1
|
Zhang S, Zhang S, Wang Y, Zhang Y, Liang S, Fan S, Chen D, Liu G. Discovery of novel phenanthridone derivatives with anti-streptococcal activity. Arch Microbiol 2023; 205:371. [PMID: 37930433 DOI: 10.1007/s00203-023-03705-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/08/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
To address the growing health threat posed by drug-resistant pathogenic microorganisms, the development of novel antimicrobial medications with multiple mechanisms of action is in urgent demand. With traditional antibacterial drug resources challenging to push forward, developing new antibacterial drugs has become a hot spot in biomedical research. In this study, we tested the antibacterial activity of 119 phenanthridine derivatives via the antibacterial assay and obtained 5 candidates. The cytotoxicity assay showed one phenanthridine derivative, HCK20, was safe for mammalian cells below 125 µM. HCK20 was verified to possess significant antibacterial activity to Streptococcus spp., such as Streptococcus pneumoniae, Streptococcus agalactiae, Streptococcus suis, Streptococcus dysgalactiae, and Streptococcus equi with MICs ranging from 15 to 60 µM. Furthermore, we found that HCK20 probably achieved its bacterial inhibition by influencing the permeability of bacterial cell walls via interacting with Streptococcal penicillin-binding proteins (PBPs). Our results suggest that this phenanthridine derivative, HCK20, has great potential to become a novel antibacterial agent that can be a potent treatment for streptococcal infections.
Collapse
Affiliation(s)
- Shidan Zhang
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
| | - Shiyu Zhang
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, 210095, China
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China
| | - Yiting Wang
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Yumin Zhang
- School of Agriculture and Biology, Shanghai Key Laboratory of Veterinary Biotechnology, Shanghai Jiao Tong University, Shanghai, 201100, China
| | - Song Liang
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shirui Fan
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China
| | - Duozhi Chen
- State Key Laboratory of Phytochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, China.
| | - Guangjin Liu
- OIE Reference Laboratory for Swine Streptococcosis, Nanjing Agricultural University, Nanjing, 210095, China.
- Sanya Institute of Nanjing Agricultural University, Nanjing Agricultural University, Sanya, China.
| |
Collapse
|
2
|
Nandikolla A, Khetmalis YM, Venkata Siva Kumar B, Chandu A, Karan Kumar B, Shetye G, Ma R, Murugesan S, Franzblau SG, Chandra Sekhar KVG. Design, synthesis and biological evaluation of phenanthridine amide and 1,2,3-triazole analogues against Mycobacterium tuberculosis. RSC Med Chem 2023; 14:1549-1561. [PMID: 37593576 PMCID: PMC10429663 DOI: 10.1039/d3md00115f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/29/2023] [Indexed: 08/19/2023] Open
Abstract
The phenanthridine core exhibits antitubercular activity, according to reports from the literature. Several 1,2,3-triazole-based heterocyclic compounds are well-known antitubercular agents. A series of twenty-five phenanthridine amide and 1,2,3-triazole derivatives are synthesized and analyzed using ESI-MS, 1HNMR, and 13CNMR on the basis of our earlier findings that phenanthridine and 1,2,3-triazoles shown good antitubercular activity. The synthesized phenanthridine amide and 1,2,3-triazole analogues were tested in vitro against Mycobacterium tuberculosis H37Rv and minimum inhibitory concentration (MIC) values were determined utilizing non-replicating and replicating low-oxygen recovery assay (LORA) and microplate Alamar Blue assay (MABA) methodologies. The phenanthridine amide derivative PA-01 had an MIC of 61.31 μM in MABA and 62.09 μM in the LORA technique, showing intense anti-TB activity. Amongst the phenanthridine triazole derivatives, PT-09, with MICs of 41.47 and 78.75 μM against the tested strain of Mtb in both MABA and LORA was the most active one. The final analogues' drug-likeness is predicted using absorption, distribution, metabolism, excretion, and toxicity (ADMET) studies. The most active compounds PA-01 and PT-09 were further subjected to in silico docking studies. Using the Glide module of Schrodinger, molecular docking analysis was carried out to estimate the plausible binding pattern of PA-01 and PT-09 at the active site of Mycobacterial DNA topoisomerase II (PDB code: 5BS8). Further, molecular dynamics studies of PA-01 and PT-09 were also carried out.
Collapse
Affiliation(s)
- Adinarayana Nandikolla
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad - 500078 Telangana India +91 40 66303527
| | - Yogesh Mahadu Khetmalis
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad - 500078 Telangana India +91 40 66303527
| | - Boddupalli Venkata Siva Kumar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad - 500078 Telangana India +91 40 66303527
| | - Ala Chandu
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - Banoth Karan Kumar
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - Gauri Shetye
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago 833 South Wood Street Chicago IL 60612 USA
| | - Rui Ma
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago 833 South Wood Street Chicago IL 60612 USA
| | - Sankaranarayanan Murugesan
- Medicinal Chemistry Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science Pilani Pilani Campus Pilani-333031 Rajasthan India
| | - Scott G Franzblau
- Institute for Tuberculosis Research, College of Pharmacy, University of Illinois at Chicago 833 South Wood Street Chicago IL 60612 USA
| | - Kondapalli Venkata Gowri Chandra Sekhar
- Department of Chemistry, Birla Institute of Technology and Science, Pilani Hyderabad Campus, Jawahar Nagar, Kapra Mandal Hyderabad - 500078 Telangana India +91 40 66303527
| |
Collapse
|
3
|
Liu T, Chen J, Fan C, Wu C, Sun T. Crystal structure, DFT calculation, molecular docking, in vitro biological activity evaluation and in silico drug-likeness prediction of (E)-N-(4-bromophenyl)-4-(2-(2-hydroxybenzylidene) hydrazine-1-carbonyl) benzenesulfonamide. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
4
|
Zhu M, Tian Y, Sha J, Fu W. Photocatalytic radical cascade cyclization of
N
‐(o–cyanobiaryl) acrylamides: access to CF
2
H‐functionalized pyrido[4,3,2‐gh] phenanthridines. ChemistrySelect 2022. [DOI: 10.1002/slct.202203986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Mei Zhu
- College of Food and Drug Luoyang Normal University 471934 Luoyang P. R. China
| | - Yunfei Tian
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Fuction-Oriented Porous Materials Luoyang Normal University 471022 Luoyang P. R. China
| | - Jinyu Sha
- College of Food and Drug Luoyang Normal University 471934 Luoyang P. R. China
| | - Weijun Fu
- College of Chemistry and Chemical Engineering Henan Key Laboratory of Fuction-Oriented Porous Materials Luoyang Normal University 471022 Luoyang P. R. China
| |
Collapse
|
5
|
Discovery of potent antitubercular agents: Design, synthesis and biological evaluation of 4-(3-(4-substitutedpiperazin-1-yl)-quinoxalin-2-yl)-naphthalen-1-ol analogues. Toxicol In Vitro 2022; 82:105370. [PMID: 35489549 DOI: 10.1016/j.tiv.2022.105370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 03/10/2022] [Accepted: 04/21/2022] [Indexed: 11/22/2022]
Abstract
A series of twenty-five novel 4-(3-(4-substituted piperazin-1-yl)-quinoxalin-2-yl)-naphthalen-1-ol analogues were synthesized, characterized and screened for in vitro antitubercular activity against Mycobacterium tuberculosis H37Rv strain. These compounds exhibited minimum inhibitory concentration in the range of 1.56-50 μg/mL. Among these derivatives, compounds 5a, 5b, 5f, 5m, 5p, and 5r displayed moderate activity (MIC 6.25 μg/mL). Compounds 5c, 5d, 5g, 5l, and 5o showed significant antitubercular activity (MIC 3.125 μg/mL), while compounds 5h, 5n, and 5q exhibited potent antitubercular activity (MIC 1.56 μg/mL). In addition, MTT assay was performed on the active analogues of the series against mouse macrophage cells to assess the cytotoxic effect of the newly synthesized compounds, and a selectivity index of the compounds was established. Selectivity index values of the most active compounds (5h, 5n, and 5q) are >47, indicating the compounds' suitability for further potential drug development. A molecular docking study was performed to understand the putative binding mode and binding strength of the selected significantly active and weakly active compounds with the target enzyme mycobacterial topoisomerase II using moxifloxacin as standard. In-silico ADME prediction and bioavailability studies of the titled compounds obey Lipinski's rule of five and Jorgensen's rule of three. To further ascertain the structure of the compounds, a suitable single crystal for the compounds 5a, 6, and 7d was developed and studied.
Collapse
|
6
|
Murthy VS, Tamboli Y, Krishna VS, Sriram D, Akber Ansari S, Alarfaj AA, Hirad AH, Vijayakumar V. Design and characterisation of piperazine-benzofuran integrated dinitrobenzenesulfonamide as Mycobacterium tuberculosis H37Rv strain inhibitors. J Enzyme Inhib Med Chem 2021; 36:1751-1759. [PMID: 34325595 PMCID: PMC8330757 DOI: 10.1080/14756366.2021.1956914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/01/2021] [Accepted: 07/13/2021] [Indexed: 11/16/2022] Open
Abstract
Molecular hybridisation of four bioactive fragments piperazine, substituted-benzofuran, amino acids, and 2,4-dinitrobenzenesulfonamide as single molecular architecture was designed. A series of new hybrids were synthesised and subjected to evaluation for their inhibitory activity against Mycobacterium tuberculosis (Mtb) H37Rv. 4d-f and 4o found to exhibit MIC as 1.56 µg/mL, equally active as ethambutol whereas 4a, 4c, 4j displayed MIC 0.78 µg/mL were superior to ethambutol. Tested compounds demonstrated an excellent safety profile with very low toxicity, good selectivity index, and antioxidant properties. All the newly synthesised compounds were thoroughly characterised by analytical methods. The result was further supported by molecular modelling studies on the crystal structure of Mycobacterium tuberculosis enoyl reductase.
Collapse
Affiliation(s)
- Vallabhaneni S. Murthy
- Centre for Organic and Medicinal Chemistry, Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, India
| | - Yasinalli Tamboli
- Centre for Organic and Medicinal Chemistry, Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, India
| | - Vagolu Siva Krishna
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, India
| | - Dharmarajan Sriram
- Medicinal Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology and Science, Pilani, Hyderabad Campus, Hyderabad, India
| | - Siddique Akber Ansari
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Abdullah A. Alarfaj
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Abdurahman H. Hirad
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Vijayaparthasarathi Vijayakumar
- Centre for Organic and Medicinal Chemistry, Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, India
| |
Collapse
|
7
|
Liang Q, Lin L, Li G, Kong X, Xu B. Synthesis of Phenanthridine and Quinoxaline Derivatives
via
Copper‐Catalyzed
Radical Cyanoalkylation of Cyclobutanone Oxime Esters and Vinyl Azides. CHINESE J CHEM 2021. [DOI: 10.1002/cjoc.202100050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Qi Liang
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| | - Long Lin
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| | - Guodong Li
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| | - Xianqiang Kong
- School of Chemical Engineering and Materials, Changzhou Institute of Technology No. 666 Liaohe Road Changzhou Jiangsu 213032 China
| | - Bo Xu
- Key Laboratory of Science and Technology of Eco‐Textiles, Ministry of Education, College of Chemistry, Chemical Engineering and Biotechnology, Donghua University Shanghai 201620 China
| |
Collapse
|
8
|
Zampieri D, Mamolo MG. Hybridization Approach to Drug Discovery Inhibiting Mycobacterium tuberculosis-An Overview. Curr Top Med Chem 2021; 21:777-788. [PMID: 32814528 DOI: 10.2174/1568026620666200819151342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Revised: 07/10/2020] [Accepted: 07/16/2020] [Indexed: 11/22/2022]
Abstract
Tuberculosis is one of the top 10 causes of death worldwide and the leading cause of death from a single infectious agent, mainly due to Mycobacterium tuberculosis (MTB). Recently, clinical prognoses have worsened due to the emergence of multi-drug resistant (MDR) and extensive-drug resistant (XDR) tuberculosis, which lead to the need for new, efficient and safe drugs. Among the several strategies, polypharmacology could be considered one of the best solutions, in particular, the multitarget directed ligands strategy (MTDLs), based on the synthesis of hybrid ligands acting against two targets of the pathogen. The framework strategy comprises linking, fusing and merging approaches to develop new chemical entities. With these premises, this review aims to provide an overview of the recent hybridization approach, in medicinal chemistry, of the most recent and promising multitargeting antimycobacterial candidates.
Collapse
Affiliation(s)
- Daniele Zampieri
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1, University of Trieste, Trieste 34127, Italy
| | - Maria G Mamolo
- Department of Chemical and Pharmaceutical Sciences, P.le Europa 1, University of Trieste, Trieste 34127, Italy
| |
Collapse
|
9
|
Murthy V, Tamboli Y, Krishna VS, Sriram D, Zhang FX, Zamponi GW, Vijayakumar V. Synthesis and Biological Evaluation of Novel Benzhydrylpiperazine-Coupled Nitrobenzenesulfonamide Hybrids. ACS OMEGA 2021; 6:9731-9740. [PMID: 33869953 PMCID: PMC8047747 DOI: 10.1021/acsomega.1c00369] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/22/2021] [Indexed: 05/15/2023]
Abstract
A series of novel benzhydryl piperazine-coupled nitrobenzenesulfonamide hybrids were synthesized with good to excellent yields. They were tested for in vitro inhibition of mycobacterial activity against the Mycobacterium tuberculosis H37Rv strain, in vitro cytotoxicity MTT (RAW 264.7cells) assay, nutrient starvation (H37Rv strain), and ability to block Cav3.2 T-type calcium channels. Novel hybrids did not inhibit T-type calcium channels, whereas they showed excellent antituberculosis (TB) activity and low cytotoxicity with a selectivity index of >30. A direct impact of the amino acid linker was not observed. Studied hybrids exhibited good inhibition activities, and the 2,4-dinitrobenzenesulfonamide group emerged as a promising scaffold for further drug design by hybridization approaches for anti-TB therapy.
Collapse
Affiliation(s)
- Vallabhaneni
S. Murthy
- Centre
for Organic and Medicinal Chemistry, Department of Chemistry, School
of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632014, India
| | - Yasinalli Tamboli
- Centre
for Organic and Medicinal Chemistry, Department of Chemistry, School
of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632014, India
| | - Vagolu Siva Krishna
- Medicinal
Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Dharmarajan Sriram
- Medicinal
Chemistry and Antimycobacterial Research Laboratory, Pharmacy Group, Birla Institute of Technology & Science Pilani, Hyderabad Campus, Hyderabad, Telangana 500078, India
| | - Fang Xiong Zhang
- Department
of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss
Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Gerald W. Zamponi
- Department
of Physiology and Pharmacology, Cumming School of Medicine, University of Calgary, Calgary, Alberta T2N 1N4, Canada
- Hotchkiss
Brain Institute and Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Vijayaparthasarathi Vijayakumar
- Centre
for Organic and Medicinal Chemistry, Department of Chemistry, School
of Advanced Sciences, VIT University, Vellore, Tamil Nadu 632014, India
- . Phone: +91-416-2202535, 9443916746. Fax: +91-4162243092
| |
Collapse
|
10
|
Chen J, Tang B, Liu X, Lv G, Shi Y, Huang T, Xing H, Guo X, Hai L, Wu Y. Ruthenium(ii)-catalyzed [5 + 1] annulation reaction: a facile and efficient approach to construct 6-ethenyl phenanthridines utilizing a primary amine as a directing group. Org Chem Front 2020. [DOI: 10.1039/d0qo00769b] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
A ruthenium(ii)-catalyzed [5 + 1] annulation reaction between 2-arylanilines and cyclopropenones employing a free amine as a directing group has been developed.
Collapse
|
11
|
Tang YQ, Yang JC, Wang L, Fan M, Guo LN. Ni-Catalyzed Redox-Neutral Ring-Opening/Radical Addition/Ring-Closing Cascade of Cycloketone Oxime Esters and Vinyl Azides. Org Lett 2019; 21:5178-5182. [DOI: 10.1021/acs.orglett.9b01773] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
- Yu-Qi Tang
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Jun-Cheng Yang
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| | - Le Wang
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Mingjin Fan
- Shaanxi Key Laboratory of Phytochemistry, College of Chemistry and Chemical Engineering, Baoji University of Arts and Sciences, Baoji, Shaanxi 721013, P. R. China
| | - Li-Na Guo
- Department of Chemistry, School of Science, Xi’an Key Laboratory of Sustainable Energy Material Chemistry and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, P. R. China
| |
Collapse
|
12
|
Padmavathi R, Babu SA. Palladium‐Catalyzed 8‐Aminoquinoline‐Aided sp
2
δ
‐C−H Intramolecular Amidation/Annulation: A Route to Tricyclic Quinolones. ASIAN J ORG CHEM 2019. [DOI: 10.1002/ajoc.201900109] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Rayavarapu Padmavathi
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| | - Srinivasarao Arulananda Babu
- Department of Chemical SciencesIndian Institute of Science Education and Research (IISER) Mohali Knowledge City, Sector 81, SAS Nagar, Mohali, Manauli P.O. Punjab 140306 India
| |
Collapse
|
13
|
Castaño LF, Cuartas V, Bernal A, Insuasty A, Guzman J, Vidal O, Rubio V, Puerto G, Lukáč P, Vimberg V, Balíková-Novtoná G, Vannucci L, Janata J, Quiroga J, Abonia R, Nogueras M, Cobo J, Insuasty B. New chalcone-sulfonamide hybrids exhibiting anticancer and antituberculosis activity. Eur J Med Chem 2019; 176:50-60. [PMID: 31096118 DOI: 10.1016/j.ejmech.2019.05.013] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/07/2019] [Accepted: 05/06/2019] [Indexed: 01/10/2023]
Abstract
New sulfonamides 5/6 derived from 4-methoxyacetophenone 1 were synthesized by N-sulfonation reaction of ammonia (3) and aminopyrimidinone (4) with its sulfonyl chloride derivative 2. Sulfonamides 5 and 6 were used as precursors of two new series of chalcones 8a-f and 9a-f, which were obtained through Claisen-Schmidt condensation with aromatic aldehydes 7a-f. Compounds 5/6, 8a-d, 8f, 9a-d, and 9f were screened by the US National Cancer Institute (NCI) at 10 μM against sixty different human cancer cell lines (one-dose trial). Chalcones 8b and 9b satisfied the pre-determined threshold inhibition criteria and were selected for screening at five different concentrations (100, 10, 1.0, 0.1, and 0.01 μM). Compound 8b exhibited remarkable GI50 values ranging from 0.57 to 12.4 μM, with cytotoxic effects being observed in almost all cases, especially against the cell lines K-562 of Leukemia and LOX IMVI of Melanoma with GI50 = 0.57 and 1.28 μM, respectively. Moreover, all compounds were screened against Mycobacterium tuberculosis H37Rv, chalcones 8a-c and 9a-c were the most active showing MIC values between 14 and 42 μM, and interestingly they were devoid of antibacterial activity against Mycobacterium smegmatis and Staphylococcus aureus. These antituberculosis hits showed however low selectivity, being equally inhibitory to M. tuberculosis and mammalian T3T cells. The chalcone-sulfonamide hybrids 8a-f and 9a-f resulted to be appealing cytotoxic agents with significant antituberculosis activity.
Collapse
Affiliation(s)
- Lina Fernanda Castaño
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, A.A, 25360, Colombia
| | - Viviana Cuartas
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, A.A, 25360, Colombia; Centre for Bioinformatics and Photonics-CIBioFI, Universidad del Valle, Cali, A.A, 25360, Colombia
| | - Anthony Bernal
- Department of Chemistry and Biology, Basic Sciences Division, Universidad del Norte, Barranquilla, 081007, Colombia
| | - Alberto Insuasty
- Department of Chemistry and Biology, Basic Sciences Division, Universidad del Norte, Barranquilla, 081007, Colombia
| | - Juan Guzman
- Department of Chemistry and Biology, Basic Sciences Division, Universidad del Norte, Barranquilla, 081007, Colombia; Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Oscar Vidal
- Department of Medicine, Health Sciences Division, Universidad del Norte, Barranquilla, 081007, Colombia
| | - Vivian Rubio
- Mycobacteria Laboratory, National Health Institute, Bogotá, 111321, Colombia
| | - Gloria Puerto
- Mycobacteria Laboratory, National Health Institute, Bogotá, 111321, Colombia
| | - Pavol Lukáč
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Vladimir Vimberg
- Institute of Microbiology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Gabriela Balíková-Novtoná
- Institute of Microbiology, Czech Academy of Sciences, BIOCEV, Průmyslová 595, 252 50, Vestec, Czech Republic
| | - Luca Vannucci
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Jiri Janata
- Institute of Microbiology, Czech Academy of Sciences, Videnska 1083, 142 20, Prague, Czech Republic
| | - Jairo Quiroga
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, A.A, 25360, Colombia; Centre for Bioinformatics and Photonics-CIBioFI, Universidad del Valle, Cali, A.A, 25360, Colombia
| | - Rodrigo Abonia
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, A.A, 25360, Colombia; Centre for Bioinformatics and Photonics-CIBioFI, Universidad del Valle, Cali, A.A, 25360, Colombia
| | - Manuel Nogueras
- Department of Inorganic and Organic Chemistry, Universidad de Jaén, Jaén, 23071, Spain
| | - Justo Cobo
- Department of Inorganic and Organic Chemistry, Universidad de Jaén, Jaén, 23071, Spain
| | - Braulio Insuasty
- Heterocyclic Compounds Research Group, Department of Chemistry, Universidad del Valle, Cali, A.A, 25360, Colombia; Centre for Bioinformatics and Photonics-CIBioFI, Universidad del Valle, Cali, A.A, 25360, Colombia.
| |
Collapse
|
14
|
Thakral S, Singh V. Recent Development on Importance of Heterocyclic Amides as Potential Bioactive Molecules: A Review. ACTA ACUST UNITED AC 2019. [DOI: 10.2174/1573407214666180614121140] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Heterocyclic compounds are an integral part of the chemical and life sciences
and constitute a considerable quantum of the modern research that is being currently pursued throughout
the world.
Methods:
This review was prepared by collecting the available literature reports on various databases
and an extract was prepared for each report after thorough study and compiling the recent literature
reports on heterocyclic amides from 2007 to 2018.
Results:
This review summarizes the bio-potential of heterocyclic amides as antimicrobial, anticancer,
anti-tubercular and antimalarial agents which would be very promising in the field of medicinal chemistry.
Conclusion:
A wide variety of heterocyclic amides have already been reported and some are currently
being used as active medicaments for the treatment of disease. Still, the research groups are focusing on
the development of newer heterocyclic amide derivatives with better efficacy, potency and lesser side
effects. This area has got the tremendous potential to come up with new chemical entities of medicinal
importance.
Collapse
Affiliation(s)
- Samridhi Thakral
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar -125001, Haryana, India
| | - Vikramjeet Singh
- Department of Pharmaceutical Sciences, Guru Jambheshwar University of Science and Technology, Hisar -125001, Haryana, India
| |
Collapse
|
15
|
Bhagat S, Supriya M, Pathak S, Sriram D, Chakraborti AK. α-Sulfonamidophosphonates as new anti-mycobacterial chemotypes: Design, development of synthetic methodology, and biological evaluation. Bioorg Chem 2019; 82:246-252. [DOI: 10.1016/j.bioorg.2018.09.023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 08/12/2018] [Accepted: 09/13/2018] [Indexed: 12/15/2022]
|
16
|
Synthesis, spectral characterization, docking studies and biological activity of urea, thiourea, sulfonamide and carbamate derivatives of imatinib intermediate. Mol Divers 2018; 23:723-738. [DOI: 10.1007/s11030-018-9906-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 12/11/2018] [Indexed: 10/27/2022]
|
17
|
Zhou B, Zheng L, Xu Z, Jin H, Wu Q, Li T, Liu Y. Synthesis of Functionalized Phenathridine-6-carbonitriles via Copper-catalyzed Annulation of Vinyl Azides and NaN3
in the Presence of PhI(OAc)2. ChemistrySelect 2018. [DOI: 10.1002/slct.201801772] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Bingwei Zhou
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| | - Limeng Zheng
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| | - Zheng Xu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| | - Hongwei Jin
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| | - Qingan Wu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| | - Ting Li
- College of Chemistry and Pharmaceutical Engineering; Nanyang Normal University, Nangyang, Henan; 473061 P. R. China
| | - Yunkui Liu
- State Key Laboratory Breeding Base of Green Chemistry-Synthesis Technology; Zhejiang University of Technology, Hangzhou; 310014 P. R. China
| |
Collapse
|
18
|
Yang JC, Zhang JY, Zhang JJ, Duan XH, Guo LN. Metal-Free, Visible-Light-Promoted Decarboxylative Radical Cyclization of Vinyl Azides with N-Acyloxyphthalimides. J Org Chem 2018; 83:1598-1605. [DOI: 10.1021/acs.joc.7b02861] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Jun-Cheng Yang
- Department of Chemistry,
School of Science and MOE Key Laboratory for Nonequilibrium Synthesis
and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jia-Yu Zhang
- Department of Chemistry,
School of Science and MOE Key Laboratory for Nonequilibrium Synthesis
and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| | - Jin-Jiang Zhang
- Department of Chemistry,
School of Science and MOE Key Laboratory for Nonequilibrium Synthesis
and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| | - Xin-Hua Duan
- Department of Chemistry,
School of Science and MOE Key Laboratory for Nonequilibrium Synthesis
and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| | - Li-Na Guo
- Department of Chemistry,
School of Science and MOE Key Laboratory for Nonequilibrium Synthesis
and Modulation of Condensed Matter, Xi’an Jiaotong University, Xi’an 710049, China
| |
Collapse
|
19
|
de Oliveira Viana J, Scotti MT, Scotti L. Molecular Docking Studies in Multitarget Antitubercular Drug Discovery. METHODS IN PHARMACOLOGY AND TOXICOLOGY 2018. [DOI: 10.1007/7653_2018_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
|
20
|
Synthesis, characterization, crystal structure, and antituberculosis activity of some novel polysubstituted aminocarbothiol/thiohydantoin-pyrrolidine derivatives. MONATSHEFTE FUR CHEMIE 2017. [DOI: 10.1007/s00706-017-2039-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
21
|
Kumar V, Patel S, Jain R. New structural classes of antituberculosis agents. Med Res Rev 2017; 38:684-740. [DOI: 10.1002/med.21454] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Revised: 04/03/2017] [Accepted: 05/02/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Vajinder Kumar
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
- Present address: Department of Chemistry; Akal University; Talwandi Sabo Punjab 151 302 India
| | - Sanjay Patel
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
| | - Rahul Jain
- Department of Medicinal Chemistry; National Institute of Pharmaceutical Education and Research; S.A.S. Nagar Punjab India
| |
Collapse
|
22
|
Suresh A, Suresh N, Misra S, Kumar MMK, Sekhar KVGC. Design, Synthesis and Biological Evaluation of New Substituted Sulfonamide Tetrazole Derivatives as Antitubercular Agents. ChemistrySelect 2016. [DOI: 10.1002/slct.201600286] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Amaroju Suresh
- Department of Chemistry; Birla Institute of Technology and Science, Pilani; Hyderabad Campus, Jawahar Nagar; Hyderabad - 500 078 Telangana State India
| | - Narva Suresh
- Department of Chemistry; Birla Institute of Technology and Science, Pilani; Hyderabad Campus, Jawahar Nagar; Hyderabad - 500 078 Telangana State India
| | - Sunil Misra
- Department of Biology; Indian Institute of Chemical Technology, Tarnaka; Hyderabad-500007 Telangana State India
| | | | | |
Collapse
|
23
|
Naidu KM, Srinivasarao S, Agnieszka N, Ewa AK, Kumar MMK, Chandra Sekhar KVG. Seeking potent anti-tubercular agents: Design, synthesis, anti-tubercular activity and docking study of various ((triazoles/indole)-piperazin-1-yl/1,4-diazepan-1-yl)benzo[d]isoxazole derivatives. Bioorg Med Chem Lett 2016; 26:2245-50. [PMID: 27020525 DOI: 10.1016/j.bmcl.2016.03.059] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Revised: 02/04/2016] [Accepted: 03/15/2016] [Indexed: 01/22/2023]
Abstract
A series of thirty eight novel 3-(4-((substituted-1H-1,2,3-triazol-4-yl)methyl)piperazin-1-yl/1,4-diazepan-1-yl)benzo[d]isoxazole and 1-(4-(benzo[d]isoxazol-3-yl)piperazin-1-yl/1,4-diazepan-1-yl)-2-(1H-indol-3-yl)substituted-1-one analogues were synthesised, characterised using various analytical techniques and evaluated for in vitro anti-tubercular activity against Mycobacterium tuberculosis H37Rv strain and two 'wild' strains Spec. 210 and Spec. 192. The titled compounds exhibited minimum inhibitory concentration (MIC) ranging from 6.16 to >200μM. Among the tested compounds, 7i, 7y and 7z exhibited moderate activity (MIC=24.03-29.19μM) and 7j exhibited very good anti-tubercular activity (MIC=6.16μM). Furthermore, 7i, 7j, 7y and 7z were found to be non-toxic against mouse macrophage cell lines when screened for toxicity. All the synthesised compounds were docked to pantothenate synthetase enzyme site to know deferent binding interactions with the receptor.
Collapse
Affiliation(s)
- Kalaga Mahalakshmi Naidu
- Department of Chemistry, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shamirpet Mandal, Hyderabad 500 078, India
| | - Singireddi Srinivasarao
- Department of Chemistry, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Jawahar Nagar, Shamirpet Mandal, Hyderabad 500 078, India
| | - Napiórkowska Agnieszka
- Microbiology Department, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland
| | - Augustynowicz-Kopeć Ewa
- Microbiology Department, National Tuberculosis and Lung Diseases Research Institute, 01-138 Warsaw, Poland
| | | | | |
Collapse
|
24
|
Yang JC, Zhang JJ, Guo LN. Copper-catalyzed oxidative cyclization of vinyl azides with benzylic Csp3–H bonds for the synthesis of substituted phenanthridines. Org Biomol Chem 2016; 14:9806-9813. [DOI: 10.1039/c6ob02012g] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
A copper-catalyzed oxidative cyclization of vinyl azides with benzylic Csp3–H bondsviaa tandem dual C–H functionalization process has been developed. This reaction allows access to substituted phenanthridines containing a variety of functional groups.
Collapse
Affiliation(s)
- Jun-Cheng Yang
- Department of Chemistry
- School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Jin-Jiang Zhang
- Department of Chemistry
- School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
- China
| | - Li-Na Guo
- Department of Chemistry
- School of Science and MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter
- Xi'an Jiaotong University
- Xi'an 710049
- China
| |
Collapse
|