Xiangshan Road, Jingmen Hubei 448000, P. R. of China
| | - Dayong Sang
- Jingchu University of Technology; 33 Xiangshan Road, Jingmen Hubei 448000, P. R. of China
| |
Collapse
|
9
|
Gupta N, Sharma S, Raina A, Bhushan S, Malik FA, Sangwan PL. Synthesis of Novel Mannich Derivatives of Bakuchiol as Apoptotic Inducer through Caspase Activation and PARP-1 Cleavage in A549 Cells. ChemistrySelect 2017. [DOI: 10.1002/slct.201700504] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Nidhi Gupta
- Bioorganic Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road, J ammu- 180001 India
| | - Sonia Sharma
- Cancer Pharmacology Division; CSIR-Indian Institute of Integrative Medicine; Canal Road Jammu- 180001 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IIIM Campus; Canal Road Jammu- 180001 India
| | - Arun Raina
- Bioorganic Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road, J ammu- 180001 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IIIM Campus; Canal Road Jammu- 180001 India
| | - Shashi Bhushan
- Cancer Pharmacology Division; CSIR-Indian Institute of Integrative Medicine; Canal Road Jammu- 180001 India
- Phytopharmaceutical Division; Indian Pharmacopoeia Commission; Raj Nagar Ghaziabad UP-201002
| | - Fayaz A. Malik
- Cancer Pharmacology Division; CSIR-Indian Institute of Integrative Medicine; Canal Road Jammu- 180001 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IIIM Campus; Canal Road Jammu- 180001 India
| | - Payare L. Sangwan
- Bioorganic Chemistry Division; CSIR-Indian Institute of Integrative Medicine; Canal Road, J ammu- 180001 India
- Academy of Scientific and Innovative Research (AcSIR); CSIR-IIIM Campus; Canal Road Jammu- 180001 India
| |
Collapse
|